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Abstract

This paper investigates parametric pricing kernels for interest rate

options within the intertemporal CAPM framework. The usual GMM

estimation produces problematic pricing kernels that either fail statisti-

cal robustness tests or are inconsistent with economic theory in terms

of being hump-shaped and having negative segments. Adopting the

second Hansen-Jagannathan (HJ) distance, the four-term polynomial

pricing kernels clearly dominate the nonlinear iso-elastic pricing ker-

nels. The preferred pricing kernel has two significant state variables,

the real interest rate and maximum Sharpe ratio. It is always strictly

positive and everywhere monotonically decreasing in market returns in

conformity with economic theory.

JEL code: C11, G12, G13

Keywords: Pricing kernels, Simulation-based Bayesian approach, LIBOR

options
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1 Introduction

The London Interbank Offer Rate (LIBOR) is the most commonly cited

base rate in global money markets. The overnight LIBOR serves as the

benchmark for short-term interbank loans, the 3-month LIBOR for short

and medium term corporate loans while the 6-month LIBOR is widely used

in interest rate and currency swaps. Hence the hedging of LIBOR exposure

is a pervasive problem and the pricing of hedging instruments such as LIBOR

options becomes an important issue.

The focus of this paper is on the pricing of options written on 6-month LI-

BOR futures. One widely adopted approach to pricing options involves spec-

ifying the dynamics of the underlying asset and solving for the closed-form

solution1. Alternatively, a more general method for evaluating the prices

of risky assets, including derivatives, is to employ an asset pricing kernel,

also known as a stochastic discount factor. The pricing kernel is a strictly

positive and random variable that succinctly summarizes investor risk and

time preferences with respect to financial assets. It is used to compute to-

day’s asset price by discounting, state by state, the corresponding payoffs at

future dates (Harrison and Kreps (1979), Hansen and Jagannathan (1991,

1997), Bansal and Viswanathan (1993), and Chapman (1997)).
1Examples include Bakshi et al. (1997), Bates (1996), Pan (2002) for index options

and Hull and White (1990), Heath et al. (1992), and Singleton and Umantsev (2002) for

interest rate options.
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The first contribution of this paper to the literature is that it applies to LI-

BOR options the parametric pricing kernel approach that has been success-

fully employed in pricing stock index options (Rosenberg and Engle (2002),

Jones (2006), and Brennan et al. (2007)) and stock portfolios (Lettau and

Ludvigson (2001), Dittmar (2002), and Vaden (2004)). To our knowledge,

this is the first study that utilizes this approach for interest rate options.

It requires no assumptions on the dynamics of interest rates or on the term

structure. We evaluate two functional forms for market returns, a nonlinear

power function and a linear Chebyshev polynomial approximation. Both are

popular choices in the equity and option pricing literature (Brennan (1979),

Chapman (1997), Rosenberg and Engle (2002), and Brennan et al. (2007)).

The use of these functional forms ensures comparability between our results

and those of previous studies.

Secondly, our study contributes to the asset pricing literature that examines

the important role of pricing kernels within the intertemporal CAPM frame-

work of Merton (1973). In this respect it is closely related to Brennan et al.

(2004) and Nielsen and Vassalou (2006). They show that the investment

opportunity set can be captured by the intercept and slope of the instanta-

neous capital market line. In the options market, there is strong empirical

evidence that market volatility is priced with a negative risk premium (Co-

val and Shumway (2001) and Bakshi and Kapadia (2003)). Based on these

findings, we consider three non-wealth-related state variables for our pricing
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kernel, namely the real interest rate, the maximum Sharpe ratio, and volatil-

ity. We use an exponential affine function with time-varying innovations to

ensure that the pricing kernel is nonlinear in these state variables and hence

capable of pricing nonlinear payoffs (Chapman (1997) and Dittmar (2002)).

Using monthly moneyness-based portfolio returns on LIBOR options from

January 2000 to December 2006, our results indicate that, among the state

variables considered, only the coefficients of the real interest rate and the

maximum Sharpe ratio are statistically significant regardless of the func-

tional form. Volatility is not priced for our sample in contrast to that of

Brennan et al. (2007) who use the same functional forms for index options

in the US and UK markets. They find that all candidate state variables

are priced in the US market while only the real interest rate and volatility

are priced in the UK. Their and our results are contrary to modern asset

pricing theory which suggests that a unique pricing kernel is able to price all

financial assets (Cochrane (2005)). Our findings indicate that interest rate

options can be priced by means of a parsimonious stochastic discount factor

as interest rates were less volatile than stocks under the inflation targeting

regime that operated in the UK over our sample period.

