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Abstract

A generalised form of recombination, wherein an offspring can be
formed from any of the genetic material of the parents, is analysed in
the context of a two-locus recombinative GA. A complete, exact solution,
is derived, showing how the dynamical behaviour is radically different to
that of homologous crossover. Inversion is shown to potentially introduce
oscillations in the dynamics, while gene duplication leads to an asymme-
try between homogeneous and heterogeneous strings. All non-homologous
operators lead to allele “diffusion” along the chromosome. We discuss how
inferences from the two-locus results extend to the case of a recombinative
GA with selection and more than two loci.

1 Introduction

Over the last few years coarse-grained formulations of the dynamics of evo-
lutionary algorithms (EAs) have been seen to proffer many advantages rela-
tive to “microscopic” ones based on the string/chromosome degrees of freedom.
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These benefits have been exhibited, not only in the standard GA [9], but also
in variable-length GAs/linear GP and GP itself [6]. The main advantage is the
simpler and deeper understanding of the role of homologous recombination they
provide, wherein the most appropriate effective degrees of freedom for describ-
ing the evolution of the system are not strings/chromosomes, but coarse-grained
“building blocks”, with which the EA builds optimal solutions. The form that
the building blocks take depends on the representation used. For instance, in
GAs they are a particular subset of schemata that form an alternative and more
appropriate basis - the Building Block Basis (BBB) [1]. In the case of variable-
length strings and trees, they are generalisations of those found in fixed length
GAs - Building Block Hyperschemata [6].

Building Block schemata are the most appropriate effective degrees of free-
dom for GAs for any mask-based (homologous) recombination operator.1 How-
ever, in nature there are many more ways of combining parental genetic material
into an offspring than just homologous crossover, many of which have been used
in EAs. Gene duplication, for example, has been studied in biology [2] as well
as in the context of GAs [8] and GP [5], while inversion was one of the oper-
ators used by Holland [4] in the original formulation of the GA. Additionally,
there seems to have been little to no theoretical analysis in the EC literature
concerning inversion and duplication, at least not based on an underlying exact
dynamical model.

In [7], an exact model for a fixed length GA was derived and studied that
introduced a generalised form of recombination that could account for any redis-
tribution of parental genes into the offspring. This required the generalisation
of the concept of a crossover mask to that of a Generalised Crossover Mask
(GCM), with an associated Generalised Recombination Distribution (GRD),
This generalised recombination subsumes many other forms, including homolo-
gous crossover and inversion as well as fixed-length versions of gene duplication
and deletion. It was shown that a coarse grained version of the dynamical
equations led to much greater transparency and simplicity of the underlying
dynamics, leading to the possibility of a better theoretical understanding of the
intrinsic biases associated with these operators which could then be turned into
recipes for practitioners.

In this paper we study this new formulation in the context of a two-locus
model. Of course, one might question to what extent a two-locus model can illu-
minate the more complicated multi-locus case. It is wise to remember however,
that in population biology such models have played a crucial role permitting
the qualitative, and sometime quantitative, analysis of a host of important phe-
nomena. Even in EC, such models have made important appearances, such as
in the deceptive two-bit problem. The model we will present has the advantage
of being exactly soluble, while at the same time being quite transparent. Ad-
ditionally, all the interesting phenomena observed in the present model are also
present in the case of multi-locus models where analysis is much more compli-

1Mutation also looks simpler in the BBB than in the string basis, though not as simple as
in the Walsh basis.
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cated, although a more formal mathematical analysis [7] yields many results of
interest for the asymptotics of such EAs.

2 Generalised Recombination Distributions

Standard recombination can be succinctly modelled using the concept of a re-
combination mask, which is used to indicate from which parent to take an allele
for each available locus. A mask, m, for strings of length `, can be represented
by an `-dimensional vector m = (m1,m2, . . . ,m`), where mi = 0, 1 indicates
from which parent the ith allele is taken - 0 meaning take it from the ith locus of
the first parent and 1 from the ith locus of the second parent. The total number
of possible masks is 2`. Associated with them is a recombination distribution,
denoted by pc(m). If we take the probability to implement crossover as pxo,
then pc(m) is the conditional probability for choosing the mask m given, i.e.
conditioned on, the fact that crossover was chosen in the first place. Hence,∑

m pc(m) = 1 and pxo × pc(m) is the probability to crossover using the mask
m.

