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ABSTRACT

LFG-DOP (Bod and Kaplan, 1998, 2003) provides an appealisgv@nto the ques-

tion of how probabilistic methods can be incorporated imtguistic theory. However,

despite its attractions, the standard model of LFG-DORessifrom serious problems
of overgeneration, because () it is unable to define fratgynhe right level of gen-

erality, and (b) it has no way of capturing the effect of ainyghexcept simple positive
constraints. We show how the model can be extended to overtoese problems.

1. Introduction'

The question of how probabilistic methods should be incatsal into linguistic the-

ory is important from both a practical, grammar engineenpegspective, and from the
perspective of ‘pure’ linguistic theory. From a practicaimt of view such techniques
are essential if a system is to achieve a useful breadth arage and avoid being
swamped by structural ambiguity in realistic situationsori a theoretical point of
view they are necessary as a response to the influence ofilistiafactors in human

language behaviour (see e.g. Jurafsky, 2003, for a review).

Bod and Kaplan (1998, 2003) provide a very appealing and psigl answer to
this question in the form of LFG-DOP, where the linguistipnesentations of Lexical
Functional Grammar (LFG) are combined with the probalidlistethods of Data Ori-

fWe are grateful to the participants at LFGO07 in Stanford, fajnsightful and stimulating dis-
cussion, in particular: Joan Bresnan, Aoife Cabhill, Grzegohrupala, Ron Kaplan, Jonas Kuhn, and
Louisa Sadler.



ented Parsing (DOP). The result is a descriptively powedelar, and elegant fusion

of linguistic theory and probability. However, it suffen®i two serious problems,

both related to generative capacity, which have the effexdtthe model overgenerates.
This paper shows how these problems can be overcome.

It is structured as follows. Section 2 provides backgrounttpducing the basic
ideas of DOP. Section 3 describes the Bod and Kaplan (B&K) mauhel introduces
the first problem: the problem of defining DOP fragments wiith tight level of gen-
erality. Section 4 shows how this problem can be overcometi®e5 describes the
second problem (which arises because LFG-DOP fragmerdstigé#ly encode only
simple, positive, LFG constraints) and shows how it can lEy@me. Section 6 dis-
cusses some issues, and potential objections.

2. Tree-DOP

The central idea of DOP is that, rather than using a collaatibrules, parsing and
other processing tasks employ a databas&ragimentsproduced by decomposing a
collection of normal linguistic representations (e.g.efr@rawn from a treebank).
These fragments can be assigned probabilities (e.g. bastto relative frequency
of appearance in the fragment database). Parsing a stuatyas, in effect, finding
a collection of fragments which can be combined to deriviedt, provide a represen-
tation for it. These representations are assigned protiebibased on the probabili-
ties of the fragments used. This general approach can ofede realized in many
different ways, via different choices of basic represeatatdifferent decomposition
operations, etc. So, standardly, specifying a DOP modellwes instantiating four
parameters: (i) representational basis; (ii) decompmosibperations; (iii) composition
operation(s); and (iv) probability model.

Specified in this way, Tree-DOP, the simplest DOP model,lireg

(i) atreebank of context free trees, such as Figure 1;
(i) two decomposition operationgioot and Frontier;
(i) a single composition operatio:eftmost Substitutign
(iv) a probability model based on relative frequency.

Fragments are produced from representations such as Hiduyrévo decomposi-
tion operations:Root and Frontier:

!Standard references on DOP include, for example, Bod ana@687); Bod (1998), and the papers
in Bod et al. (2003). All of these contain presentations &eFDOP.
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Figure 2: Fragments produced by tReot operation

(i) Root selects any node and makes it the root of a new tree, erasing all other
nodes apart from those dominatedhy

(i) Frontier chooses a set of nodes (other than the root) and erasestaflesidom-
inated by these nodes.

Intuitively, Root extracts a complete constituent to produce a fragment wiwaroot.
For example, the fragments in Figure 2 can be produced frentrée in Figure 1 by
(possibly trivial) application ofRoot. Frontier deletes part of a fragment to produce
an ‘incomplete’ fragment — a fragment with a new frontier @ning ‘open slots’
(i.e. terminal nodes labeled with a non-terminal categag)in Figure 3.

