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Abstract

In this paper we propose, model theoretically and study a general notion of recombina-
tion for fixed-length strings where homologous crossover, inversion, gene duplication, gene
deletion, diploidy and more are just special cases. The analysis of the model reveals similar-
ities and differences between genetic systems based on these operations. It also reveals that
the notion of schema emerges naturally from the model’s equations even for the strangest of
recombination operations. The study provides a variety of fixed points for the case where
recombination is used alone, which generalise Geiringer’s theorem.

1 Introduction

An important objective in evolutionary computation (EC) is to exactly model classes of evo-
lutionary algorithms (EAs) and, further, to be able to draw inferences from these models that
enhance theoretical understanding and, hopefully, aid “practitioners” in finding more competent
EAs. Early models for GAs, proposed by Holland, Goldberg, Whitley and others in the seventies
and eighties were either approximate or not easily scalable [4, 3, 21, 20]. Exact probabilistic mod-
els have been developed, such as the dynamical systems model of Vose and collaborators [19, 12].
More recently, an alternative exact approach, based on a coarse graining of the dynamics and di-
rectly involving schemata, has been introduced, leading to a spate of both new theoretical results
[17, 15, 16, 7, 9, 10] and practical recipes for implementation [6, 8].

These models are important in that they allow for the mathematical investigation of the intrin-
sic dynamics of genetic systems, thereby nicely complementing, corroborating and, occasionally,
disproving the findings of empirical studies. However, the vast majority of theoretical work in
EAs, at least for classical fixed-length binary and real-valued representations, has been centered
on the “canonical” genetic algorithm (GA) with selection, mutation and “homologous” recombi-
nation (where a locus in the offspring can by filled only by using alleles coming from the same
locus in one of the parents). In nature, though, there are many more ways of combining parental
genetic material into an offspring than just homologous crossover, many of which have been used
in EAs. Gene duplication, for example, has been studied in biology [1] as well as in the context of
GAs [13] and GP [5], while inversion was one of the operators used by Holland [4] in the original
formulation of the GA.

In this paper we introduce an exact probabilistic model for fixed length strings, that extends
current models by implementing a more general notion of recombination, that can account for any
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distribution of the parental genes to the offspring, including as special cases, among others – fixed-
length versions of gene duplication and deletion, as well as inversion and homologous crossover. We
show that, as in the case of homologous crossover, a coarse graining naturally appears, revealing
that the notion of schemata as building blocks emerges from the model’s equations, even for the
strangest of recombination operations. The analysis of the model reveals interesting similarities
and differences between the various genetic operators present.

2 Generalised Recombination

Crossover masks are normally used to indicate from which parent to take an allele for each available
locus. They are sufficient to model a crossover operator when only alleles at the same locus
can be exchanged, i.e. homologous crossover. However, if we want to cope with other ways
of redistributing genetic material, such as inversion, gene duplication, gene deletion, and, more
generally, unequal crossing over, we need to allow for the possibility that the allele in one particular
locus of the offspring comes from a different locus of a parent.1

This new level of generality can be represented mathematically in several equivalent ways. One
is to use arrays (crossover matrices) instead of bit strings to represent crossover events. Crossover
matrices are a generalisation of the notion of crossover mask. A crossover matrix will have as
many rows as the number of loci in the offspring, say `, and twice as many columns. The first `
columns indicate which alleles are copied from the first parent, while columns ` + 1 through to 2`
indicate what is provided by the second parent. The elements of the matrix are either 0 or 1. A 1
in row r and column c means that locus r in the offspring is filled with the allele in locus c in the
first parent if c ≤ `, or locus c− ` of the second parent otherwise. Because an offspring would not
be fully specified if some of its alleles were undefined or would be overly specified if we tried to
place more than one allele in a locus, in each row of a crossover matrix there must be exactly one 1
(with all other elements in the row being 0). For this reason we can also represent a recombination
matrix as a vector v = (v1 · · · v`) with elements from N2` = {1, · · · , 2`}, where vi represents the
position of the 1 in the i-th row. We will denote either the matrix or vector representation a
Generalized Crossover Mask (GCM). The total number of GCMs is (2`)`, many more than the 2`

masks for homologous recombination. The action of a GCM, v, is then fully determined when the
probability pc(v) of choosing any particular crossover matrix, or its equivalent crossover vector,
is given. This is a generalisation of the notion of recombination distribution – the Generalized
Recombination Distribution (GRD).

Another useful representation is a hybrid between the notion of crossover mask and the recombi-
nation vector. To represent a possible recombination event we use a recombination pair r ≡ (m, v)
where m = (m1 · · ·m`) is an `-component bit vector (i.e., m ∈ {0, 1}`) and v = (v1, · · · , v`) is a
vector of integers whose components are in {1, · · · , `} (i.e., v ∈ N `

` ). The semantics of this rep-
resentation is very simple. The elements in m specify which parent contributes the alleles to fill
each locus in the offspring, while the elements of v tell us which particular alleles in a parent will
be transferred to the offspring. So, mi = 1 means locus i will be filled with an allele from parent
1, mi = 0 means parent 2 will contribute the allele instead. If the corresponding entry vi = j then
locus i will be filled with the allele currently in position j in a parent. In this notation, traditional
(homologous) crossover events can be represented with pairs of the form r = (m, (1, 2, · · · , `))
where, effectively, m can be seen as a traditional crossover mask.

As an example of how the different representations of a GCM work consider the following
example using standard one-point crossover for ` = 3. The associated crossover matrices are 1 0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

  1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1


each invoked with probability 1

2 . These are equivalent to the recombination vectors v1 = (1, 5, 6)

1This more general way of redistributing genetic material can also be used to model diploidy.



and v2 = (1, 2, 6), or to the recombination pairs r1 = (100, (1, 2, 3)) and r2 = (110, (1, 2, 3)), or to
the more traditional crossover masks 100 and 110.

To see the large variety of ways in which parental genetic material can be distributed among
the offspring consider the case of ` = 2, where the (2× 2)2 = 16 recombination pairs are

(00,(1,1)) (00,(1,2)) (00,(2,1)) (00,(2,2))
(01,(1,1)) (01,(1,2)) (01,(2,1)) (01,(2,2))
(10,(1,1)) (10,(1,2)) (10,(2,1)) (10,(2,2))
(11,(1,1)) (11,(1,2)) (11,(2,1)) (11,(2,2))

If the associated GRD is such that each is invoked with probability pc(m, v) = 1
16 , this would

represent a recombination operator where each locus in the offspring is filled with a randomly
chosen allele from the parents. Clearly this operator could not be represented with crossover
masks. As a final example, the following GRD represents a single-parent inversion operator in the
case of a three-locus system:

pc(111, (2, 1, 3)) = pc(111, (1, 3, 2)) = pc(111, (3, 2, 1)) =
1

3

2.1 Mixing graph and recombination cliques

An important concept when considering redistribution of genetic material as determined by the
GRD is: in which direction can one have a flow of genes? As qualitatively different behaviours are
exhibited by genetic systems with different GRDs, to understand which features are important,
we model the effects of the GRD through a mixing graph. The nodes in the graph represent
different loci. The arcs are directed and represent causal relationships between loci. Thus, we will
connect locus i with an arrow from locus j if the frequency of alleles in locus i can be influenced
by the allele frequency of locus j. Figure 1 shows an example of a mixing graph for a 7-locus
representation.