Recombination masks are sufficient to model homologous genetic operators.
However, to describe more general operators we need to consider when an allele
in one particular locus of the offspring comes from a different locus in either one
of the parents. In the context of a fixed length representation this new level of
generality can be obtained by introducing a generalisation of a crossover mask -
a generalised crossover mask (GCM), v, which is an `-dimensional vector that
specifies the origin of the alleles in the offspring. To take into account that
the ith allele in the offspring could, in principle, come from any locus in the
parents, each vi can take values from N2` = {1, · · · , 2`}, values from 1 to `
denoting that the allele originated in the first parent, while values between `+1
and 2` signify that it came from the second parent. Thus, for example, for
` = 3, (1, 5, 3) represents a GCM where the first gene of the offspring came from
the first gene of the first parent, the second gene from the second of the second
parent and the last from the last of the first parent. As the “mask alphabet”
is of cardinality 2` rather than two, as in the case of normal crossover masks,
the total number of GCMs is (2`)`. The associated distribution of probabilities,
pc(v), then determines the generalisation of the recombination distribution -
the Generalised Recombination Distribution (GRD) - pc(v).

Standard recombination masks are associated with crossover vectors where
the genes in the offspring are ordered, in that genetic loci i and j in the offspring
originated uniquely from loci i and j in the parents. Inversions can be realised
by permutations of some or all of the elements of the string ordering {v1, . . . , v`}.
For example, {5, 1, 3} represents a GCM where the first gene of the offspring
came from the second gene of the second parent, the second gene from the first
of the first parent and the last from the last of the first parent. There are two
forms of duplication: one parent duplication - duplication from the same locus in
the same parent - and two-parent duplication - duplication from the same locus
but in different parents. The former is manifest in the corresponding crossover
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vector by the repetition of an element, e.g. {1, 1, 6} gives an offspring where
both the first and second genes came from the first locus of the first parent.
Duplication from different parents can be seen in the crossover vector {1, 2, 5},
where the second and third genes of the offspring came from the second gene of
the first parent and the second gene of the second parent respectively.

Inheritance of a gene from a parent via a recombination vector v can be
denoted by δ

J⊗K(vi)
Ii

, where δ is the Kronecker delta, which means that the
ith locus of the offspring of genotype I is inherited from the locus associated
with the ith component of the recombination vector v, J ⊗K representing the
2`-dimensional vector whose first ` components represent the loci of the first
parent, J , and the second ` those of the second parent, K. As the components
of v range over values [1, 2`] J ⊗K(vi) picks out the corresponding component
of J⊗K. For instance, for two-bit strings and a recombination vector v = (2, 3),
δ

J⊗K(v1)
I1

= δ J2
I1

, i.e. the first bit of the offspring was inherited from the second

locus of the first parent, while δ
J⊗K(v2)

I2
= δ K1

I2
, i.e. the second bit of the locus

was inherited from the first bit of the second parent.
For two bits we can represent the GRD by a set {pab}, where the indices a

and b take values from one to four, one and two corresponding to the first and
second loci of the first parent and three and four the corresponding loci of the
second parent. Thus, for example {p13} gives the probability for applying the
GCM associated with finding the first locus of the offspring from the first locus
of the first parent and the second locus from the first locus of the second parent.

3 Evolution Equation in the String Basis

We first write down the exact, infinite population equations in the string basis
with selection and generalised recombination

PI(t + 1) = (1− pxo)P ′I(t)

+pxo

∑
v

pc(v)
∑

J

∑
K

λ JK
I (v)P ′J(t)P ′K(t) (1)

where, PI(t) is the proportion of genotype I, i.e. the probability of I in the
infinite population limit, I is a multi-index I = (I1, I2, . . . , I`), P ′I is the proba-
bility to select I and λ JK

I (v) is the conditional probability that the offspring I
is formed given the parents J and K and a GCM v. λ JK

I (v) = 0, 1 as either
the offspring is formed or it isn’t. The first term in (1) arises from the cloning of
I while the second term represents all the ways in which I may be constructed
from other strings via generalised recombination.

Equation (1) gives the most general way of recombining genetic material
from two parents, ranging from a locus by locus partition, such as is the case
for a standard recombination mask, to a complete duplication of one particular
allele value associated with a particular genetic locus in a particular parent. The
most complicated part of equation (1) is the λ JK

I (v). They can be formally
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written as

λ JK
I (v) =

∏̀
i=1

δ
J⊗K(vi)

Ii
(2)

As an example, consider for ` = 3 the recombination vector v = (3, 1, 5). In
this case λ JK

I (3, 1, 5) = δ J3
I1

δ J1
I2

δ K2
I3

.
Note that equation (1) is functionally identical to that for the case of stan-

dard mask-based crossover [1], the only difference being the different recombina-
tion distribution, and hence the different set of λ JK

I (v) that are non-zero. As
in the standard crossover case for binary strings we have 2` coupled, first-order
difference equations to solve. The chief problem however, is the fact that on the
right hand side we have 2`×2`× (2`)` = (8`)` contributing terms. For example,
for two bits there are sixteen GCMs denoted by {(v1, v2)}, where v1 and v2 run
over the values 1, 2, 3 and 4. The sums over the strings J and K run over the
values 1 to A` for an alphabet of cardinality A. Thus, for an arbitrary GRD,
even at the two bit level there are 16 × 4 × 4 = 256 λ JK