Leftmost Substitutiomvolves substituting a fragment for the leftmost open.slot
Figure 4 exemplifies one of the several ways in which a reptaten of Kim likes
Samcan be derived.

The following define a very simple probability model for thisrsion of DOF.

1) P(f) = %

root(f)=root(f;)

2Simple, and one should add, inadequate. This model is baseelative frequency estimation,
which has been shown to be biased and inconsistent (JoH2&@R), A number of alternatives have been
proposed, e.g. assuming a uniform derivation distribuiRennema et al., 1999), backing-off (Sima’an
and Buratto, 2003), and held-out estimation (Zollmann4208othing in what follows depends on the
choice of probability model, however.
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Figure 4: Fragment composition

) P(d) = H P(f;)

3) P(R) = P(dy)

(1) says that the probability associated with a fragnmferg the ratio of the number
of times it occurs compared to the number of times fragmeritis the same root
category occur. (2) says that the probability of a particdirivationd is the product
of the probabilities of the fragments used in deriving it) $ays that the probability
associated with a representation (tree) is to be found byrsogover the probabilities
of its derivations.

Apart from its obvious simplicity, this version of DOP hasnmerous attractions.
However, from a linguistic point of view it suffers from thienlitations of the underly-
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Figure 5: LFG-DOP Treebank representation.

ing linguistic theory (context-free phrase structure graar), and for this reason does
not provide a satisfactory answer to the question of how gisdistic and linguistic
methods should be combined. A much better answer emerge3Rf techniques are
combined with a richer linguistic theory, such as LFG.

3. LFG-DOP

The idea of combining DOP techniques with the linguistierfeavork of LFG was first
proposed in Bod and Kaplan (1998) (see also Bod and Kaplan; @83 1999; Bod,
2000b,a; Finn et al., 2006; Bod, 2006). As one would expeargihe framework,
representations are triplés, ¢, f), consisting of a c-structure, an f-structure, and a
‘correspondence’ function that relates them (see Figure 5).

Decomposition again involves theoot, and Frontier operations. As regards c-
structure, these operations are defined precisely as inO0@d® However, the opera-
tions must also take account of f-structure anddHenks: (i) when a node is erased,
all ¢-links leaving from it are removed, and (ii) all f-structunaits that are not-
accessible from the remaining nodes are erdséd) In addition, Root deletes all
semantic formsKREDfeatures) that are local to f-structures which are linkeertsed
nodes. (iv)Frontier also removes semantic forms from f-structures corresponidi
erased nodes.

The intuition here is (a) to eliminate f-structure that i aesociated with the c-
structure that remains in a fragment, and (b) keep everytbise, except that a frag-
ment should contain arReD value if and only if the c-structure contains the corre-

3Attempts to adapt DOP for other grammatical formalismsablgtHPSG, include Neumann (2003),
Linardaki (2006), and Arnold and Linardaki (2007).

4A piece of f-structure ig-accessible from a nodeif and only if it is ¢-linked ton or contained
within a the piece of f-structure that ¢slinked ton.
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Figure 6: LFG-DOPRoot fragments
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Figure 7: An LFG-DOPFrontier fragment

sponding word. Thus, from the representation in Figur&&st will produce {nter

alia) fragments corresponding to the NBamandKim, and the VHikes Kim as in
Figure 6. The cases @amandKim are straightforward: all other nodes, and the
associated-links have been removed; the only f-structures thatjaeecessible are
the values osuBJandoBJrespectively, and these are what appear in the fragments.
The case of the VIRkes Kim is slightly more complex: deleting the S and subject NP
nodes does not affegtaccessibility relations, because the S and VP nodes iné&Bu
are ¢-linked to the same f-structure. However, deleting the ectbNP removes the
PREDfeature thesuBJvalue, as required by (iii). Notice that nothing else is reath

in particular, notice that person-number information aliba subject NP remains.

Applying Frontier to Figure 6 €) to deleteKim will produce a fragment corre-
sponding tdikes NR, as in Figure 7. Againp-accessibility is not affected, so the only
effect on the f-structure is the removal of tReEeD feature associated witkim, as
required by (iv).