1 2 3 4 5 6 7

Figure 1: Example of mixing graph for ` = 7.

The network of causal influences is completely determined by the GRD. The connection matrix
C = (cij) for the mixing graph is given by

cij = δ
(
pc(∗ · · · ∗, (∗, · · · , ∗︸ ︷︷ ︸

i−1

, j, ∗, · · · , ∗︸ ︷︷ ︸
`−i

)) > 0
)

where δ(x) = 1 if x is true, while δ(x) = 0 otherwise. If there is a directed path between each
pair of nodes in the mixing graph (the mixing graph is strongly connected), we say that the
recombination is fully mixing.

Imagine a population of strings and focus attention on a particular allele a at a particular locus
l of a particular string s. A fully-mixing generalised crossover allows for the migration of allele



a to different strings. So, generalised crossover promotes a process of “diffusion” of alleles from
one locus to other loci. That is, unlike the case of homologous crossover, in general, generalised
crossover does not keep the alleles in their original position, i.e. allele a might migrate to loci
different from l. Because of this, in repeated applications of crossover, a copy of the allele can be
placed back into the original string s (which may now have a different allele composition) but at a
different locus, effectively creating a sort of gene duplication (indeed unequal crossing over seems
to be the mechanism of gene duplication in nature [11]). Put another way, crossover is trying to
spread each allele as thinly as possible over every locus available in the population. On the other
hand, for homologous crossovers, the mixing matrix is diagonal and so each node in the graph is
isolated (having only a self-connection).

Naturally, many qualitatively different intermediate situations are also possible. In all inter-
mediate cases we can divide the mixing graph into two or more recombination cliques. These are
characterised by the fact that all pairs of nodes in a clique are mutually accessible by traversing
only nodes and arcs in the clique, while none of the nodes in a clique is mutually accessible from
any other node outside the clique. In Figure 1, loci 1–3 form a recombination clique, nodes 4 and
5 form another, and nodes 6 and 7 form two single-node cliques. Formally, recombination cliques
are the strong components of the recombination graph. So, each locus belongs to one and only
one clique. Also, the cliques themselves form a directed acyclic graph (component graph) that we
will call the recombination clique graph. This has one node for each recombination clique and an
arc between two nodes if there is an edge between the corresponding cliques. Figure 2 shows an
example of a recombination clique graph.

7 6

4 51 2 3

Figure 2: The recombination clique graph for the mixing graph in Figure 1.

3 Evolution equations

3.1 Evolution equations for strings

We will now derive and study exact equations for a generational evolutionary system based on
selection and generalised recombination and using a fixed-length representation of size `, where
alleles take values from a generic alphabet Ω of any fixed cardinality. Under these assumptions
the frequency of a string h = h1 · · ·h` ∈ Ω` is given by

E[Φ(h, t + 1)]

=
∑

a∈P(t)

p(a, t)
∑

b∈P(t)

p(b, t)
∑

r∈R`
`

pc(r)γ(a, b, r → h)

where P(t) is the population at generation t, p(a, t) is the probability of picking a string of type a
as a parent from such a population and R`

` = {0, 1}`×N `
` is the set of all possible crossover pairs.

pc(r) is the GRD and γ(a, b, r → h) is the conditional probability that the offspring h is formed
given the parents a and b and a GCM r. It returns value 1 if h is created from a and b using the
GCM r and otherwise. Note that we can extend the string summations to cover the entire search



space Ω` rather than just the population P(t). We are allowed to do so on the assumption that
the selection probability p(x) of a string a in Ω` but not in P(t) is zero. Note, also, that the model
is written in terms of the underlying microscopic degrees of freedom – the strings themselves.
Note also that the equation is functionally identical to that for the case of standard mask-based
crossover [14], the only difference being the different recombination distribution, and hence the
different set of γ(a, b, r → h) that are non-zero. As in the standard crossover case, we have 2`

coupled, first-order difference equations to solve. The chief problem, however, is the fact that on
the right hand side we have, for binary strings, 2` × 2` × (2`)` = (8`)` contributing terms. For
example, for two bits there are sixteen GCMs while the sums over the strings a and b run over the
values 1 to |Ω`|. Thus, for an arbitrary GRD, even at the two bit level there are 16× 4× 4 = 256
γ(a, b, r → h) to compute for a given string h. What is more, for a given h and r, there are
potentially many different parental pairs a and b that can yield as offspring h.

In the case of homologous crossover these defects can be circumvented by coarse graining the
dynamical equations and passing to a description in terms of Building Block Schemata rather than
strings. One is naturally led to enquire as to whether similar benefits may be accrued in this more
complex scenario.

The offspring h = h1 · · ·h`, produced by parents a = a1 · · · a` and b = b1 · · · b`, with GRM
r = (m, v), can be represented very simply:

hi = miavi
+ (1−mi)bvi

.

where avi
is the allele from the first parent picked out by the crossover pair r, and similarly for

bvi
from the second. Then

γ(a, b, r → h) =
∏
i∈Ir

δ(hi = avi)
∏
j∈Īr

δ(hj = bvj )

where Ir = {i : mi = 1} represents the genes picked out from the first parent by r that go to
form part of the offspring h, and Īr = {i : mi = 0} is the complementary set picked out from
the second parent. As the full genetic composition of h has to come from the parents we have
Ir ∪ Īr = {1, 2, · · · , `}. By substituting this result into the evolution equation for h and reordering
terms, we obtain

E[Φ(h, t + 1)]

=
∑

r∈R`
`

pc(r)
∑
a∈Ω`

p(a, t)
∏
i∈Ir

δ(hi = avi
)

∑
b∈Ω`

p(b, t)
∏
j∈Īr

δ(hj = bvj
).