I (v) to compute for a
given string I. Symbolically however, the terms are quite simple

cloning λ J1J2K1K2
I1I2

(1, 2) = δI1J1δI2J2 (3)
inversion λ J1J2K1K2

I1I2
(2, 1) = δI1J2δI2J1 (4)

crossover λ J1J2K1K2
I1I2

(1, 4) = δI1J1δI2K2 (5)
crossover+inversion λ J1J2K1K2

I1I2
(4, 1) = δI1K2δI2J1 (6)

duplication 1 λ J1J2K1K2
I1I2

(1, 1) = δI1J1δI2J1 (7)
duplication 1 λ J1J2K1K2

I1I2
(2, 2) = δI1K1δI2K1 (8)

duplication 2 λ J1J2K1K2
I1I2

(1, 3) = δI1J1δI2K1 (9)
duplication 2 λ J1J2K1K2

I1I2
(2, 4) = δI1J2δI2K2 (10)

where we show only those GCMs that correspond to creation of genotype I
using J as the first parent. The corresponding second parent terms can be
found by interchanging J and K on the right hand side of (3-10) and letting
letting (v1, v2) → (v′1, v

′
2) where v′i = vi + 2 mod2. The meaning of these

terms, as alluded to in equations (3-10), is the following: the terms represented
by GCMs (1, 2) (cloning of first parent) and (3, 4) (cloning of second parent)
are cloning terms due to the application of a trivial standard crossover mask,
where both offspring alleles come from the corresponding loci of only one of
the parents. The inversion term is represented by GCMs (2, 1) (inversion of
first parent) and (4, 3) (inversion of second parent). The GCMs (1, 4) and (3, 2)
represent the results of standard one-point crossover, while the GCMs (4, 1)
and (2, 3) represent the results of standard one-point crossover followed by an
inversion (or vice versa). The terms denoted by duplication 1 - one-parent
duplication - are associated with the GCMs (1, 1), (2, 2), (3, 3) and (4, 4) and
represent duplication of an allele from a single locus of a single parent. Finally,
the duplication 2 - two-parent duplications - GCMs (1, 3), (2, 4), (3, 1) and (4, 2)
represent gene duplication as well, but where the two genes of the offspring come
from the same locus but in different parents.
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Substituting these expressions in (1), computing all terms and setting I1 = i
and I2 = j for conciseness, one finds

Pij(t + 1) = (1− pc)P
′
ij + pc[(p11 + p33 + p22 + p44)P

′
ijδij

+ ((p11 + p33)P
′
ij̄

+ (p22 + p44)P
′
īj

)δij + (p12 + p34)P
′
ij

+ (p13 + p31 + p14 + p32 + p23 + p41 + p42 + p24)P
′
iiP

′
jj

+ (p21 + p43)P
′
ji(t) + (p23 + p41 + p13 + p31)P

′
iiP

′
jj̄

+ (p13 + p31 + p14 + p32)P
′
īi

P ′
jj + (p13 + p31)P

′
īi

P ′
jj̄

+ (p24 + p42 + p14 + p32)P
′
iiP

′
j̄j

+ (p14 + p32)P
′
īi

P ′
j̄j

+ (p24 + p42 + p23 + p41)P
′
īi

P ′
jj

+ (p41 + p23)P
′
īi

P ′
jj̄

+ (p42 + p24)P
′
īi

P ′
j̄j

] (11)

where, for simplicity, we are restricting attention to a binary alphabet and ī
signifies the bit complement mod 2 of i. The first term on the right hand side
is a cloning term due to with probability (1 − pxo) strings are copied without
recombination, P ′ij being the probability to select the genotype ij. The meaning
of the different terms in (11) is inherited from the meaning of the corresponding
terms of the GRD, the pab being the notation for the GCM probability associated
with the GCM (a, b). The Kronecker delta, δij = 1, i = j; δij = 0, i 6= j,
ensures that the contribution from gene duplication from a single parent is
only present for homogeneous offspring, i.e. those with both allele values the
same. Note that of the 256 possibilities there are only 44 non-zero terms in
(11). However, in order to compute which ones are non-zero all have to be
computed. By way of comparison, the canonical GA with one-point crossover,
where p14 = p32 = 1/2 with all other GCMs zero, has only 8 of the 2 × 4 × 4
possible terms non-zero.