The composition operation will not be very important in wiiatows. For the
purpose in hand it can be just the same as that of Tree-DO#Pfwidt provisos. First,
we must ensure that substitution of a fragment at a node @esse-links and also
unifies the corresponding f-structures. Second, we redlo@é-structure of any final
representation we produce to satisfy a number of additioeditformedness condi-
tions, specificallyuniguenesscompletenesandcoherencein the normal LFG sense.
Similarly, for the purpose of this discussion we can assumeptobability model is
the same as used in Tree-DOP.

What is of central concern here is that the fragments prodogétdot and Frontier
are highlyundergenera({overspecific). In particular: the fragment f8amis nom the
fragment forKim is acg and in the fragment foikes NPthe direct object NP is third
person and singular.

This will lead to under-generation (under-recognitionyr Example, it will not be
possible to use th&oot fragments foiSamandKim in Figure 6 in analyzing a sentence
like (4) whereKim appears as a subject, aBdmas an object, because they have the
wrong case marking. Similarly, it will not be possible to ulke Frontier fragment in
Figure 7 to analyze (5), since it requires theJto be 3rd person singular, whials,
themetc. are no¥.

(4) Kim likes Sam.
(5) Sam likes them/us/me/you/the children.

To deal with this problem, B&K introduce a further operati@hscard, which pro-
duces more general fragments by erasing featurés.ard can erase any combination
of features apart fromRED, and those features whose valdesorrespond to remain-
ing c-structure nodes. As regards the fragm&amandKim this means everything
except thePRED can be removed, as in Figure &) In the case ofikes Kimin Fig-
ure 6 €) this means everything can be removed except for the vale®peb and the
oBJ(and itsPRED), see Figure 8). In the case dlikes NPin Figure 7 it means every-
thing can be removed except theepand theoBJ (however, though thesJremains,
the features it contains can be deleted), see Figuci 8 (

5In fact, a small extension is needetompletenessannot be checked in the course of a derivation,
but only on final representations, some of which will therefbe invalid. The problem is that the
probability mass associated with such representationsisBod and Kaplan (2003) address this issue
by re-normalizing to take account of this wasted probabitiass.

6Another way of thinking about this problem is as an exacéshaif the problem oflata sparsity
an approach like this will require much more data to get aniate picture of the contexts where words
and phrases can occur. Data sparsity is one of the most penaagl difficult problems for statistical
approaches to natural language.
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Figure 8: OvergenerdDiscard fragments

Clearly, such fragments amver-general (under specific). For example, the frag-
ment forKim in Figure 8 @) will be able to appear as subject of a non-third person
singular verb, as in (6); the fragments fikes NPandlikes Kimwill allow non-third
singular subjects (and subjects marked accusative), adabment folikes NPwill
also allow a nominative object, as in (7).

(6) *Kim were happy.
(7) *Them likes we.

To deal with this, B&K propose a redefinition of grammaticalitather than re-
garding as grammatical anything which can be given an aisaly®y regard an utter-
ance as grammatical if it can be derived without usihgcard fragments. For words
with relatively high frequency (including common namestsasKim and Sam and
verbs such asikes) this is likely to work. For example, every derivation of exa
ples like (6) and (7) is likely to involveDiscard fragments, so they will be correctly
classified as ungrammatical. Equally, (4) will have a r@nreard derivation, and be
correctly classified as grammatical, so longkas appears at least once as a subject,
andSamappears at least once as an object, and (5) will have ariesrd derivation
so long adikesappears with a sufficiently wide range of object NPs.

The reason this can be expected to work for high frequencysvsrthat for such
words the corpus distribution represents the true didiobui.e. in the language as
whole). Unfortunately, most words aret high frequency, and their appearance in
corpora is not representative of their true distributiomfdct, it is quite common for
more than 30% of the words in a corpus to appear only once — andurse this
single occurrence is unlikely to reflect the true potentfahe word!

’Baroni (to appear) notes that about 46% of all words (typeshe written part of the British



For example, in the British National Corpus (BNC) the nalebaucheg'moral
excesses’) appears just once, as in (8), where it wikdie Thus, the only way to pro-
duce (9) will be to use ®iscard fragment. But (8) and (9) are equally grammatical.