The third contribution is that we adopt the second Hansen-Jagannathan

(HJ) distance in evaluating candidate pricing kernels. The motivation for

this is that the usual GMM estimation produces problematic pricing kernels

that either fail statistical robustness tests or are inconsistent with economic
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theory in terms of say producing hump-shaped pricing kernels. In contrast

with the first HJ distance, this measure restricts our focus to the family

of true positive pricing kernels. This positivity constraint guarantees that

the pricing kernels are arbitrage free which is essential for correctly pricing

contingent claims. The first HJ distance, which measures the deviation of

a candidate pricing kernel to the family of true pricing kernels, has been

widely applied (Jagannathan and Wang (1996), Buraschi and Jackwerth

(1999), Dittmar (2002), Lettau and Ludvigson (2001), among others). By

contrast, the second HJ distance has rarely been applied in the literature

mainly due to the difficulty in deriving a reliable posterior distribution for

the test statistic.

Notable exceptions include Hansen et al. (1995), Wang and Zhang (2005),

and Li et al. (2008). Hansen et al. (1995) develop an asymptotic distribution

for the sample estimate of the second HJ distance under the assumption that

the distance is nonzero in population. However, the asymptotic theory no

longer holds when the true distance is zero. Wang and Zhang (2005) propose

a simulation-based Bayesian approach that facilitates statistical inference for

the second HJ distance in finite samples. Bayesian methods provide us with

the full posterior density of the model parameters, and subsequently the full

posterior of the second HJ distance, resulting in inference that takes account

of parameter uncertainty and is valid in finite samples (Koop (2003)). More

recently, Li et al. (2008) also adopt the second HJ distance as the yardstick
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for comparing alternative asset pricing models but they employ a different

econometric framework.

We follow Wang and Zhang (2005) and use Bayesian econometrics to pro-

vide a robustness test for the second HJ distance in estimating parametric

linear and nonlinear pricing kernels. Our results indicate that the linear

multi-factor pricing kernels outperform the non-linear models in terms of

smaller pricing errors. In addition, unlike the linear pricing kernels obtained

from the GMM, those obtained via the second HJ distance conform neatly

with economic theory by being strictly positive and decreasing in market

returns. These findings underline the inherent advantage of the second HJ

distance over competing statistical measures in evaluating pricing kernels

for derivatives. The hypothesis of a zero second HJ distance is accepted

for both functional forms. The 4-term generalized Chebyshev polynomial

model with two state variables has the smallest second HJ distance and so

emerges as the preferred functional form for pricing interest rate options.

The rest of the paper proceeds as follows. Section 2 discusses the parametric

functional forms of the pricing kernel, the state variables, and the second

HJ distance. Section 3 describes the data and the empirical results. Finally,

Section 4 concludes.
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2 Methodology

2.1 The state variables

The importance of including non-wealth-related state variables in pricing

kernels has been widely stressed in the literature. The main reason is

that such variables enhance the ability of pricing kernels in capturing time-

varying investment opportunities (Garcia et al. (2003), Vaden (2004), Santa-

Clara and Yan (2008), among others). In particular, Nielsen and Vassalou

(2006) postulate that the intercept and slope of the instantaneous capital

market line are sufficient to describe the innovations in the investment op-

portunity set in the context of portfolio hedging. Supportive empirical evi-

dence is given in Brennan et al. (2004). Their simple ICAPM with aggregate

wealth and two state variables, the real interest rate and the maximal Sharpe

ratio, dominates the Fama-French three-factor model and the CAPM. In ad-

dition, market volatility is also included as a state variable on the basis of

the negative volatility premium documented in Coval and Shumway (2001),

Bakshi and Kapadia (2003), Eraker and Polson (2003), among others.