4 Coarse Grained Evolution Equation

In both cases - the general and the particular - it is clear that there is a great
deal of redundancy in the string representation. In the case of homologous
recombination it has been found that a coarse grained representation in terms
of Building Block schemata makes the dynamics much more transparent, partly
due to the fact that the number of terms on the right hand side of (1) reduces
to 2` in the case of homologous crossover which, when compared to 8` in the
string basis, is a substantial reduction in complexity. For a particular type of
recombination distribution, such as one-point crossover, where there are only
(` − 1) non-zero masks, the simplification is even greater, from 8` to (` − 1).
One is naturally inclined to ask whether an appropriate simplification can be
effected in this more general case.

In [7] it is shown how a coarse graining greatly simplifies (1) by removing
the string sums, effectively reducing (8`)` terms to (2`)`. One can illustrate
how the coarse graining is effected by considering a particular GCM, such as
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recombination and inversion with the GRD {p41, p23} (for simplicity we put
pxo = 1). From equation (1)

PI1I2(t + 1) = p41

∑
J1J2

∑
K1K2

δI1K2δI2J1P
′
J1J2

P ′K1K2

+ p23

∑
J1J2

∑
K1K2

δI1J2δI2K1P
′
J1J2

P ′K1K2

= p41P
′
I2∗

P ′∗I1
+ p23P

′
∗I1

P ′I2∗ (12)

where ∗ is the standard wildcard symbol that represents the fact that the allele
value at that locus has been summed over. Similarly, in the general two-locus
case one obtains

Pij(t + 1) = (1− pxo)P ′ij + pxo[(p11 + p33)P ′i∗δij

+(p22 + p44)P ′∗iδij + (p12 + p34)P ′ij + (p21 + p43)P ′ji

+(p14 + p32)P ′i∗P
′
∗j + (p23 + p41)P ′∗iP

′
j∗

+(p13 + p31)P ′i∗P
′
j∗ + (p42 + p24)P ′∗iP

′
∗j ] (13)

Notice now that there are only 16 terms corresponding to the 16 terms of the
GRD. Just as in the case of homologous crossover the sums over J and K have
disappeared leading to a reduction from (8`)` to (2`)` terms, in this case from
256 to 16. This makes manifest that in the case of generalised recombination,
just as in the case of homologous crossover, Building Block Schemata and not
strings are the appropriate effective degrees of freedom, and that a GA based
on such recombination also builds solutions from lower order building blocks.
The difference when compared to homologous crossover is simply that there are
more building blocks. Normally, with homologous crossover, formation of ij is
via the Building Block schemata i∗ and ∗j. Here, however, the relevant building
blocks are - i∗, ∗j, ∗i and j∗.

5 Two Locus Solution

One is naturally led to ask: if and how the dynamics of this more general class
of GAs differs from that of the canonical GA with homologous recombination?
This is naturally a more complicated question, given that the array of genetic
operators that we are considering under the rubric of generalised recombination
is quite large, including standard mask-based recombination, inversion, different
types of gene duplication and combinations of these different operators. In order
to understand in this more general context the different biases associated with
these operators we investigate the solutions to equation (13) in the limit of no
selection, i.e. P ′ij(t) = Pij(t), and where, for simplicity, we set pxo = 1.

5.1 Building Block Dynamics

In order to solve (13), just as in the case of standard homologous recombination
[9], we need to hierarchically solve for the dynamics of the Building Blocks of the
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genotype ij. These are: i∗ and ∗i. From (13) we can determine the equations
for the Building Block schemata by considering Pi∗(t) =

∑
j=0,1 Pij(t) and

P∗j(t) =
∑

i=0,1 Pij(t). The equations for the one-schemata are2

Pi∗(t + 1) = (p1∗ + p3∗)Pi∗(t) + (p2∗ + p4∗)P∗i(t) (14)
P∗i(t + 1) = (p∗1 + p∗3)Pi∗(t) + (p∗2 + p∗4)P∗i(t) (15)

where we are using a schema-like notation here also for the GCMs, e.g. p1∗ =∑4
i=1 p1i. Equations (14) and (15) form a coupled linear system, similar to

that of mutation in a one-locus system. To solve these equations we need to
determine the eigenvalues and eigenvectors of the matrix

W ≡
(

a b
c d

)
=

(
(p1∗ + p3∗) (p2∗ + p4∗)
(p∗1 + p∗3) (p∗2 + p∗4)

)
(16)

In the case of pure mask-based recombination, only p12, p34, p14 and p32 are
non-zero. Hence, the evolution of the schema i∗ is independent of the schema
∗i, i.e. the two equations decouple, giving as solution Pi∗(t) = P∗i(0) and
P∗i(t) = P∗i(0). More generally, the eigenvalues of matrix (16) are

λ± =
(a + d)

2
± 1

2
((a− d)2 + 4bc)1/2 (17)

with corresponding normalised eigenvectors

e+ ≡
(

e+1

e+2

)
= N+

(
b

(λ+ − a)

)
(18)

e− ≡
(

e−1

e−2

)
= N−

(
b

(λ− − a)