(8) [H]e...shook Paris by his wild debauches on convalddeene.
(9) His wild debauches shook Paris.

Similarly, the verbdo debauch('to corrupt morally’) andto hector(‘talk in a bully-
ing manner’) appear several times, but never with a firstqressngular subject: So
analyzing (10) and (11) will requir®:scard fragments, and they will be classified as
ungrammatical. But both are impeccable.

(10) I never debauch anyone.
(11) I never hector anyone.

In short: there is a serious theoretical problem with the Wiag-DOP fragments
are defined. WithoubDiscard, the fragments arandegeneral, and the model under-
generates, e.g. it cannot produce (4) and (5). There is a o=l for a method of
producing more general fragments via some operation/hiseard. However, as for-
mulated by B&K, Discard produces fragments that aogergeneral, and the model
overgenerates, producing examples like (6) and (7). SincK'8attempt to avoid
this problem by via a redefinition of grammaticality does hetp, we need to con-
sider alternative approaches. The most obvious being toseponstraints on the way
Discard operates (cf Way, 1999).

National Corpusq0 million tokens) occur only once (in the spoken part the figard5%, lower, but
still abovel/3). Of course, the BNC is not huge by human standards: listewispeech at normal rates
(say, 200 words per minute) for twelve hours per day, oneemtlounter more than half this number of
tokens each yeaR(0 x 60 x 12 x 365 = 52,560, 000). But Baroni also observes that this proportion
of words that appear only once seems to be largely indepénflearpus size.

8A number of participants at LFG07 suggested alternativeagmhes based on ‘smoothing’, rather
than Discard. Suppose, we have seen the proper nafivea just once, markedom (Alina,,,,,,). We
‘smooth’ the corpus data, by treatiddina,.. as an ‘unseen event’ (e.g. we might assign it a count
of 0.5). We can generalize this to eliminate the need fugscard: we simply hypothesize similar
unseen events for all possible attribute-value combinatidrhis is an interesting approach, but (a) it
will overgenerate, and (b) we will still be unable to reconst any idea of grammaticality. To see this,
consider that we will also tre#lina,,; as an unseen event, and presumably assign it the same count as
Alina,... We will now be able to deriveAline run(so we have overgeneration). Moreover, the same
arguments that we used to show the inadequackiséard as a basis for a notion of grammaticality
apply here, equally (e.qg. if we try to identify ungrammalitgawith ‘involving a smoothed fragment’).
Notice it is not the case that grammatical sentences wigtivechigher probability on such an account:
suppose that the probability &P runis the same or higher thawe saw NPit is likely that the
probability assigned toAlina run will be the same or higher thawe saw Alina (We are especially
grateful to Ron Kaplan, Jonas Kuhn, and Grzegorz Chrupalstiimulating discussion on this point).



4. Constraining Discard

The problem with B&K’s formulation ofDiscard— the reason it produces overgeneral
fragments — is that it is indiscriminate. In particular, des not distinguish between
features which are ‘inherent’ to a fragment (that is, ‘gramtically necessary’ given
its c-structure), which should not be discarded, and thdsetware ‘contextual’ or
‘contingent’ given its c-structure and are simply artifacf structure that has been
eliminated by the decomposition operations — such feataagand in the interest of
generality should) be discarded. Consider, for examplefrdggment forlikes NPin
Figure 7. Intuitively, theeERandNuUM features on the object NP are just ‘contextual’
here — they simply reflect the presence of a third person EngNP in the original
representation. On the other hand, thesEe feature on the object is grammatically
necessary, as are tlreR, NUM and CASE features on the subject NP (given that the
verb islikes). Similarly, with fragments for NPs lik&amand Kim: PER and NUM
features seem to be grammatically necessarychsE seems to be an artefact of the
context in which the fragments occur (while with a fragmentsheall three features
would be grammatically necessary).

One approach would be to look for general constraintsbDastard, e.g. to try
to identify certain features as grammatically ‘essentiasome way, and immune to
Discard (i.e. like PRED for B&K). While appealing, this seems to us unlikely to be
sucessful, and certainly no plausible candidates have freposed.