In our paper, the real interest rate r, the maximal Sharpe ratio η, and the

volatility σ are selected as the candidate state variables for pricing LIBOR

options. This particular state variable set X ≡ (r, η, σ) facilitates compar-

ison with the results in Brennan et al. (2007), who adopt the same state

variable set for pricing stock index options in the US and the UK markets.
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Hence, this study may be able to shed light on whether the state variable

set is distinct for pricing options on different financial assets.

We assume that the real interest rate and the maximum Sharpe ratio follow

correlated Ornstein-Uhlenbeck processes. With further specifications, the

time series of these two state variables can be estimated from panel data on

UK nominal zero-coupon government bond yields via the Kalman filter (see

Brennan et al. (2004) for details).

2.2 The pricing kernels

The pricing kernel approach has been widely employed in the asset pricing

literature (Breeden (1979), Epstein and Zin (1989), Cochrane (1996), Abel

(1990), among others). Cochrane (2005) argues that the projected pricing

kernels onto the asset return space have the same pricing implications as

the true pricing kernels. As a result, the portfolio choice problem for any

investor can be solved by the Euler equation

E
[
mt+1R̃i,t+1|Ωt

]
= 1 (1)

where mt+1 is the pricing kernel, a function of state variable set X; R̃i,t+1

is the gross return on an asset or portfolio i at time t + 1; and Ωt is the

information available at time t. The pricing kernel is also known as the

stochastic discount factor since it varies over time and across states and can

be applied to compute the expected discounted return that should always
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be equal to unity.

Motivated by Rosenberg and Engle (2002) and Brennan et al. (2007), two

basic forms of the pricing kernel are evaluated. These are a power function

and a Chebyshev polynomial expansion in aggregate wealth growth. They

both are augmented by an exponential affine function of the innovations in

the state variables. The use of these functional forms in the pricing kernels

also provides the basis for a comparison between linear and nonlinear forms

of pricing kernels.

Our choice of proposed functional forms builds on theoretical developments.

Under the assumptions of CRRA agents and bivariate normal distribu-

tion of the underlying asset returns and aggregate wealth growth, Rubin-

stein (1976) and Brennan (1979) demonstrate that the Black-Scholes op-

tion pricing model implies, in a discrete time setting, a power function:

m∗ = k(R̃−γ)/Rf . Here Rf is the riskfree interest rate, k is a constant, and γ

is the risk aversion factor. In a continuous time setting, Bick (1987) uses the

same projected pricing kernel but with continuously compounding interest

rate in the Black-Scholes framework. More generally, Dybvig (1981) indi-

cates that the projected pricing kernel implied by the Black-Scholes model

is equivalent to a power function of the gross return on aggregate wealth

discounted by the continuously compounded interest rate m∗ = k(R−γ
W )e−r

where k = (E[R−γ
W ])−1.
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In light of the theoretical links connecting the Black-Scholes model with the

pricing kernel approach, we first assume that the pricing kernel is expressed

as a power function of the aggregate wealth return, Rw, augmented by an

exponential affine function of the innovations in the state variables discussed

above,

mt+1 = β(Rw,t+1)−γ expb1∆rt+1+b2∆ηt+1+b3∆σt+1 (2)

where β, b1, b2, and b3 are constants and γ is the relative risk aversion

parameter. This iso-elastic function captures the decreasing marginal utility

of wealth.

The second functional form of the pricing kernel is a Chebyshev polyno-

mial in aggregate market returns. Chapman (1997) discusses the benefit of

approximating pricing kernels by means of polynomials. Such an approach

combines linearity in the functional form with nonlinearity in the state vari-

ables. Hence it is capable of pricing nonlinear payoffs while retaining linear

interpretation. Our second candidate pricing kernel is expressed as the sum

of Chebyshev polynomials augmented by an exponential affine function of

the innovations in the state variable as follows,

mt+1 = ℘n(Rw,t+1) expb1∆rt+1+b2∆ηt+1+b3∆σt+1 (3)

where ℘n(Rw,t+1) consists of n-term Chebyshev polynomials. We follow

Brennan et al. (2007) and Chapman (1997) use both 3- and 4-term polyno-

mial approximations.
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2.3 The second HJ distance and Markov Chain Monte Carlo