The effect of terms of the form
∏

i∈Ir
δ(hi = avi

) in this equation is simply to limit the
summations to subsets of Ω`. If we denote the elements of Ir with ik (and the elements of Īr with
jk) and we use the standard computer science notation xy to indicate pattern x repeated y times,
these subsets are

Γ(h, Ir) =
|Ir|⋂
k=1

(∗vik
−1hik

∗`−vik )

and the corresponding Γ(h, Īr). Therefore∑
a∈Ω`

p(a, t)
∏
i∈Ir

δ(hi = avi
)

=
∑

a∈Γ(h,Ir)

p(a, t)

= p(Γ(h, Ir), t)



Thus, we see that the action of the GCM r is to induce a coarse graining on the string sums. The
benefit of this is immediately apparent, in that the string sum

∑
a∈Ω` has disappeared. Thus,

p(Γ(h, Ir), t) denotes the probability for selecting the Building Block schema Γ(h, Ir) which forms
part of the offspring. In essence, this is identical to the case of homologous crossover. What is
more complex here, in the presence of generalized recombination, is the form that the Building
Block can take. For example, for ` = 4 and r = (1101, (4, 3, 4, 1)), then Ir = {1, 2, 4} and, so,

Γ(h1h2h3h4, {1, 2, 4}) =
= (∗vi1−1hi1∗4−vi1 ) ∩ (∗vi2−1hi2∗4−vi2 ) ∩

(∗vi3−1hi3∗4−vi3 )
= (∗3h1) ∩ (∗2h2∗) ∩ (h4∗3)
= h4 ∗ h2h1

hence the first Building Block for the string h1h2h3h4 for the above GRD is h4 ∗ h2h1. The
second Building Block is Γ(h, Īr) = ∗ ∗ ∗h3. Note that, unlike for the homologous case, in general
h 6= Γ(h, Ir)∩Γ(h, Ir) = h4∗h2h1∩∗∗∗h3. This new notation based on schemata and the previous
calculations lead us to the following

Theorem (Coarse-grained string evolution equation) The expected frequency of a string h at the
next generation in a generational GA with selection and generalized recombination is given by

E[Φ(h, t + 1)] =
∑

r∈R`
`

pc(r)p(Γ(h, Ir), t)p(Γ(h, Īr), t),

(1)

where Γ(h, Ir) =
⋂

i∈Ir

Hhi
vi

, Ha
s is a shorthand notation for the generic order 1 schema ∗s−1a∗`−s,

and Īr = {1, · · · , `} \ Ir.
Thus, as in the case of homologous crossover, we see that evolution proceeds by building a

string from its component Building Block schemata. Of course, to make further progress, one
would then need to have the equations that govern these schemata.

3.2 Coarse-grained evolution equations

For homologous crossover, one of the most remarkable features of the coarse grained exact schema
equations is their form invariance under a further coarse graining [17], i.e. that the functional
form of the equations for a Building Block schema is identical to that of the equations for the
strings themselves. This means that building blocks for a string are composed, in their turn,
by other more coarse grained (lower order) building blocks, which in their turn etc., the whole
hierarchy terminating at the 1-schemata. It is precisely the existence of this form invariance and
the hierarchical nature of the relationship between the different building blocks that has led to so
many new results using the coarse grained formulation. We are thus led to consider whether for
generalized recombination the same features appear which can then be further exploited to gain a
better theoretical understanding and derive new practical results. Thus, we begin by considering
what happens when we coarse grain such that h1 · · ·h` →

∑
hs

h1 · · ·hs · · ·h` = h1 · · · ∗ · · ·h`.
Thus



E[Φ(h1 · · ·hs−1 ∗ hs+1 · · ·h`, t + 1)]

=
X
hs

E[Φ(h1 · · ·hs · · ·h`, t + 1)]

=
X
hs

X
r∈R`

`

pc(r)p (Γ(h, Ir), t) p
`
Γ(h, Īr), t

´
=

X
r∈R`

`

mspc(r)p
`
Γ(h, Īr), t

´ X
hs

p (Γ(h, Ir), t)

+
X

r∈R`
`

(1−ms)pc(r)p (Γ(h, Ir), t)
X
hs

p
`
Γ(h, Īr), t

´

where r ≡ (m, v) and ms represents the s-th component of the bit string m.
If we use the notation expr/y ← z to mean “replace every instance of y with z in expression

expr”, we can easily see that, if s ∈ Ir,

p
(
Γ(h, Ir)

/
hs ← ∗, t

)
=

∑
hs

p (Γ(h, Ir), t)

If, instead, s 6∈ Ir, we have

p
(
Γ(h, Ir)

/
hs ← ∗, t

)
= p (Γ(h, Ir), t)

The same applies to Īr.
So, we can rewrite the above equation in the form

E[Φ(h1 · · ·hs−1 ∗ hs+1 · · ·h`, t + 1)] (2)

= E[Φ(h
/

hs ← ∗, t + 1)]

=
∑

r∈R`
`

pc(r)p
(
Γ(h, Ir)

/
hs ← ∗, t

)
p

(
Γ(h, Īr)

/
hs ← ∗, t

)
This derivation leads us to the following

Theorem (Schema evolution equation) Equation 1 is applicable to both strings and schemata of
any order.
Proof With the previous calculations we have shown that Equation 1 is applicable to schemata
with one “don’t care” symbol. Since coarse graining over n variables can simply be obtained by
coarse graining (over one variable) the evolution equations coarse-grained over n− 1 variables, it
follows that Equation 1 is applicable to schemata of with any number of don’t care symbols. 2

Interestingly, we can collect some terms in Equation 2. To see that let us assume, without loss
of generality, that ms = 1. In other words, s ∈ Ir. Let us assume, s is the n-th element of Ir, i.e.,
in = s. Therefore

Γ(h, Ir)
/

hs ← ∗

= H
hi1
vi1
∩ · · · ∩H

hin
vin
∩H

hin+1
vin+1

∩ · · ·
/

hin
← ∗

= H
hi1
vi1
∩ · · · ∩ ∗` ∩H

hin+1
vin+1

∩ · · ·

=
|Ir|⋂

k=1,k 6=n

H
hik
vik



since ∗` represents the whole search space Ω`.
A similar result holds for s ∈ Īr. This means that neither ms nor vs appear explicitly in any

of the terms in Equation 2, except pc(r). So, we can rewrite the equation as:

E[Φ(h1 · · ·hs−1 ∗ hs+1 · · ·h`, t + 1)] (3)

=
X

pc(m1 · · ·ms−1 ∗ms+1 · · · , (v1 · · · vs−1 ∗ vs+1 · · · ))

p
“
Γ(h, Ir)

.
hs ← ∗, t

”
p

“
Γ(h, Īr)

.
hs ← ∗, t

”

where the summation ranges over all GCMs r = (m1 · · ·ms−1ms+1 · · ·m`, (v1 · · · vs−1vs+1 · · · v`)) ∈
R`−1

` . Naturally this result generalises to any number of “don’t care” symbols, leading to the
following

Theorem For a schema h with d don’t care symbols at positions l1, · · · , ld, the summation in
Equation 1 can be turned into a summation over (m′, v′) ∈ R`−d

` provided the recombination
distribution pc is replaced with the marginal distribution p′c obtained by summing pc(m, v) over all
mli and vli for 1 ≤ i ≤ d.

3.3 A more explicit notation

When, for a given recombination pair r = (m, v) ∈ R`
`, v is a permutation of the vector (1, 2, · · · , `),

then Γ(h, Ir) =
⋂|Iv|

k=1 H
hik
vik

is an ordinary schema. In order to be able to express exactly which
schema this is we need to order the sets Ir = {i1, i2, · · · , i|Ir|} and Īr = {j1, j2, · · · , j|Īr|} on the
basis of the corresponding entries in the vector v. That is, the elements ik of Ir are ordered in
such a way that vik

≤ vik+1 for any k, and the same is true for Īr.
For example, if ` = 4 and r = (m, v) = (1101, (4, 3, 4, 1)), then Ir is obtained as follows.