We think this is not an accident. Rather, the difficulty of fimgigeneral constraints
on Discard is a reflection of a fundamental feature of f-structures, laR@: the fact
that f-structures do not record the ‘structural source’ietps of f-structure. This is
in turn a reflection of an important fact about natural larggua— one for which con-
straint based formalisms provide a natural expressionitf@amation at one place in
a representation may have many different structural seuinghe case of agreement
phenomena, many sources simultaneously). Consider, forgeathenum:pl feature
that will appear on the subject NPs in the following:

(12) These sheep used to be healthy.
(13) Sam’s sheep are sick.

SWay (1999), suggests it might be possible to classify festas ‘lexical’ or ‘structural’ in some
general fashion (so the presence of ‘lexical’ features agifients would be tied to the presence of
lexical material in c-structures in the same wayasD). Way suggestserandNUM might be lexical,
andcAsE might be structural, but notice that are cases wioarge is associated with particular lexical
items (e.g. pronourshe her), and whereeERandNUM values are associated with a particular structure
(e.g. subject of a verb with a third person singular reflexisgct, such ablP criticized hersels).



(14) Sam’s sheep used to look after themselves.
(15) These sheep are able to look after themselves.
(16) Sheep can live in strange places.

In (12), this feature is a reflex of the plural determiner;i8)it is a result of the form
of the verb ére); in (14) it is a result of the reflexive pronoun; in (15) it cemfrom
all these places at once; in (16) it is thlesencef an article that signals that the noun
is singular.

Thus, instead of trying to find general constraints, we psefbat the production of
generalized fragments should be constrained by the exesigiwhat we will call ‘ab-
stract fragments’. Intuitively, abstract fragments wilkede information about what is
grammatically essential, and so provide an upper boundegeherality of fragments
that can be produced byiscard. We will call this generalizing operationDiscard
(‘constrainedDiscard’). Furthermore, we propose that the knowledge underlirghsu
abstract fragments be expressed using normal LFG grammeat ru

Formally, the key insight is that it is possible to think of igmar and lexicon as
generating a collection of (often very general) fragmelmysconstructing the minimal
c-structure that each rule or lexical entry defines, andticrga-links to pieces of f-
structure which are minimal models of the constraints onritlet-hand-side of the
rule. We will call fragments produced in this way ‘basic abst fragments’.

For example, suppose that, in response to the problemssdisduwabove, we pos-
tulate the rules and entries in (17). These rules can bepretird so as to generate the
basic abstract fragments in Figuré®.

a7) a S— NP VP
(TsuBJ cAsB=nom =]
b. VP— V NP
=] (ToBJ casB=acc
c. Kim NP (INuM)=sg
(TPER=3
d. she NP (INUM)=sg
(TPER=3

(TCASE)=nom

1ONotice that we do not follow the normal LFG convention wheréie absence of f-structure anno-
tation on category is interpreted gs={": absence of annotation means exactly an absence of frgteuc
constraints. Notice also that this means we are treatingtberrespondence as a partial function in
abstract fragments: in Figure 9 (a) the NP is not linked tofastyucture.
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Figure 9: Basic abstract fragments generated by the gramuiesrin (17)

Formally speaking, these are fragments in the normal senskthey can be com-
posed in the normal way. For example composing Figure) &uid Figure 91f) will
produce the ‘derived’ abstract fragment in Figure &0 This in turn can be composed
with Figure 9 @) to produce Figure 1(j. The idea is that such fragments can be used
to put an upper bound on the generality of the fragments mediby cDiscard, by
requiring the latter to be ‘licensed’ by an abstract fragtmen

More precisely, we require that, for a fragmetif cDiscard(f) produces frag-
ment f,;, then there must be some abstract fragnfemthich licensesf;, which for the
moment we take to meafy ‘frag-subsumesf,. We will say that an abstract fragment
fa frag-subsumea fragmentf, just in case:

1. the c-structures are isomorphic, with identical labelscorresponding nodes;

and

2. theg-correspondence df, is a subset of the-correspondence gf; (recall that
¢-correspondences are functions, i.e. sets of pairs).