(MCMC) Bayesian inference

Following Wang and Zhang (2005), we estimate the pricing kernel param-

eters by minimizing the second HJ distance DistHJ2(θ) and obtain the p-

values from a Markov Chain Monte Carlo (MCMC) simulation-based Bayesian

approach. Let zt be a matrix of size t×n+ l+k composed of n asset returns

rt, l state variables st, and k factors ft which include all other informa-

tion like polynomial terms, thus zt = (r′t, f ′t, s′t)′. According to Hansen and

Jagannathan (1997), the second HJ distance is defined as

DistHJ2(θ) =
√

min
θ

max
λ∈Rñ

E [mt(θ)2 − ([mt(θ)− λ′rt]+)2 − 2λ′1n] (4)

where mt(θ) = g(θ, ft, zt−1) is the candidate pricing kernel, Rñ is the space

of ñ real numbers, and the assets return, rt, can be scaled by H(zt).

For the data-generating process in the MCMC simulation, zt is assumed

to follow a VAR, hence zt = C + Azt−1 + εt, εt ∼ N(0m, Ω). Under

the assumption of independent non-informative prior distributions for un-

known parameters, z0, B and Ω, we have p(Φ) = p(z0)p(B)p(Ω), where

Φ = (z′0, vec(B)′, vech(Ω)′)′, p(z0) ∝ constant, p(B) ∝ constant, p(Ω) ∝

|Ω|−(m+1)/2, m = n + k + l and B is the matrix of parameters including C

and A in the VAR system. Note that vech(Ω) is the vector converting the

upper triangle of matrix Ω.

The MCMC simulation method is applied to tackle the difficulty in deriving
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the posterior distribution of the unknown parameter set Φ. We carry out

S = 10, 000 simulations and discard the first S0 = 1000 simulations to

approximate the posterior distribution for the second HJ distance. More

specifically, we carry out the procedures below to compute the p-values.

In the first stage, we choose an arbitrary z
(0)
0 , and perform the simulations

(j = 1, ..., S):

1. Obtain the jth sample of unknown parameters from their conditional

posterior distributions

• Draw Ω(j) from IW
(
T Ω̂(z(j−1)

0 ), T − 1,m
)
, where IW is the inverted

Wishart distribution;

• Draw vec(B(j)) from the truncated normal distribution

N
(
vec(B̂(z(j−1)

0 )), Ω(j) ⊗ [X(z(j−1)
0 )′X(z(j−1)

0 )]−1
)

.

We limit the norm of the eigenvalues of parameter matrix A to be less

than unity to ensure that the VAR is stationary.

• Draw z
(j)
0 from N

(
[A(j)]−1(z1 − C(j)), [A(j)]−1Ω(j)[A(j)′]−1

)
where

Ω̂(z0) =
1
T

[Z −X(z0)B̂(z0)]′[Z −X(z0)B̂(z0)]

X(z0) =
(
(1, z′0)

′, (1, z′1)
′, ..., (1, z′T−1)

′)′

B̂(z0) = [X(z0)′X(z0)]−1X(z0)′Z

Z = (z1, ..., zT )′.
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2. Obtain the jth sample with unconditional mean µ̃(νt) and variance Σ̃(νt)

µ̃(νt)(j) = C̃(j) + Ã(j)µ(zt)(j)

Σ̃(νt)(j) = Ã(j)Σ(j)Ã(j)′ + DΩ(j)D′

where

µ(zt)(j) =
(
Im −A(j)

)−1
C(j)

vec(Σ(zt)(j)) =
(
Im2 −A(j) ⊗A(j)

)−1
vec(Ω(j)).

3. Compute the value of the second HJ distance for the jth sample.

In the second stage, we compute the posterior cumulative probability distri-

bution of the second HJ distance and the p-values can be derived as follows,

prob(DistHJ2 ≤ Y ) ≈ 1
S − S0

S∑

j=S0+1

I[Dist(j)HJ2 ≤ Y ] (5)

where I[.] is 1 when Dist(j)HJ2 ≤ Y is true and 0 otherwise.

3 Data and empirical results

The data used in this paper are settlement prices for 6-month LIBOR fu-

tures options traded on the London International Financial Futures and

Options Exchange (LIFFE) from January 2000 to December 2006. We ex-

clude options whose prices are below 5 pence or have less than 14 day to

maturity to avoid potential stale prices and microstructure issues. We cal-

culate monthly returns for all the options as long as they are traded for
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two consecutive months. We group the option returns into five put and call

portfolios according to their moneyness. The moneyness classes are chosen

so that options are approximately evenly distributed.