As before, first we collect the indices of the elements of m that are 1 in a set (in this example,
{1, 2, 4}). Then we sort the elements of this set based on the values of the corresponding elements
in v. So, because v4 ≤ v2 ≤ v1, Ir = {4, 2, 1}. Naturally, Īr = {3}.

With this ordering, when v is a permutation, then vik
< vik+1 for all k. Therefore

Γ(h, Ir) =
|Ir|∏
k=1

(
∗vik

−vik−1−1hik

)
∗`−vi|Ir|

where we used the convention that vi0 = 0, that the
∏

operator means concatenation when applied
to strings of symbols and that ∗0 is the empty symbol (i.e. ∗0 can be safely edited out from any
sequence of characters).

We can interpret Γ(h, Ir) as a schema also when vik
= vik−1 for some k, as long as hik

= hik−1 .
If this is not the case, then Γ(h, Ir) is the empty set ∅ (naturally p(∅, t) = 0). Therefore, in general
we can write

p (Γ(h, Ir), t) (4)

= p
( ∏

1 ≤ k ≤ |Ir|
ik 6= ik−1

(
∗vik

−vik−1−1hik

)
∗`−vi|Ir| , t

)

×
∏

1 ≤ k ≤ |Ir|
ik = ik−1

δ(hik
= hik−1)



4 Examples

4.1 ` = 2

As an example, let us write the evolution equations for a generic string of length ` = 2 from
Equation 1 with the more explicit “δ notation” introduced in Section 3.3:

E[Φ(ab, t + 1)]
= p11p(a∗)δ(a = b) + p12p(ab) + p13p(a∗)p(b∗)
+ p14p(a∗)p(∗b) + p21p(ba) + p22p(∗a)δ(a = b)
+ p23p(∗a)p(b∗) + p24p(∗a)p(∗b) + p31p(b∗)p(a∗)
+ p32p(∗b)p(a∗) + p33p(a∗)δ(a = b) + p34p(ab)
+ p41p(b∗)p(∗a) + p42p(∗b)p(∗a) + p43p(ba)
+ p44p(∗a)δ(a = b)

where for simplicity we omitted time from the selection probabilities and we used pij as a shorthand
notation for the GRD pc(v), v = (i, j) ∈ N 2

4 being a recombination vector (see Section 2).
If one replaces a and b with some values from Ω, all of the δ’s turn either into 1’s or 0’s, and

so it is possible to further simplify the equation. For example, if a = b = 1 and all GCMs have
equal probability (pij = 1/16), we obtain

E[Φ(11, t + 1)]
= 0.125p(1∗)2 + 0.125p(1∗) + 0.25p(1∗)p(∗1)
+ 0.125p(∗1)2 + 0.25p(11) + 0.125p(∗1)

Notice that in order to solve for the dynamics of the strings we need to have a solution for the
building blocks a*, *a, b* and *b.

As an example, the evolution equation for the schema a* (a building block for ab) from Equa-
tion 3 is

E[Φ(a∗, t + 1)] = (p1∗ + p3∗)p(a∗)
+ (p2∗ + p4∗)p(∗a)

where px∗ =
∑

y pxy.
A much deeper analysis of the ` = 2 case is provided in [18], where a complete, exact solution,

is derived, showing how the dynamical behaviour is radically different to that of homologous
crossover. Even in such a simple case new qualitatively different behaviour is observed. For
example, inversion is shown to potentially introduce oscillations in the dynamics, while gene
duplication leads to an asymmetry between homogeneous and heterogeneous strings. Also, all
non-homologous operators lead to allele “diffusion” along the chromosome.

4.2 ` = 3

The general form of the evolution equations for ` = 3 for the generic string abc is given if Figure 3.
This includes 216 terms – a number that, although quite big, is only a tiny fraction of the number
of terms one would get in the absence of coarse graining.

It is interesting to note that expected frequency of abc is a linear function of the selection
probabilities of that string and all its permutations and a (generally) quadratic function of the
selection probabilities of lower order schemata (building blocks). That is:

E[Φ(abc, t + 1)] = p123p(abc) + p132p(acb)

+ p213p(bac) + p231p(cab)

+ p312p(bca) + p321p(cba) + b(t)



Again, in order to solve for the string dynamics we need to have the dynamics of the building
blocks that determine the driving term b(t).

One of the building blocks, for example, is ab*, the evolution equation of which is2

E[Φ(ab∗, t + 1)]

= p11∗p(a ∗ ∗)δ(a = b) + p12∗p(ab∗)
+ p13∗p(a ∗ b) + p14∗p(a ∗ ∗)p(b ∗ ∗)
+ p15∗p(a ∗ ∗)p(∗b∗) + p16∗p(a ∗ ∗)p(∗ ∗ b)
+ p21∗p(ba∗) + p22∗p(∗a∗)δ(a = b)
+ p23∗p(∗ab) + p24∗p(∗a∗)p(b ∗ ∗)
+ p25∗p(∗a∗)p(∗b∗) + p26∗p(∗a∗)p(∗ ∗ b)
+ p31∗p(b ∗ a) + p32∗p(∗ba)
+ p33∗p(∗ ∗ a)δ(a = b) + p34∗p(∗ ∗ a)p(b ∗ ∗)
+ p35∗p(∗ ∗ a)p(∗b∗) + p36∗p(∗ ∗ a)p(∗ ∗ b)
+ p41∗p(b ∗ ∗)p(a ∗ ∗) + p42∗p(∗b∗)p(a ∗ ∗)
+ p43∗p(∗ ∗ b)p(a ∗ ∗) + p44∗p(a ∗ ∗)δ(a = b)
+ p45∗p(ab∗) + p46∗p(a ∗ b)
+ p51∗p(b ∗ ∗)p(∗a∗) + p52∗p(∗b∗)p(∗a∗)
+ p53∗p(∗ ∗ b)p(∗a∗) + p54∗p(ba∗)
+ p55∗p(∗a∗)δ(a = b) + p56∗p(∗ab)
+ p61∗p(b ∗ ∗)p(∗ ∗ a) + p62∗p(∗b∗)p(∗ ∗ a)
+ p63∗p(∗ ∗ b)p(∗ ∗ a) + p64∗p(b ∗ a)
+ p65∗p(∗ba) + p66∗p(∗ ∗ a)δ(a = b)

where we collected terms involving the same schemata and where pxy∗ =
∑

z pxyz.
Notice that the building block ab*, in its turn, will depend on the dy-

namics of its own building blocks, such as a**, the equation for which is

E[Φ(a ∗ ∗, t + 1)] = (p1∗∗ + p4∗∗)p(a ∗ ∗)
+ (p2∗∗ + p5∗∗)p(∗a∗)
+ (p3∗∗ + p6∗∗)p(∗ ∗ a)

4.3 General case

These examples show that all schema/string evolution equations have the same structure

x(t + 1) = Ax(t) + b(t)

with a linear part which depends on the selection probabilities of schemata of the same order as the
schema on the left-hand side of the equation, and a non-linear forcing term b(t) which depends on
lower-order schemata. The only exception to this is order one objects, in which case b(t) ≡ 0. These
objects, therefore, evolve independently but contribute to all higher-order schemata. So, order one
schemata act as pacemakers for a genetic system evolving under generalised recombination. For
these reasons we will analyse the evolution equations for such a case in more detail in the next
section.