)
(19)

where N+ = ((λ+ − a)2 + b2)−1/2 and N− = ((λ− − a)2 + b2)−1/2 are nor-
malisation constants. The transformation matrix Λ ≡ (e+e−)−1, formed from
the eigenvectors (18) and (19), diagonalises W and rotates the vector P(t) =
(P1∗P∗1)T −→ (P̃+(t)P̃−(t))T such that

P̃+(t + 1) = λ+P̃+(t) (20)
P̃−(t + 1) = λ−P̃−(t) (21)

which can be immediately integrated to yield

P̃+(t) = λt
+P̃+(0) (22)

P̃−(t) = λt
−P̃−(0) (23)

Rotating back now to the original schema basis one finds
2Note that i and j are purely symbolic values so that Pi∗ and P∗i are sufficient to cover

the 4 possibilities P1∗, P0∗, P∗1 and P∗0.
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Pi∗(t) = Det(Λ−1)((e+1λ
t
+e−2 − e−1λ

t
−e+2)Pi∗(0)+

(−e+1λ
t
+e−1 + e−1λ

t
−e+1)P∗i(0)) (24)

P∗i(t) = Det(Λ−1)((e−2λ
t
+e+2 − e+2λ

t
−e−2)Pi∗(0)+

(e+1λ
t
+e−2 − e−1λ

t
−e+2)P∗i(0)) (25)

from which one may determine, for instance, the asymptotic behaviour as t →
∞. As Pi∗ and P∗i are both probabilities, then λ± ≤ 1 and, in fact, one
eigenvalue must be unity due to the row stochasticity of the matrix W, as
can be seen from equation (16) noting that, as

∑4
i=1 pi∗ =

∑4
i=1 p∗i = 1, then

a + b = c + d = 1. Substituting these constraints into (17) one finds

λ+ = 1 (26)

λ− =
1
2
(a + d− b− c) =

1
2
[(p14 − p41)

+(p32 − p23) + (p34 − p43)] (27)

with corresponding eigenvectors

e+ = 2−1/2

(
1
1

)
(28)

e− = (b2 + c2)−1/2

(
b
−c

)
(29)

Hence, the solutions (24) and (25) simplify to

Pi∗(t) =
(cPi∗(0) + bP∗i(0))

(b + c)
+

b(a− c)t

b + c
(Pi∗(0)− P∗i(0)) (30)

P∗i(t) =
(cPi∗(0) + bP∗i(0))

(b + c)
−

c(a− c)t

b + c
(Pi∗(0)− P∗i(0)) (31)

From this solution we can examine the fixed point. As |a − c| ≤ 1, except
for a = 1, c = 0 or a = 0 and c = 1, the time dependent term vanishes
asymptotically, giving as fixed point

P ∗i∗ = lim
t→∞

Pi∗(t) =
(cPi∗(0) + bP∗i(0))

(b + c)
(32)

P ∗∗i = lim
t→∞

P∗i(t) =
(cPi∗(0) + bP∗i(0))

(b + c)
(33)

Interestingly, in this case the fixed point is the same for the schemata i∗ or ∗i,
though this proportion is approached from opposite directions. The behaviour
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of the transients on approaching the fixed point also depends sensitively on the
value of (a−c).3 If (a−c) > 0 then the fixed point is approached monotonically.
However, for (a − c) < 0 the factor (−1)t implies the presence of oscillations.
However, as |a−c| ≤ 1 these oscillations are damped and vanish asymptotically.
We will now consider some particular cases of interest.

1. b = c = 0 - in this case a = d = 1, λ± = 1 and P ∗i∗ = Pi∗(0), P ∗∗i = P∗i(0);
thus the initial proportions are preserved. This type of recombination is
homologous and preserves gene frequencies at a given locus.

2. a = d = 0 - here, b = c = 1, λ± = 1, −1 and the associated eigenvectors
are e+ = (1/

√
2)(1 1)T and e− = (1/

√
2)(1 − 1)T . There is now no fixed

point, but rather a cycle of period two, where Pi∗(t) = Pi∗(0) for t even
and P∗i(0) for t odd. Similarly, P∗i(t) = P∗i(0) for t even and Pi∗(0) for
t odd. This leads to lateral diffusion of alleles along the string from one
genetic locus to another.

3. a = b = c = d = 1/2 - in this case λ± = 1, 0 with the same eigenvectors
as for case 2.. Now there are no oscillations ((a − c) = 0) and the fixed
point P ∗i∗ = P ∗∗i = (Pi∗(0) + P∗i(0))/2 is reached after only one generation

4. Pi∗(0) = P∗i(0) - when this condition holds, irrespective of the generalised
recombination probabilities, this remains a fixed point. This condition is
satisfied both at the centre of the simplex [10] as well as at its vertices. It
is equivalent to having equal proportions for heterogeneous genotypes.