Summary statistics for the option return portfolios are reported in Table 1.

[Table 1 around here]

All the call option portfolios have positive 1-month returns while put option

returns tend to be negative except in one case but the returns are less

negative for deep in-the-money (ITM) put portfolios. According to the

Jarque-Bera test, the null hypothesis of normal distribution is rejected at

the 5% level for all the portfolios except the most ITM call portfolio. This

pattern is consistent with the index options market as put options, especially

out-of-the-money (OTM) put options, are often overpriced as a precaution

against extreme event like market crashes.

In order to have comparable results with previous studies, we follow Bren-

nan et al. (2007) and employ a set of instrumental variables in the GMM

estimation. They include a constant, the real interest rate, the maximum

Sharpe ratio, and the volatility. Table 2 provides summary statistics for

[Table 2 around here]

bond yields, the state variables and their innovations. The data for infer-

ring the state variables consist of UK government bond yields of different

maturities from January 1996 to December 2006 available from the Bank of
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England website. In Panel A, we can see a slow increase in monthly yields

with increasing maturity and a rather stable and small standard deviation.

In Panel B, we tabulate summary statistics for the state variables and their

innovations. We notice that the average return from the nominal interest

rate, taken as the midpoint between LIBOR and LIBID, is very close to

the return for holding the market. This is due to a sharp correction in the

market at the turn of the century.

Our main results are summarized in Tables 3 and 4. Table 3 presents the

empirical results from the GMM estimation for comparison with the findings

[Table 3 around here]

in the extant literature like Brennan et al. (2007). Panel A gives the pa-

rameter values for the iso-elastic power pricing kernel. We first include all

three candidate state variables in the pricing kernel. The risk aversion pa-

rameter γ is 5.21, close to the estimate of 4.05 in Bliss and Panigirtzoglou

(2004) for 4-week UK index options with a power utility function. The

coefficient for the real interest rate is 44.83 and significant. The positive

coefficient is consistent with previous evidence of a negative risk premium

associated with interest rate risk in Brennan et al. (2004) and Brennan et al.

(2007). The coefficient for the maximum Sharpe ratio is -3.35, in line with

the findings in Nielsen and Vassalou (2006) and Brennan et al. (2004). This

implies a positive risk premium for this state variable. The coefficient for
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volatility risk is 10.81. However, this parameter is statistically insignificant,

indicating that volatility risk is not priced. In addition, for iso-elastic power

kernels the test for over-identifying restrictions are all rejected pointing to a

lack of statistical robustness for this functional form (Hansen and Singleton

(1982)).

The coefficient for volatility is invariably insignificant for the polynomial

pricing kernels reported in Panels B and C. Interestingly, the value for the

over-identifying test JT is greatly reduced and now the over-identifying re-

strictions are accepted implying improved overall robustness. In addition,

the polynomial pricing kernel with two state variables, the real interest rate

and maximum Sharpe ratio, has the lowest value for the JT test2.

The market-related component of the pricing kernels are shown in Figure 1.

[Figure 1 around here]

We observe a high degree of variation in the scale and shape of the pricing

kernels. Consistent with the literature, large sections of the polynomial pric-

ing kernels are negative. There is a clear hump in the 3-term polynomials,

while the 4-term polynomials exhibit an N-shape against market returns.

They indicate that investors are actually risk seeking in the positive slope

regions and they will pay to acquire fair gambles in wealth. This is not only
2As real interest rate and maximum Sharpe ratio are theoretically motivated together

in Brennan et al. (2004) and Nielsen et al. (2006), we pair them in the empirical tests.

16



contrary to economic theory but also counter-intuitive.

Table 4 summarizes the empirical results when coefficients are obtained by

[Table 4 around here]

minimizing the second HJ distance. Panel A summarizes parameter values

for the iso-elastic power pricing kernel. We first include all three state vari-

ables in the pricing kernel. The coefficients for the real interest rate, max-

imum Sharpe ratio, and volatility are 47.52, -4.05, and 10.53, respectively,

similar in magnitude to the values in Table 3. With three state variables

in the pricing kernel the second HJ distance is 0.28 with a p-value of 0.47.

