Research Repository

The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516)

Mckew, BA and Davey, P and Finch, SJ and Hopkins, J and Lefebvre, SC and Metodiev, MV and Oxborough, K and Raines, CA and Lawson, T and Geider, RJ (2013) 'The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516).' New Phytologist, 200 (1). 74 - 85. ISSN 0028-646X

Full text not available from this repository. (Request a copy)

Abstract

Mechanistic understanding of the costs and benefits of photoacclimation requires knowledge of how photophysiology is affected by changes in the molecular structure of the chloroplast. We tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in the abundances of chloroplast proteins in Emiliania huxleyi strain CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m-2 s-1 photon flux densities. Carbon-specific light-saturated gross photosynthesis rates were not significantly different between cells acclimated to LL and HL. Acclimation to LL benefited cells by increasing biomass-specific light absorption and gross photosynthesis rates under low light, whereas acclimation to HL benefited cells by reducing the rate of photoinactivation of PSII under high light. Differences in the relative abundances of proteins assigned to light-harvesting (Lhcf), photoprotection (LI818-like), and the photosystem II (PSII) core complex accompanied differences in photophysiology: specifically, Lhcf:PSII was greater under LL, whereas LI818:PSII was greater in HL. Thus, photoacclimation in E. huxleyi involved a trade-off amongst the characteristics of light absorption and photoprotection, which could be attributed to changes in the abundance and composition of proteins in the light-harvesting antenna of PSII. © 2013 New Phytologist Trust.

Item Type: Article
Subjects: Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Science and Health > Biological Sciences, School of
Depositing User: Users 161 not found.
Date Deposited: 23 Dec 2014 16:07
Last Modified: 23 Jan 2019 00:15
URI: http://repository.essex.ac.uk/id/eprint/10363

Actions (login required)

View Item View Item