We have discussed the asymptotic behaviour in terms of the four parameters
a, b, c and d. However, we wish to understand the dynamics in terms of the
generalised recombination probabilities, pab. For case 1. above (p1∗ + p3∗) =
(p∗2 + p∗4) = 1 and (p∗1 + p∗3) = (p2∗ + p4∗) = 0, the latter being equivalent to
there being no duplication or inversion or any combination that includes them.
This means that there are no genetic operators that lead to lateral diffusion of
alleles along the string from one genetic locus to another. The resultant fixed
point for the one schemata is on the Robbins/Geiringer manifold [3]. Similarly,
for case 2. we have (p1∗ + p3∗) = (p∗2 + p∗4) = 0 and (p∗1 + p∗3) = (p2∗ +
p4∗) = 1. Under these conditions the only non-zero terms are those associated
with inversion. There is no homologous recombination or duplication. Thus,
pure inversion without duplication or homologous crossover leads to periodic
behaviour.

We may also investigate the biases of a particular genetic operator, investi-
gating the solutions in the absence of the other operators. Thus, for instance,
for duplication from one parent, then pii 6= 0 while all other generalised re-
combination probabilities are zero. In this case a = c = (p11 + p33) and
b = d = (p22 + p44) = (1− (p11 + p33)). Additionally, we have

∑4
i=1 pii = 1, i.e.

b + c = a + d = 1. Hence, there is no transient term and the fixed point is

P ∗i∗ = P ∗∗i = Pi∗(0) + (p22 + p44)(P∗i(0)− Pi∗(0)) (34)
3Note that due to the identities a + b = 1 and c + d = 1 this is equivalent to (b− d).
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which is reached after one generation. For cloning, p12 and p34 are the only
non-zero GCMs, hence, a = d = 1 and b = c = 0. In this case the fixed point is
trivially

P ∗i∗ = Pi∗(0) (35)
P ∗∗i = P∗i(0) (36)

For inversion, the only non-zero probabilities are p21 and p43. In this case a =
d = 0 and b = c = 1, and the asymptotic behaviour is governed by the two cycle
of 2. above with

P ∗i∗ =
1
2
((1 + (−1)t)Pi∗(0) + (1− (−1)t)P∗i(0)) (37)

P ∗∗i =
1
2
((1− (−1)t)Pi∗(0) + (1 + (−1)t)P∗i(0)) (38)

For two-parent duplication, the appropriate non-zero recombination probabili-
ties are p13, p24, p31 and p42. Hence, a = c = (p13 + p31) and b = d = (p24 + p42)
with b + c = a + d = 1. As a = c there are no transients and the fixed point

P ∗i∗ = P ∗∗i = Pi∗(0) + (p24 + p42)(P∗i(0)− Pi∗(0)) (39)

is reached after one generation just as in the case of one-parent duplication. Note
that this fixed point is of the same form as that found for one parent duplication.
For homologous crossover, the non-zero recombination distributions are p14 and
p32. In this case a = d = 1, b = c = 0 and the fixed point is the same as that for
cloning. Finally, for crossover and inversion the corresponding recombination
distributions are p41 and p23 which implies a = d = 0 and b = c = 1. In this
case the fixed point is the same as that for inversion above.

In Figure 1, using equation (30), we see a graph of the evolution of the one-
schema 1∗ for different GRDs. The direct integration of equations (14) and (15)
yields exactly the same curves, as expected. The initial condition used is an
asymmetric one, where P11(0) = P00(0) = 0.1, P01(0) = 0.6 and P10(0) = 0.2;
hence, P1∗(0) = 0.3. The fixed point behaviour described in points 1. - 4. and
equations (34-39) is clearly visible. For one-parent duplication the fixed point is
reached after one generation at a value P ∗1∗ = P1∗(0)+P∗1(0)/2 = 0.3+0.7 = 0.5.
For inversion, one sees the characteristic oscillations between the values 0.3 and
0.7 associated with P1∗(0) and P∗1(0). For homologous crossover the fixed point
is the initial proportion P1∗(0) = 0.3, i.e. the allele frequency at a given locus is
preserved. Finally, considering all GCMs with equal probability - the All curve
in Figure 1 - one sees that the system reaches a fixed point in one generation.

The features and fixed points we have just delineated for ` = 2, are also
present for ` > 2 and represent qualitatively new phenomena when compared
to the normal homologous forms of crossover with which we are familiar. The
lateral diffusion of alleles, relative to the homologous case, leads to a fixed point,
where for a given offspring locus, the allele frequency at that locus depends not
only on the allele frequency at the same parental loci but also on the allele
frequencies at other genetic loci. For ` > 2, instead of a pair of linear coupled
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Figure 1: Dynamical evolution of the one-schema 1∗ for different GRDs

equations for the one-schemata one has ` coupled equations whose solution can
be found by solving the corresponding eigensystem.