Therefore the null hypothesis of zero second HJ distance is rejected.

As volatility is consistently insignificant from the GMM results, we test the

pricing kernel without volatility. We notice that the parameter for risk aver-

sion increases slightly from 3.70 to 4.36. The coefficients for the real interest

rate and maximum Sharpe ratio have the same sign and similar magnitude

as in the previous specification. However, when we remove volatility from

the pricing kernel the second HJ distance drops significantly from 0.28 to

0.07 and the p-value increases dramatically from 0.47 to 0.96. Taken to-

gether, these statistics indicate that the null hypothesis of zero second HJ

distance can now be accepted3.
3We also test the pricing kernel incorporating three state variables, the real interest

rate, the maximum Sharpe ratio and the expected inflation. The results show that inflation

risk is not priced in interest rate options.
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When we remove the maximum Sharpe ratio from the pricing kernel and

include only the real interest rate, the second HJ measure increases to 0.33

with a lower p-value. Removing all three state variables, the second HJ dis-

tance further increases to 0.55, the highest among all the specifications with

the lowest p-value. The results from this panel emphasize the importance

of incorporating non-wealth-related state variables in asset pricing kernels.

They also demonstrate that interest rate options can be priced by a more

parsimonious pricing kernel without volatility risk. This may be due to the

stable interest rates and monetary conditions associated with the inflation

targeting regime operated by the Bank of England over the course of our

sample period.

In Panel B and Panel C, we tabulate parameter estimates for 3-term and

4-term polynomial pricing kernels, respectively. There is reasonably good

consistency of the sign and magnitude of the parameter estimates between

these two panels and also with Panel A for iso-elastic functional form. Specif-

ically, in Panel B with third degree polynomial expansions, the second HJ

measure drops significantly from 0.27 to 0.02 when volatility is removed from

the pricing kernel while the p-value goes up significantly from 0.47 to 0.99.

The null hypothesis is accepted only when real interest rate and maximum

Sharpe ratio are included in the pricing kernel.

In Panel C when there are four polynomial terms, the pricing kernels are

more flexible with the smallest pricing errors as indicated by the lowest
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second HJ distance and the highest p-values among the three panels. The

zero second HJ distance is accepted in all three specifications. However,

similar to results in the previous panels, the pricing kernel with only real

interest rate and maximum Sharpe ratio has the smallest second HJ distance.

In the top two rows of Panel C, we observe that the second HJ distance is

reduced only by 0.002 when we remove volatility from the pricing kernel. In

order to test the statistical significance of this reduction, we carry out more

simulations as outlined in Section 2.3. Results show that the probability of

the second HJ distance without volatility being smaller than the second HJ

distance with volatility is 0.73, hence the reduction is statistically robust.

The market-related component of the above pricing kernels are plotted in

[Figure 2 around here]

Figure 2. All the pricing kernels are strictly positive thus offering no arbi-

trage opportunity. They are predominantly4 monotonically downward slop-

ing, conforming to economic theories predicting a risk averse representa-

tive agent with diminishing marginal utility (Rubinstein (1976) and Lucas

(1978)).

The pricing kernels depicted in Figure 2 are in contrast to the empirical pric-
4There is one small exception. The three-term Chebyshev polynomial pricing kernel

with three state variables has a small hump for low market returns. Note that this is

dominated by the four-term Chebyshev polynomial pricing kernel with two state variables

which is the preferred kernel and is everywhere monotonically decreasing in market returns.
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ing kernels recovered from US and UK index options in Brown and Jackwerth

(2004), Liu et al. (2008), and Rosenberg and Engle (2002). Although they

adopt different methodologies over different sample periods, the papers all

report the pricing kernel to be hump-shaped, which is termed the pricing

kernel puzzle in Brown et al. (2004). Our results indicate that utilizing

information contained in non-wealth-related state variables and adopting a

robust econometric methodology can produce empirical results that comply

with theoretical predictions.