2Care must be taken when applying equations including δ’s to schemata. This is can always be done but not
necessarily by directly replacing defining symbols with “don’t care” symbols. This works for Equation 1, but does
not necessarily work when using the formalism in Equation 4. To apply equations expressed in the “δ formalism”
to a schema one must either sum the string evolution equations and then collect terms, or apply Equation 1 to the
schema and then transform the selection probabilities p(Γ(·, ·), t) into the δ notation.



E[Φ(abc, t + 1)]

= p111p(a ∗ ∗)δ(a = b)δ(a = c) + p112p(ac∗)δ(a = b) + p113p(a ∗ c)δ(a = b) + p114p(a ∗ ∗)p(c ∗ ∗)δ(a = b)
+ p115p(a ∗ ∗)p(∗c∗)δ(a = b) + p116p(a ∗ ∗)p(∗ ∗ c)δ(a = b) + p121p(ab∗)δ(a = c) + p122p(ab∗)δ(b = c)
+ p123p(abc) + p124p(ab∗)p(c ∗ ∗) + p125p(ab∗)p(∗c∗) + p126p(ab∗)p(∗ ∗ c)
+ p131p(a ∗ b)δ(a = c) + p132p(acb) + p133p(a ∗ b)δ(b = c)
+ p134p(a ∗ b)p(c ∗ ∗) + p135p(a ∗ b)p(∗c∗) + p136p(a ∗ b)p(∗ ∗ c) + p141p(a ∗ ∗)p(b ∗ ∗)δ(a = c)
+ p142p(ac∗)p(b ∗ ∗) + p143p(a ∗ c)p(b ∗ ∗) + p144p(a ∗ ∗)p(b ∗ ∗)δ(b = c) + p145p(a ∗ ∗)p(bc∗)
+ p146p(a ∗ ∗)p(b ∗ c) + p151p(a ∗ ∗)p(∗b∗)δ(a = c) + p152p(ac∗)p(∗b∗) + p153p(a ∗ c)p(∗b∗)
+ p154p(a ∗ ∗)p(cb∗) + p155p(a ∗ ∗)p(∗b∗)δ(b = c) + p156p(a ∗ ∗)p(∗bc) + p161p(a ∗ ∗)p(∗ ∗ b)δ(a = c)
+ p162p(ac∗)p(∗ ∗ b) + p163p(a ∗ c)p(∗ ∗ b) + p164p(a ∗ ∗)p(c ∗ b) + p165p(a ∗ ∗)p(∗cb)
+ p166p(a ∗ ∗)p(∗ ∗ b)δ(b = c) + p211p(ba∗)δ(b = c) + p212p(ba∗)δ(a = c) + p213p(bac)
+ p214p(ba∗)p(c ∗ ∗) + p215p(ba∗)p(∗c∗) + p216p(ba∗)p(∗ ∗ c) + p221p(ca∗)δ(a = b)
+ p222p(∗a∗)δ(a = b)δ(a = c) + p223p(∗ac)δ(a = b) + p224p(∗a∗)p(c ∗ ∗)δ(a = b) + p225p(∗a∗)p(∗c∗)δ(a = b)
+ p226p(∗a∗)p(∗ ∗ c)δ(a = b) + p231p(cab) + p232p(∗ab)δ(a = c) + p233p(∗ab)δ(b = c)
+ p234p(∗ab)p(c ∗ ∗) + p235p(∗ab)p(∗c∗) + p236p(∗ab)p(∗ ∗ c) + p241p(ca∗)p(b ∗ ∗)
+ p242p(∗a∗)p(b ∗ ∗)δ(a = c) + p243p(∗ac)p(b ∗ ∗) + p244p(∗a∗)p(b ∗ ∗)δ(b = c) + p245p(∗a∗)p(bc∗)
+ p246p(∗a∗)p(b ∗ c) + p251p(ca∗)p(∗b∗) + p252p(∗a∗)p(∗b∗)δ(a = c) + p253p(∗ac)p(∗b∗)
+ p254p(∗a∗)p(cb∗) + p255p(∗a∗)p(∗b∗)δ(b = c) + p256p(∗a∗)p(∗bc) + p261p(ca∗)p(∗ ∗ b)
+ p262p(∗a∗)p(∗ ∗ b)δ(a = c) + p263p(∗ac)p(∗ ∗ b) + p264p(∗a∗)p(c ∗ b) + p265p(∗a∗)p(∗cb)
+ p266p(∗a∗)p(∗ ∗ b)δ(b = c) + p311p(b ∗ a)δ(b = c) + p312p(bca) + p313p(b ∗ a)δ(a = c)
+ p314p(b ∗ a)p(c ∗ ∗) + p315p(b ∗ a)p(∗c∗) + p316p(b ∗ a)p(∗ ∗ c) + p321p(cba)
+ p322p(∗ba)δ(b = c) + p323p(∗ba)δ(a = c) + p324p(∗ba)p(c ∗ ∗) + p325p(∗ba)p(∗c∗)
+ p326p(∗ba)p(∗ ∗ c) + p331p(c ∗ a)δ(a = b) + p332p(∗ca)δ(a = b) + p333p(∗ ∗ a)δ(a = b)δ(a = c)
+ p334p(∗ ∗ a)p(c ∗ ∗)δ(a = b) + p335p(∗ ∗ a)p(∗c∗)δ(a = b) + p336p(∗ ∗ a)p(∗ ∗ c)δ(a = b) + p341p(c ∗ a)p(b ∗ ∗)
+ p342p(∗ca)p(b ∗ ∗) + p343p(∗ ∗ a)p(b ∗ ∗)δ(a = c) + p344p(∗ ∗ a)p(b ∗ ∗)δ(b = c) + p345p(∗ ∗ a)p(bc∗)
+ p346p(∗ ∗ a)p(b ∗ c) + p351p(c ∗ a)p(∗b∗) + p352p(∗ca)p(∗b∗) + p353p(∗ ∗ a)p(∗b∗)δ(a = c)
+ p354p(∗ ∗ a)p(cb∗) + p355p(∗ ∗ a)p(∗b∗)δ(b = c) + p356p(∗ ∗ a)p(∗bc) + p361p(c ∗ a)p(∗ ∗ b)
+ p362p(∗ca)p(∗ ∗ b) + p363p(∗ ∗ a)p(∗ ∗ b)δ(a = c) + p364p(∗ ∗ a)p(c ∗ b) + p365p(∗ ∗ a)p(∗cb)