5.2 Solution for Strings

With the solutions for the one-schemata in hand we can now proceed to deter-
mine the solutions for the strings themselves from (13) by substituting in the
solutions (30) and (31), which are the contributions from the Building Blocks,
to yield

Pij(t + 1) = (1− pxo)Pij + pxo(p12 + p34)Pij(t)
+pxo(p21 + p43)Pji(t) + pxoFij(t) (40)

where
Fij(t) = (Cij + Dij(a− c)t + Eij(a− c)2t) (41)

and the matrices Cij , Dij and Eij are given by

Cij = [(p14 + p41 + p32 + p23 + p13 + p31 + p24 + p42)AiAj

+(p11 + p22 + p33 + p44)Aiδij ] (42)

Dij = [((p14 + p32)(bAjBi − cBjAi)
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+(p23 + p41)(bAiBj − cBiAj)
+(p13 + p31)b(AjBi −BjAi)
−(p24 + p42)c(AjBi −BjAi))
+((p11 + p33)b− (p22 + p44)c)Biδij ] (43)

Eij = ((p13 + p31)b2 + (p24 + p42)c2

−(p14 + p41 + p32 + p23)bc)BiBj (44)

where

Ai =
(cPi∗(0) + bP∗i(0))

(b + c)
(45)

Bi =
(Pi∗(0)− P∗i(0))

(b + c)
(46)

To solve (40) we need to also have the equation for Pji, which is just (40) with
i ↔ j. The matrices Cij and Eij are both symmetric matrices, Dij however is
not. Hence, Pji(t) satisfies

Pji(t + 1) = (1− pxo)Pji + pxo(p12 + p34)Pji(t)
+pxo(p21 + p43)Pij(t) + pxoFji(t) (47)

where
Fji(t) = (Cij + Dji(a− c)t + Eij(a− c)2t) (48)

Equations (40) and (47) are linear coupled inhomogeneous first order difference
equations and can be solved in an analogous fashion to that of equations (14)
and (15) by determining the corresponding eigensystem. Putting pxo = 1 the
relevant matrix is

W′ =
(

(p12 + p34) (p21 + p43)
(p21 + p43) (p12 + p34)

)
(49)

whose eigenvalues and eigenvectors are

λ± = (p12 + p34)± (p21 + p43) (50)

e+ = 2−1/2

(
1
1

)
(51)

e− ≡= 2−1/2

(
1

−1

)
(52)

In the eigenvector basis P(t) = (Pij Pji)T → (P̃+(t) P̃−(t))T such that

P̃+(t + 1) = λ+P̃+(t) + F̃+(t) (53)
P̃−(t + 1) = λ−P̃−(t) + F̃−(t) (54)
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where

F̃+(t) =
1

21/2
(Fij(t) + Fji(t)) (55)

F̃−(t) =
1

21/2
(Fij(t)− Fji(t)) (56)

which can be immediately integrated to yield

P̃±(t) = λt
±P̃±(0) +

t−1∑
n=0

λt−n−1
± F̃±(n) (57)

Rotating back to the original basis one finds

Pij(t) =
1
2
(λt

+ + λt
−)Pij(0) +

1
2
(λt

+ − λt
−)Pji(0)

+
1
2

t−1∑
n=0

(λt−n−1
+ (Fij(n) + Fji(n)) (58)

+λt−n−1
− (Fij(n)− Fji(n)))

There now only remains to do the summations to obtain the final answer

Pij(t) =
1
2
(λt

+ + λt
−)Pij(0) +

1
2
(λt

+ − λt
−)Pji(0)

+
1
2

[
2Cij

(
1− λt

+

1− λ+

)
+ 2Eij

(
(a− c)2t − λt

+

(a− c)2 − λ+

)
(59)

+(Dij + Dji)
(

(a− c)t − λt
+

a− c− λ+

)
+(Dij −Dji)

(
(a− c)t − λt

−
a− c− λ−

)]
Note how this solution has been created - hierarchically, as in the case of homol-
ogous crossover [9]. One can solve first for the order one Building Blocks, which
then serve as a “source” for construction of order 2 Building Blocks, which serve
as a source for the order 3 etc. until one arrives at the strings themselves. The
difference here is that inversion can couple different Building Blocks of the same
order, unlike the homologous case where they are decoupled.