To summarize our empirical findings, for our sample period the 4-term poly-

nomial approximation with the real interest rate and the maximum Sharpe

ratio emerges as our preferred pricing kernel. After employing the second

HJ distance as the objective function, even the linear pricing kernels meet

the requirements of being arbitrage free and strictly monotonic. Therefore,

the second HJ distance not only provides a robust criterion for testing the

performance of candidate pricing kernels over contingent claims but also

produces pricing kernels that are consistent with economic theory.

The difference in the state variable set between our results and those on

index option pricing kernels in Brennan et al. (2007) may be due to the

fact that the LIBOR has been more stable than a market-wide index such

as the FTSE-100 index over our sample period. It also highlights the fact

that a more parsimonious pricing kernel is appropriate for interest rate op-

tions despite asset pricing theories predicting a unique pricing kernel for all
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traded financial assets. Our results also reflect the economic and monetary

environment in which the LIBOR options are traded. In 1997, the Bank of

England became independent and was authorized to set the base interest

rate in order to keep inflation within a low target band. Thus the economy

enjoyed stable growth over our sample period. Our result that the expected

inflation risk is not a concern for LIBOR option traders bears this out.

4 Concluding remarks

In this paper, we empirically evaluate the parametric pricing kernels that

best price LIBOR options within the intertemporal CAPM framework. The

usual GMM estimation produces problematic pricing kernels. Although the

iso-elastic power kernels are monotonically decreasing in market returns as

predicted by economic theory, they reject the over-identifying restrictions

thus indicating a lack of statistical robustness for this functional form. Sim-

ilarly, while the over-identifying restrictions are accepted for both the three-

and four-term polynomial pricing kernels implying overall statistical robust-

ness, the corresponding pricing kernels are hump-shaped and frequently neg-

ative in contrast to economic theory predictions.

This provides the motivation for applying the second HJ distance as ob-

jective function in estimating the pricing kernel parameters. The second

HJ distance is particularly important for pricing derivatives and managed

21



portfolios with option-like returns since it is defined as the pricing error

over contingent claims. Our results show that the linear Chebyshev polyno-

mial approximation approach to pricing kernels is preferred to the nonlinear

iso-elastic power function approach. Our preferred four-term polynomial

pricing kernels with two state variables — the real interest rate and max-

imum Sharpe ratio — are strictly positive and everywhere monotonically

decreasing in market returns in conformity with economic theory.

This differs from previous research that examines US and UK index options

and finds that volatility, in addition to real interest rate and maximum

Sharpe ratio, is also priced. However, the recent extreme volatility in LIBOR

during the credit crunch probably implies that our sample period was special

insofar as volatility was very low throughout. This may well explain the lack

of significance of volatility in our preferred pricing kernels. Extending our

study to include recent years would be an interesting extension of the current

research.
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Table 1. Summary statistics of the LIBOR option portfolio returns

This table provides summary statistics of the monthly portfolio returns with LIBOR fu-

tures options from January 2000 to December 2006. The p-values for the Jarque-Bera test of

normality are reported in the parentheses.

moneyness no. mean std skew kurt min max JB test

Call Options
≤ 0 56 0.089 0.698 2.370 7.967 -0.724 3.676 265.504 (0.000)
≤ 0.01 48 0.129 0.431 2.172 7.802 -0.476 2.348 245.635 (0.000)
≤ 0.02 47 0.052 0.169 1.069 2.786 -0.295 0.761 37.726 (0.000)
≤ 0.03 43 0.030 0.103 0.584 1.378 -0.210 0.404 9.729 (0.000)
> 0.03 50 0.019 0.063 0.299 0.588 -0.124 0.226 1.993 (0.369)

Put Options
≤ −0.01 31 -0.095 0.668 3.040 12.357 -0.715 3.631 584.844 (0.000)
≤ 0 34 -0.084 0.665 2.624 7.821 -0.733 2.897 275.443 (0.000)
≤ 0.01 48 0.005 0.398 2.291 6.559 -0.465 1.841 198.659 (0.000)
≤ 0.02 50 -0.009 0.164 1.622 4.362 -0.301 0.702 91.330 (0.000)
> 0.02 58 -0.008 0.098 0.877 2.201 -0.216 0.347 24.084 (0.005)
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Table 2. Summary statistics of UK government bond yield and state
variables

Panel A provides summary statistics of UK government bond yields of different maturi-

ties from January 1996 to December 2006. These data are taken from the Bank of England

website. Panel B shows summary statistics of the state variables and the innovations of the state

variables used in the pricing kernels. The state variables are real interest rate r, inflation π,

maximum Sharpe ratio η, riskfree rate r, and returns on aggregate wealth proxied by FTSE-100

index returns.