+ p366p(∗ ∗ a)p(∗ ∗ b)δ(b = c) + p411p(b ∗ ∗)p(a ∗ ∗)δ(b = c) + p412p(bc∗)p(a ∗ ∗) + p413p(b ∗ c)p(a ∗ ∗)
+ p414p(b ∗ ∗)p(a ∗ ∗)δ(a = c) + p415p(b ∗ ∗)p(ac∗) + p416p(b ∗ ∗)p(a ∗ c) + p421p(cb∗)p(a ∗ ∗)
+ p422p(∗b∗)p(a ∗ ∗)δ(b = c) + p423p(∗bc)p(a ∗ ∗) + p424p(∗b∗)p(a ∗ ∗)δ(a = c) + p425p(∗b∗)p(ac∗)
+ p426p(∗b∗)p(a ∗ c) + p431p(c ∗ b)p(a ∗ ∗) + p432p(∗cb)p(a ∗ ∗) + p433p(∗ ∗ b)p(a ∗ ∗)δ(b = c)
+ p434p(∗ ∗ b)p(a ∗ ∗)δ(a = c) + p435p(∗ ∗ b)p(ac∗) + p436p(∗ ∗ b)p(a ∗ c) + p441p(c ∗ ∗)p(a ∗ ∗)δ(a = b)
+ p442p(∗c∗)p(a ∗ ∗)δ(a = b) + p443p(∗ ∗ c)p(a ∗ ∗)δ(a = b) + p444p(a ∗ ∗)δ(a = b)δ(a = c) + p445p(ac∗)δ(a = b)
+ p446p(a ∗ c)δ(a = b) + p451p(c ∗ ∗)p(ab∗) + p452p(∗c∗)p(ab∗) + p453p(∗ ∗ c)p(ab∗)
+ p454p(ab∗)δ(a = c) + p455p(ab∗)δ(b = c) + p456p(abc) + p461p(c ∗ ∗)p(a ∗ b)
+ p462p(∗c∗)p(a ∗ b) + p463p(∗ ∗ c)p(a ∗ b) + p464p(a ∗ b)δ(a = c) + p465p(acb)
+ p466p(a ∗ b)δ(b = c) + p511p(b ∗ ∗)p(∗a∗)δ(b = c) + p512p(bc∗)p(∗a∗) + p513p(b ∗ c)p(∗a∗)
+ p514p(b ∗ ∗)p(ca∗) + p515p(b ∗ ∗)p(∗a∗)δ(a = c) + p516p(b ∗ ∗)p(∗ac) + p521p(cb∗)p(∗a∗)
+ p522p(∗b∗)p(∗a∗)δ(b = c) + p523p(∗bc)p(∗a∗) + p524p(∗b∗)p(ca∗) + p525p(∗b∗)p(∗a∗)δ(a = c)
+ p526p(∗b∗)p(∗ac) + p531p(c ∗ b)p(∗a∗) + p532p(∗cb)p(∗a∗) + p533p(∗ ∗ b)p(∗a∗)δ(b = c)
+ p534p(∗ ∗ b)p(ca∗) + p535p(∗ ∗ b)p(∗a∗)δ(a = c) + p536p(∗ ∗ b)p(∗ac) + p541p(c ∗ ∗)p(ba∗)
+ p542p(∗c∗)p(ba∗) + p543p(∗ ∗ c)p(ba∗) + p544p(ba∗)δ(b = c) + p545p(ba∗)δ(a = c)
+ p546p(bac) + p551p(c ∗ ∗)p(∗a∗)δ(a = b) + p552p(∗c∗)p(∗a∗)δ(a = b) + p553p(∗ ∗ c)p(∗a∗)δ(a = b)
+ p554p(ca∗)δ(a = b) + p555p(∗a∗)δ(a = b)δ(a = c) + p556p(∗ac)δ(a = b) + p561p(c ∗ ∗)p(∗ab)
+ p562p(∗c∗)p(∗ab) + p563p(∗ ∗ c)p(∗ab) + p564p(cab) + p565p(∗ab)δ(a = c)
+ p566p(∗ab)δ(b = c) + p611p(b ∗ ∗)p(∗ ∗ a)δ(b = c) + p612p(bc∗)p(∗ ∗ a) + p613p(b ∗ c)p(∗ ∗ a)
+ p614p(b ∗ ∗)p(c ∗ a) + p615p(b ∗ ∗)p(∗ca) + p616p(b ∗ ∗)p(∗ ∗ a)δ(a = c) + p621p(cb∗)p(∗ ∗ a)
+ p622p(∗b∗)p(∗ ∗ a)δ(b = c) + p623p(∗bc)p(∗ ∗ a) + p624p(∗b∗)p(c ∗ a) + p625p(∗b∗)p(∗ca)
+ p626p(∗b∗)p(∗ ∗ a)δ(a = c) + p631p(c ∗ b)p(∗ ∗ a) + p632p(∗cb)p(∗ ∗ a) + p633p(∗ ∗ b)p(∗ ∗ a)δ(b = c)
+ p634p(∗ ∗ b)p(c ∗ a) + p635p(∗ ∗ b)p(∗ca) + p636p(∗ ∗ b)p(∗ ∗ a)δ(a = c) + p641p(c ∗ ∗)p(b ∗ a)
+ p642p(∗c∗)p(b ∗ a) + p643p(∗ ∗ c)p(b ∗ a) + p644p(b ∗ a)δ(b = c) + p645p(bca)
+ p646p(b ∗ a)δ(a = c) + p651p(c ∗ ∗)p(∗ba) + p652p(∗c∗)p(∗ba) + p653p(∗ ∗ c)p(∗ba)
+ p654p(cba) + p655p(∗ba)δ(b = c) + p656p(∗ba)δ(a = c) + p661p(c ∗ ∗)p(∗ ∗ a)δ(a = b) + p662p(∗c∗)p(∗ ∗ a)δ(a = b)
+ p663p(∗ ∗ c)p(∗ ∗ a)δ(a = b) + p664p(c ∗ a)δ(a = b) + p665p(∗ca)δ(a = b) + p666p(∗ ∗ a)δ(a = b)δ(a = c)

Figure 3: Evolution equation for a 3-locus representation evolved under selection and generalised
recombination.



5 Equations for order 1 schemata

Let us focus on the order 1 schemata Ha
s = ∗s−1a∗`−s where only one allele is specified. By coarse-

graining on the recombination distribution, the schema evolution equations for these schemata
transform into:

E[Φ(Ha
s , t + 1)]

=
∑

(ms,vs)∈R`

pc(∗s−1ms∗`−s, ∗s−1vs∗`−s)p
(
Ha

vs
, t

)
=

∑̀
k=1

pc(∗ · · · ∗, ∗s−1k∗`−s)p (Ha
k , t) .