3. every f-structure inf, subsumes (in the normal sense) the corresponding f-

structure off,;.1

This desciption glosses over a small formal point: normagfnents contain an f-structure with a
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To see the effect of this, consider tReot and Frontier fragments in Figure 11j, (d)
and ), and the abstract fragments that would license possilgkcagions of Discard
to them, in Figure 114§), (c) and €).

The abstract fragment in Figure 14) (ill license the discarding cfERandNUM
from the object slot of Figure 11b), but will not permit discarding offENSE in-
formation, or information about theAsE of the subject or object, ®ER and NUM
information from the subject. Thus, we will have fragmeritsufficient generality to
analyze (18), but not (19):

(18) Sam likes them/us/me/the children. [=(5)]
(19) *Them likes we. [= (7)]

Similarly, the abstract fragment in Figure 1d (ill license generalized fragments for
Kim from which CASE has been discarded, but will not allow fragments which from
which PER or NUM information has been discarded. Thus, as we would like, vile wi
be able to analyze examples whéiien is an object, but not where it is, say, the subject
of a non-third person singular verb:

(20) Kim likes Sam. [= (4)]
(21) *Kim were happy. [= (6)]

single root. For abstract fragments this will not alwayshmdase. For example, a rule like-SNP VP
(without any constraints) should produce an abstract feagmwith c-structure consisting of three nodes,
each associated with a separate, empty, f-structure.
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Figure 11:Root, Frontier, and abstract fragments

On the other hand, the abstract fragment in Figureel Wil not permit any features
to be discarded frorher, which will therefore be restricted to contexts which allow

third person singular accusatives:

(22) Sam likes her.
(23) *Her likes Sam.

5. General Constraints

The previous section has shown how one source of overgeneratn be avoided. A
second source of overgeneration arises from the fact thake W provides a reason-
able model of normal c- and f-structure constraints (i.€intteg equations), an LFG
treebank is only a poor reflection of other kinds of constramg. negative constraints,
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functional uncertainty constraints, existential coristsg and constraining equatiofts.
A treebank is a finite repository of positive informationdacannot properly reflect
negative constraints, constraints with potentially inérscope, or constraints whose
essential purpose is information ‘checking’. In this sectwe will show how the ap-
proach of the previous section can be extended to addressthvice of overgeneration.
For reasons of space, we will focus on functional uncenyaionstraints and negative
constraints.

As an example of a functional uncertainty constraint, cdbesthe need to ‘link’
topicalized constituents. Suppose the treebank contepresentations of examples
like (24) and (25).

(24) Her, Sam likes.
(25) Her, we think Sam likes.

As things stand, it will be possible to produce a fragmerd kkgure 12 from (24) by
deleting the structure corresponding3am likegand discarding a number of features
like TENSE, which are not relevant here). Notice it will be possible tonpose any
complete sentence with this, and so derive ungrammatichples like the follow-
ing, in which the topicalized constitueher is not linked to any normal grammatical
function.

(26) *Her, Sam likes Kim.

In a normal LFG grammar, examples like (26) are excluded biuding a func-
tional uncertainty constraint on the rule that producesctijzed structure$?

125ee Dalrymple (2001) for discussion and exemplificatioruahsconstraints.

BIn (27), GF is a variable over grammatical function names, sucloB$ suBJ, andCOMP* is a
regular expression meaning any numbecofvps (including zero)compis the grammatical function
associated with complement clauses. Thus, the constexoires the NP’s f-structure to be thaJ
(or suBy etc.) of its sister S, or of a complement clause inside that & complement clause inside a
complement clause (etc).



(27) S— NP S
(TTopig)=| 1=l
(TcoMP* GF)=]
As things stand, the LFG-DOP model is unable to prevent eleshiie (26) being de-
rived: there is no way of capturing the effect of anythingeldn uncertainty constraint.

As regards negative constraints, in Section 4 we expresstsidbout subject verb
agreement withikes by means of a positive constraint requiring its subject t@tie
person singular. This still leaves the problem of agreerf@rdther forms. For exam-
ple, we must excludike appearing with a 3rd person singular form, as in (28).