Panel A: UK government bond yield (%)
Maturity (yr) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0
Mean 5.14 5.23 5.28 5.31 5.32 5.32 5.32 5.31 5.30
Stdev 1.05 1.02 1.01 1.01 1.02 1.03 1.05 1.06 1.10
Max 7.23 7.03 7.13 7.38 7.58 7.75 7.89 8.00 8.18
Min 3.20 3.26 3.42 3.58 3.71 3.82 3.90 3.98 4.02

Panel B: State variables
r ∆r η ∆η σ ∆σ rf rW

Mean 0.033 0.000 0.896 0.001 0.158 -0.001 0.048 0.060
Stdev 0.056 0.013 0.796 0.170 0.050 0.014 0.012 0.480
Skew -0.683 4.263 -0.002 0.755 0.503 1.175 0.342 -0.269
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Table 3. GMM parameter estimates of the pricing kernels

Panel A gives the parameters estimated for the iso-elastic power function

mt+1 = β(Rw,t+1)
−γ expb1∆rt+1+b2∆ηt+1+b3∆σt+1 .

Panels B and C present the parameters estimated for the polynomial pricing kernel

mt+1 = ℘n(Rw,t+1) expb1∆rt+1+b2∆ηt+1+b3∆σt+1 ,

where γ is the risk aversion parameter, Rw,t+1 is portfolio returns, ℘n(Rw,t+1) consists of n-term

Chebyshev polynomials, and r, η, and σ stand for the real interest rate, maximum Sharpe ratio,

and volatility, respectively. JT is over-identifying test statistic. The p-values are reported in the

parentheses.

β γ r η σ JT

Panel A: Iso-elastic power function
0.533 5.211 44.834 -3.354 10.810 153.960
(0) (0.120) (0) (0) (0.187) (0)

0.642 5.869 39.694 -3.039 147.641
(0) (0.012) (0) (0) (0)

0.901 3.360 11.431 158.935
(0) (0.034) (0) (0)

1.001 4.116 153.137
(0) (0) (0)

Panel B: Polynomial approximation (n=3)
45.960 -3.481 14.949 48.859
(0.002) (0.001) (0.248) (0.636)
47.773 -3.079 39.632
(0.020) (0.002) (0.928)
36.667 52.468
(0.002) (0.572)

Panel C: Polynomial approximation (n=4)
44.935 -3.602 12.966 39.383
(0.029) (0.010) (0.346) (0.901)
40.945 -3.695 36.888
(0.025) (0.005) (0.955)
20.794 42.555
(0.012) (0.870)
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Table 4. Second HJ distance parameter estimates of the pricing kernels

Panel A gives the parameters estimated for the iso-elastic power function

mt+1 = β(Rw,t+1)
−γ expb1∆rt+1+b2∆ηt+1+b3∆σt+1 .

Panels B and C present the parameters estimated for the polynomial pricing kernel

mt+1 = ℘n(Rw,t+1) expb1∆rt+1+b2∆ηt+1+b3∆σt+1 ,

where γ is the risk aversion parameter, Rw,t+1 is portfolio returns, ℘n(Rw,t+1) consists of n-term

Chebyshev polynomials, and r, η, and σ stand for the real interest rate, maximum Sharpe ratio,

and volatility, respectively. The p-values for the 2nd HJ distance are also reported.

β γ r η σ 2nd HJ distance p-value

Panel A: Iso-elastic power function
0.652 3.696 47.518 -4.052 10.528 0.275 0.471
0.755 4.356 33.224 -3.331 0.073 0.961
0.811 4.306 10.970 0.334 0.465
0.990 3.803 0.546 0.245

Panel B: Polynomial approximation (n=3)
40.219 -3.397 12.468 0.268 0.474
41.597 -4.004 0.024 0.988
18.143 0.193 0.585

Panel C: Polynomial approximation (n=4)
42.954 -3.083 15.170 0.003 1.000
46.828 -3.270 0.001 1.000
26.982 0.060 0.971
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