In the asymptotic limit t → ∞, in the case where the cloning or inversion
probabilities are less than one, the fixed point of (60) is

P ∗ij = lim
t→∞

Pij(t) =
Cij

(1− λ+)
(60)

Explicitly, in terms of the GRD

P ∗ij =
[
(p14 + p41 + p32 + p23 + p13 + p31 + p24 + p42)

(1− p12 − p34 − p21 − p43)
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× ((p∗1 + p∗3)Pi∗(0) + (p2∗ + p4∗)P∗i(0))
((p∗1 + p∗3) + (p2∗ + p4∗))

× ((p∗1 + p∗3)P∗j(0) + (p2∗ + p4∗)Pj∗(0))
((p∗1 + p∗3) + (p2∗ + p4∗))

]
+

[
(p11 + p22 + p33 + p44)

(1− p12 − p34 − p21 − p43)
(61)

× ((p∗1 + p∗3)Pi∗(0) + (p2∗ + p4∗)P∗i(0))
((p∗1 + p∗3) + (p2∗ + p4∗))

δij

]
To get some intuition about the nature of this fixed point we will consider
some limits of interest associated with different initial populations and differ-
ent recombination probability distributions. Beginning with a random initial
population, where Pij(0) = 1/4, the fixed point becomes

P ∗ij =
(p14 + p41 + p32 + p23 + p13 + p31 + p24 + p42)

4(1− p12 − p34 − p21 − p43)

+
(p11 + p22 + p33 + p44)

2(1− p12 − p34 − p21 − p43)
δij (62)

Only in the case where there is no one-parent gene duplication, i.e. pii =
0, is the centre of the simplex a fixed point. In the presence of one-parent
gene duplication homogeneous strings are favoured over their heterogeneous
counterparts. For instance, for GCMs with equal probabilities of 1/16, the
asymptotic proportions of homogeneous and heterogeneous strings are 1/3 and
1/6 respectively. Thus, homogeneous strings have higher effective fitness [9]
than heterogenous ones.

In Figure 2 we see a graph of the solution (60) for the strings 11 and 01
for the same asymmetric initial conditions used for Figure 1, and for the same
GCMs. Notice the presence of four different fixed points (two-cycle in the case of
inversion) for each string type. This is a much richer behaviour than in the case
of simple homologous crossover where the Geiringer limit P ∗ij = Pi∗(0)P∗j(0)
holds. The Geiringer limits for 11 and 10, with the previously stated initial
conditions, are P ∗11 = 0.3×0.7 = 0.21 and P ∗01 = 0.7×0.7 = 0.49, both of which
agree with the asymptotic limits seen in Figure 2. For one-parent duplication the
expected fixed points for 11 and 10 are from (62) (0.7+0.3)/2 and 0 respectively,
once again in agreement with the graph.

6 Discussion and Conclusions

We have seen the appearance of novel phenomena and have been able to describe
them exactly in the present two-locus context in the absence of selection. One
is prompted to wonder what happens for ` > 2 and when selection is present.

For the case of selection we illustrate the effects in Figure 3 for a non-
epistatic landscape where f11 = 12, f10 = f01 = 11 and f00 = 10, where the
two-locus equations with selection have been iterated. What is clearly seen
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Figure 2: Dynamical evolution of the strings 11 and 01 for different GRDs

is a similar bias as found from the no selection case, but superimposed on
a selection dominated “trend”. The oscillations for inversion only are clearly
visible. However, here, as only heterogeneous strings can oscillate, and as the
optimal string is homogeneous, the oscillations diminish in amplitude. For one-
parent duplication, the proportion of 01 strings vanishes after one generation,
as in the no selection case. For 01 with all GCMs present, as in the no selection
case, there is a sharp initial decrease. In distinction to that case though, in
the presence of selection, the proportion continues to diminish, but at a much
reduced rate. As the selection pressure diminishes, the curves of Figure 3 will
imitate those of Figure 2 ever more closely, while for increasing selection pressure
the phenomena due to inversion and duplication will be less and less noticeable.
We see then that, although we have only exactly solved the no selection case,
observed phenomena such as lateral allele diffusion, oscillations, preference for
homogenous strings etc. are also present in the presence of selection.

For ` > 2 exact solutions are naturally more complicated. However, all
the observed phenomena - oscillations, homogeneous/heterogeneous asymmetry,
lateral allele diffusion - all appear for ` > 2 - as has been explicitly checked
by iterating the microscopic equations (1) for ` = 3, 4. In this case though
the various phenomena can occur simultaneously, for instance for ` = 4 one
might have inversion restricted to the first two loci leading to oscillations there
while restricting duplication to the last two loci and having a preference for
homogeneous alleles there.
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We have shown that coarse grained formulations, which are so powerful
in the context of homologous crossover, can be generalised to take into account
other genetic operators, such as inversion and duplication, thereby showing that
Building Block schemata are also the appropriate effective degrees of freedom
for generalised recombination. We believe that the present formalism allows
for a much deeper theoretical analysis of many different types of recombination
above and beyond the well studied homologous type.
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