(28) *Sam like Kim.

This can be expressed with a disjunction of normal congsabiut the most natural
thing to say involves a negative constraint, along the lofg29) (which simply says
that the subject ofike must not be third person singular). The existing apparatus
provides no way of encoding anything like this.

(29) like V ﬁ< (TsuBJ PER=3 (JSUBJ NUM):Sg>

In fact, apparatus to avoid this sort of overgeneration tseaghtforward extension
of the approach described above.

e We add to fragments a fourth component, so they become ésupl
(c, 0, f, Constr), whereConstris a collection of ‘other’ (i.e. non-defining) con-
straints.

e For basic abstract fragments the element§'ofstr are the ‘other’ constraints
required by the corresponding rule or lexical entry.

e Combining abstract fragments involves unioning these detsrestraints.

e Licensing a fragment involves adding these constraintsedragment (i.e. frag-
ments inherit the Constraints of the abstract fragment ibenses them).

e The composition process is amended so as to include a chatkhtétse con-
straints are not violated (specifically, we require thagdilition to normal com-
pleteness and coherence requirements, the f-structure/dinal representation
we produce must satisfy all constraintstianstr).

The idea is that, given a grammar rule like (29), any basitratisfragment fotike
will include a negative constraint on the appropriate @rstnre, which will be inherited
by any derived abstract fragment, and any fragment thateietly licensed. So, for
example, the most generabiscard fragment forNP like Kimwill be as in Figure 13.



Jo )
SUBJ h ]
/ |CASE  nom

TENSE pres
PRED ‘lik{SUBJ,OBY {_|<(f0 SUBJ PER=3 ) }

S (fo SUBJ NUM)=sg

/\ -f2
NP VP PRED ‘Kim’

V 0BJ NUM  sg
N \J PER  3rd
like . Kim | CASE  acc

Figure 13: Fragment incorporating a negative constraint

Jo
fl k —
{S&q PRED 'PRO’ { (focomP* GF)=f1 }
N TOPIC NUM  sg
\/_ CASE acc |

Figure 14: Fragment incorporating an uncertainty constrai

While it will be possible to adjoin a 3rd person singular NPHe subject position of
this fragment, this will not lead to a valid final represeitat because the negative
constraint will not be satisfied. Thus, as one would hope, Webe able to derive

(30), but not (31).

(30) They like Kim.
(31) *Sam like Kim.

Similarly, the rule in (27) will produce abstract fragmewtsich contain the uncer-
tainty constraint given, and these will license normal fnegts like that in Figure 14.
Again, the only valid representations which can be congtdia/hich satisfy this con-
straint will be ones which contain a ‘gap’ correspondingitetopric. That is, as one
would like, we will be able to produce (32), but not (33):

(32) Her, Sam (says she) likes.
(33) *Her, Sam (says she) likes Kim.

6. Discussion

The proposals presented in the previous sections comrstittglatively straightforward
extension to the formal apparatus of LFG-DOP, but they aendp a number of ob-



jections, and they have theoretical implications of widgngicance.

One kind of objection that might arise is a result of the reédy minor phenom-
ena we have used for exemplification (case assignment aedrpaumber agreement
in English). This objection is entirely misplaced. Firsgchuse, in an LFG context,
similar problems will arise in relation to any phenomenorog analysis involves f-
structure attributes and values. More generally, simitabjems of fragment general-
ity will arise whenever on tries to generalize DOP approadieyond the context-free
case, e.g. to deal with semantiésMore generally still, analogues of the problems
we have identified with fragment generality and capturirgeffect of ‘general’ con-
straints on the basis of a finite collection of example regméstions will arise with any
‘exemplar’ based approach.

A second source of objections might arise from the fact thehave focused on
the problem of overgeneration: one might object (a) that pmeectical, e.g. language
engineering, setting this is not very important, and (b} thaa probabilistic setting,
such as DOP, overgeneration can be hidden statisticafly fecause ungrammatical
examples get much smaller probability compared to granualatnes).