That is, the evolution of order 1 schemata is governed by systems of ` linear equations. There
are as many such systems as the arity of the alphabet adopted for strings. In the binary case
a ∈ {0, 1} and so there are two such systems.

So, in general, unlike the case for homologous crossovers, with generalised recombination,
order 1 schemata may evolve even on a flat landscape (where p(H, t) = Φ(H, t) for any schema
H). The flat landscape case is interesting as its analysis unveils the biases of the recombination
operator. For the case ` = 2 in [18] we found that, except in special conditions, a fixed point for
the proportions of order 1 schemata Φ(Ha

s , t) exists. This is generally the case for any `. Let us
denote such a fixed point with Φ∗(Ha

s ).
Let us consider the case of an infinitely large population and a flat landscape.3 In vector

notation then the system of equations becomes
~Φa(t + 1) = A~Φa(t)

where ~Φa(t) = [Φ(Ha
1 , t), · · · ,Φ(Ha

` , t)]T and A = (ask) is a matrix with elements ask =
pc(∗ · · · ∗, ∗s−1k∗`−s). Since

∑`
k=1 pc(∗ · · · ∗, ∗s−1k∗`−s) = pc(∗ · · · ∗, ∗ · · · ∗) = 1 the matrix A

is row stochastic, but it is not necessarily column stochastic.

5.1 Fixed points

Let us look for fixed points for the dynamical system defined by these equations. They will have
to be eigenvectors of the matrix A with an associated eigenvalue λ = 1.

Because of the row stochasticity of A, it is easy to see that [1, · · · , 1]T is an eigenvector for the
matrix. That is, for order 1 schemata, a fixed point always exists of the form

Φ∗(Ha
s ) = c(a)

for s = 1, · · · , `, where c(a) is a constant (possibly a different one for each a). Naturally the con-
stants c(a) must obey the conservation of probability for the ` sets of order 1 schemata partitioning
the search space. That is, we require that, for all s and t,∑

a

Φ(Ha
s , t) = 1.

When evaluated at the fixed point, this leads to the following constraint on the values of the c(a)’s:∑
a

c(a) = 1.

Generally, finding analytically other fixed points may not be simple. Also, determining whether
a fixed point is a global attractor for the system is non-trivial.4 There are, however, some fairly
general classes of generalised recombinations where we can say a bit more.

3Infinitely large populations are a standard mathematical tool in the theory of evolutionary algorithms. They
are used because they remove the stochasticity present in EAs. This can be very useful, for example, to aid the
analysis of the intrinsic biases of the search operators.

4Naturally, if the GRD is known, one can easily find numerical answers to these questions simply by using
standard linear algebra techniques.



5.1.1 Homologous crossover

One such class is the class of homologous crossovers. These are characterised by the fact that
only recombination pairs of the form r = (b, (1, 2, · · · , `)) have non-zero probability. So, ask =
pc(∗ · · · ∗, ∗s−1k∗`−s) = δ(s = k) and, so, A is the identity matrix. In this case, as expected, any
initial condition is a fixed point for order 1 schemata. That is

Φ∗(Ha
s ) = Φ(Ha

s , 0).

5.1.2 Fully disconnected recombination cliques

Let Q(pc) the set of recombination cliques induced by the generalised recombination distribution
pc. The elements of Q(pc) are (disjoint) sets of integers. Their union is {1, · · · , `}.

The homologous crossover case is a special case in which the recombination clique graph in-
cludes ` disconnected nodes (i.e., |Q(pc)| = `). The fully mixing case is one where all nodes belong
to a single clique (i.e., |Q(pc)| = 1). Let us consider what happens in other cases similar as these,
where the loci can be grouped into a number of cliques, but where the cliques themselves are
completely disconnected. In other words, we consider the case where the recombination clique
DAG includes q = |Q(pc)| nodes with 1 < q < ` and no arcs.

In this case the matrix A is block diagonal, with q blocks. So, effectively we can decompose
the vector ~Φa into q sub-vectors ~Φa

n and the matrix A into q squared sub-matrices An (the blocks
along the diagonal of A) and rewrite the evolution equations for order 1 schemata as:

~Φa
n(t + 1) = An

~Φa
n(t)

for n ∈ Q(pc). It is then easy to see that each of these smaller dynamical systems has an eigenvalue
λn = 1 with an associated eigenvector of the form [1, · · · , 1]T . So, a fixed point exists of the form

~Φa∗

n = c(n, a)[1, · · · , 1]T

for n ∈ Q(pc), where c(n, a) are constants which depend only on the clique n and the allele a.
These, again, must respect the conservation of probability and so∑

a

c(n, a) = 1.

6 Fixed points for higher-order schemata and strings

Let us consider the case where pc(m, v) = 0 for all v such that ∃i 6= j, vi = vj , that is let us assume
no allele duplication from the same parent can take place. We call this a δ-free recombination
distribution because in these conditions all the δ’s in Equation 4 (and the corresponding equation
for Īr) are all 1 for any r.

Theorem (Generalised Geiringer manifold) A fixed point distribution for the proportion of a
string or a schema h1h2 · · ·h` under generalised crossover with a δ-free recombination distribution
for an infinite population operating on a flat fitness landscape is given by

Φ∗(h1 · · ·h`) =
∏

q∈Q(pc)

∏
i∈q

c(q, hi) (5)

where c(q, ∗) = 1.



Proof Since the fitness landscape is flat, p(H, t) = Φ(H, t) for any schema. Also, because the
population is infinite, E[Φ(H, t + 1)] = Φ(H, t + 1). Then, for a δ-free GRD we can rewrite the
schema evolution equations as

Φ(h, t + 1)

=
∑

(m,v)∈R`
`

pc(m, v) (6)

Φ

 |Ir|∏
k=1

(
∗vik

−vik−1−1hik

)
∗`−vi|Ir| , t


Φ

 |Īr|∏
k=1

(
∗vjk

−vjk−1−1hjk

)
∗`−vj|Īr| , t

 .

We can prove that Equation 5 is a fixed point for this equation, by substituting the right-hand
side of Equation 5 into the right-hand side of this equation and then showing that the resulting
expression for Φ(h1...h`, t + 1) has exactly the same form as the right-hand side of Equation 5.

Let us start by splitting each Ir into disjoint subsets Irn for n ∈ Q(pc) where subset Irn includes
the elements of Ir from clique n. That is Irn = Ir ∩ n. Then at the fixed point

Φ

 |Ir|∏
k=1

(
∗vik

−vik−1−1hik

)
∗`−vi|Ir| , t


=

∏
n∈Q(pc)

∏
i∈Irn

c(n, hi).

