Research Repository

CSM429: Abstract Geometric Crossover for the Permutation Representation

Poli, R and Moraglio, A (2005) CSM429: Abstract Geometric Crossover for the Permutation Representation. UNSPECIFIED. CSM-429, University of Essex, Colchester.


Download (385kB) | Preview


Abstract crossover and abstract mutation are representation-independent operators that are well-defined once a notion of distance over the solution space is defined. They were obtained as generalization of genetic operators for binary strings and real vectors. In this paper we explore how the abstract geometric framework applies to the permutation representation. This representation is challenging for various reasons: because of the inherent difference between permutations and the representations that inspired the abstraction; because the whole notion of geometry over permutation spaces radically departs from traditional geometries and it is almost unexplored mathematical territory; because the many notions of distance available and their subtle interconnections make it hard to see the right distance to use, if any; because the various available interpretations of permutations make ambiguous what a permutation represents, hence, how to treat it; because of the existence of various permutation-like representations that are incorrectly confused with permutations; and finally because of the existence of many mutation and recombination operators and their many variations for the same representation. This article shows that the application of our geometric framework naturally clarifies and unifies an important domain,the permutation representation and the related operators, in which there was little or no hope to find order. In addition the abstract geometric framework is used to improve the design of crossover operators for well-known problems naturally connected with the permutation representation.

Item Type: Monograph (UNSPECIFIED)
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Faculty of Science and Health
Faculty of Science and Health > Computer Science and Electronic Engineering, School of
SWORD Depositor: Elements
Depositing User: Elements
Date Deposited: 09 Oct 2014 09:35
Last Modified: 23 Sep 2022 19:17

Actions (login required)

View Item View Item