As regards (a), the appropriate response is that a modehvaviergenerates is
generally one which assigns excessive ambiguity (which per@asive problem in
practical settings). Sag (1991) gives a large number ofgitiéeiexamples. In relation
to subject-verb agreement, he notes that the followinguasenbiguous, but will be
treated as ambiguous by any system that ignores subjdeiageeement — (34) pre-
sumes the existence of a unique English-speaking Frencamang the programmers,
(35) presumes there is a unique Frenchman among the Engéakisag programmers:

(34) Listthe only Frenchman among the programmers who statgls English.
(35) Listthe only Frenchman among the programmers who stated English.

Similarly, a system which does not insist on correct linkofgropics will treat (36)
and (37) as ambiguous, when both are actually unambiguau@6) to themmust
be associated witkontributed in (37) it must be associated witippears because
contributerequires, andliscoverforbids, a complement witto):

1At least, this is the case if one wants to preserve the idaattiaebank consists of representations
in the normal sense. In the approach to semantic interpyetat DOP described in Bonnema et al.
(1997) these problems are avoided at the cost of not usingr#@mepresentations in the normal sense.
Rather than having semantic representations, the nodesesfare annotated with an indication of how
the semantic formula of the node is built up from the semdatimulae of its daughters, and hence how
it should be decomposed. The ‘fragment generality’ probiesidestepped by explicitly indicating on
each and every node how its semantic representation shewlddomposed as fragments are created.



(36) Tothem, Sam appears to have contributed it.
(37) Tothem, Sam appears to have discovered it.

As regards (b), it is important to stress that the problemvefrgeneration as we
describe it is to do with the characterization of grammaéiticé.e. the characterization
of a language), and grammaticality simply cannot be identifvith relative probabil-
ity (casual inspection of almost any corpus will reveal mamgple mistakes, which
are uncontroversially ungrammatical, but have much highelpability than perfectly
grammatical examples containing, e.g., rare words).

A third objection would be that in avoiding overgeneratiare have also lost the
ability to deal with ill-formed input (robustness). But tieas no reason why the model
should not incorporate, in addition to ‘constrainBécard’, an unconstrained opera-
tion like the original B&K Discard. Notice that this would now give a correct charac-
terization of grammaticality (a sentence would be grameahtf and only if it can be
derived without the use of unconstrainBecard fragments).

A fourth, and from a DOP perspective very natural, objecti@muld be that these
proposals in some sense violate the ‘spirit’ of DOP — wher@rgortant idea is ex-
actly to dispense with a grammar in favor of (just) a collectof fragments. A partial
response to this is to note that to a considerable degresmthefggrammar we have
described is implicit in the original treebank. For examite set of c-structure rules
can be recovered from the treebank by simply extractingedlst of depth one. This
will produce a grammar without f-structure constraintsg abstract fragments with
empty f-structures and constraint sets, which is exactiyvadent to the original B&K
model. Taken as a practical proposal for grammar engingettie idea would be that
one can begin with such an unconstrained model, and simplgaustraints to these
c-structure rules to rule out overgeneration. This canrlyidse done incrementally,
and in principle, the full range of LFG rule notation shoutddvailable, so this should
be a relatively straightforward and natural task for a lisgut should be, in particular,
much easier than writing a normal grammatr.

However, it is also possible to take the proposal in a difieveay, ‘theoretically’,
as describing an idea about linguistic knowledge, and huaragyuage processing and
acquisition. Taken in this way, the suggestion is that alegelaas at her disposal two
knowledge sources: a database of fragments (in the norm& §€#Dse), which one
might think of as a model of grammatical usage, and a gramamaalfstract fragment
grammar) which expresses generalizations over these @&aigmvhich one might take
to be a characterization of something like grammatical cetence. Notice that on this



view: (i) the grammar as such plays no role in sentence psauggbut only in frag-
ment creation, i.e. off-line); (ii) the task of the learngpinly secondarily to construct a
grammar (the primary task is the creation of the fragmeraluite — learning general-
izations over this is a secondary task); (iii) the grammaasdaot generate or otherwise
precisely characterize the language (this is achieveddfragment database with the
composition operation), rather its job is to license ortiegze the fragments in the
fragment database. Taken in this way, the model is an engnohof the standard DOP
approach.
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