A similar result holds for Īr and the last term of Equation 6.
So, from the substitution of the fixed point in Equation 6 we obtain

Φ(h, t + 1) =∑
r∈R`

`

pc(r)
∏

n∈Q(pc)

∏
i∈Irn

c(n, hi)
∏

n∈Q(pc)

∏
j∈Īrn

c(n, hj)

Because Ir and Īr are disjoint and their union is {1, · · · , `}, for all n ∈ Q(pc) we have Irn∪ Īrn = n
and, so,

Φ(h, t + 1) =
∑

r∈R`
`

pc(r)
∏

n∈Q(pc)

∏
i∈n

c(n, hi)

=
∏

n∈Q(pc)

∏
i∈n

c(n, hi)
∑

r∈R`
`

pc(r)

︸ ︷︷ ︸
=1

=
∏

n∈Q(pc)

∏
i∈n

c(n, hi).

which proves that Equation 5 is a fixed point for the distribution of strings and, more generally,
schemata. 2

This result is important because it provides a generalisation of the manifold described, for
homologous crossover, by Geiringer [2]. All points on our generalised Geiringer manifold are fixed
points for a genetic system under generalised recombination. Naturally, the result also covers all
the fixed points for order one schemata described in the previous section.



It is interesting to rewrite Equation 5 is a slightly different form. If ν(h, n, a) represents the
number of times symbol a appears in one of the loci in clique n of the string or schema h, and Ω
represents our alphabet, then

Φ∗(h) =
∏

n∈Q(pc)

∏
a∈Ω

(c(n, a))ν(h,n,a). (7)

So, for example if our alphabet is Ω = {0, 1, 2, 3}, if |Q(pc)| = 1 and if we set c(n, 0) = c(n, 1) = 1/3
and c(n, 2) = c(n, 3) = 1/6, then Φ∗(0102) = (1/2)2× (1/2)× (1/3)× (1/3)0 = 1/24. Interestingly,
in the case of a binary alphabet, for a fixed c(n, 0) (note: c(n, 1) = 1− c(n, 0)) the probability of
sampling a given string is only a function of the unitation value (the number of ones) of the string.

7 Stability of fixed points

Naturally, although any choice of c(n, a) will provide a formal fixed point for the evolution equa-
tions, we are only interested in choices which respect the conservation of probability constraint∑

a c(n, a) = 1. Despite this constraint, we still have a huge family of potential fixed points. An
important question is whether any of these fixed points would be a global attractor for the system
and whether this would dependent on initial conditions and, if so, how.

In this paper we don’t formally prove under which conditions the fixed point presented in the
previous sections are stable. In [18] we present an exact and general solution for the dynamics for
the case ` = 2 and a complete analysis of the corresponding fixed points. The techniques used
there can provide exact answers also for ` > 2. However, the complexity of the solutions grows
very quickly with `. So, in this paper we prefer to present empirical evidence to corroborate our
theoretical results.

8 “Schemulator” runs

In order to study the dynamics of a genetic system under selection and generalised recombination
we have implemented a simulator written in Java (we call it the “schemulator” – a contraction
of “schema simulator”) which expands and then numerically integrates the string (and schema)
evolution equations for any choice of recombination distribution, of fitness function and of initial
conditions. The integration is performed under the standard assumption of infinite populations.

To corroborate our results we want to verify our predictions as to the existence and location
of fixed points for the flat fitness landscape case. Figure 4 shows the dynamics of some schemata
and strings in a population with ` = 3 and a recombination distribution where pc(m, v) 6= 0 for all
the 48 recombination pairs where v is a permutation vector, and pc(m, v) = 0 for the remaining
168 pairs. The non-zero entries of the GRD were randomly generated and then normalised so that∑

pc(r) = 1. The resulting recombination distribution had only one clique, N` = {1, · · · , `}, which
includes all ` loci. In order to be able to distinguish between the dynamics of different schemata,
we the used unequal initial proportions for strings, namely: Φ(000, 0) = 0.3, Φ(001, 0) = 0.25,
Φ(010, 0) = Φ(011, 0) = Φ(100, 0) = 0.1, Φ(101, 0) = 0.05, Φ(110, 0) = 0.02 and Φ(111, 0) = 0.08.

As shown in the figure, the order 1 schemata H1
s (s = 1, 2, 3) rapidly converge to a fixed point

where Φ∗(1 ∗ ∗) = Φ∗(∗1∗) = Φ∗(∗ ∗ 1). This is exactly what is predicted by the fixed point
provided in Equation 5. The order-one-schema fixed point proportion, 0.343333333333, suggests
that c(N`, 1) = 0.343333333333 and c(N`, 0) = 1− c(N`, 1) = 0.656666666667.

Order 2 schemata also converge to identical values, i.e. Φ∗(11∗) = Φ∗(∗11) = Φ∗(1 ∗ 1). The
fixed-point frequency is (within numerical errors) exactly c(N`, 1)2 = 0.117877777778, which is
what Equation 5 predicts.

The predictions of our generalised Geiringer manifold theorem also hold for strings. For ex-
ample, the strings 110 and 011 converge to their predicted fixed point Φ∗(110) = Φ∗(011) =
c(N`, 1)2c(N`, 0) = 0.0774064074076 and 111 converges towards the predicted Φ∗(111) =
c(N`, 1)3 = 0.0404713703703 within numerical errors.
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Figure 4: Dynamics of strings and schemata for ` = 3 and a δ-free, fully mixing, random recom-
bination distribution.

One might ask at this stage: where did the magic value 0.343333333333 come from? We
provide here an answer without proof. The GRD used in this example is one of a class for which

c(n, a) =
1
|n|

∑
i∈n

Φ(Ha
i , 0). (8)

Since in this particular example we only have one clique,

c(N`, 1) =
1
3

(Φ(1 ∗ ∗, 0) + Φ(∗1∗, 0) + Φ(∗ ∗ 1, 0))

=
1
3

(0.25 + 0.3 + 0.48)

= 0.343333333333.

9 Conclusions

In this paper we have provided a theory that is powerful enough to model exactly genetic systems
using a fixed-length representation, selection and, for the first time, a rich set of genetic operations,
including gene duplication, gene deletion, inversion, homologous recombination, permutations,
diploidy, etc. that are not only known to happen in nature but that have also been fruitfully used
in evolutionary algorithms. This model includes as a special case previous models such as the
exact schema theory in [17, 14].

We have started analysing the evolution equations provided by our model with the objective of
understanding the search biases induced by such a powerful set of operators. This has allowed us to



formulate a generalisation of Geiringer’s theorem. As usual, we expect the study of the equations
in the presence of selection to be much harder to do mathematically. However, the availability of an
exact probabilistic model has allowed the implementation of an evolution equation simulator (the
schemulator) with which we can numerically explore the interaction between the recombination
and the selection biases for arbitrary fitness functions and potentially for any string length.

In future research we intend to provide a detailed general analysis of fixed-point stability, to
study the evolution equations for diploid recombination distributions and to extend the results
presented in this paper to the case of variable length strings, thereby, hopefully, contributing new
results to theoretical population genetics as well as evolutionary computation.
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