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Abstract

Several theoretical analyses of the dynamics of particle swarms have been offered in the literature over

the last decade. Virtually all rely on substantial simplifications, often including the assumption that the

particles are deterministic. This has prevented the exact characterisation of the sampling distribution of

the PSO. In this paper we introduce a novel method that allows us to exactly determine all the charac-

teristics of a PSO’s sampling distribution and explain how it changes over any number of generations,

in the presence stochasticity. The only assumption we make is stagnation, i.e., we study the sampling

distribution produced by particles in search for a better personal best. We apply the analysis to the PSO

with inertia weight, but the analysis is also valid for the PSO with constriction and other forms of PSO.

1 Introduction

Let us consider the basic form of PSO with inertia weight shown in Algorithm 1. Despite its apparent
simplicity, this PSO has presented formidable challenges to those interested in swarm intelligence theory.
Firstly, the PSO is made up of a large number of interacting elements (the particles). Although the nature
of the elements and of the interactions is simple, understanding the dynamics of the whole is non-trivial.
Secondly, the particles are provided with memory and (albeit limited) intelligence, which mean that from
one iteration to the next a particle may be attracted towards a new yi or a new ŷ or both. Thirdly, forces
are stochastic. This prevents the use of standard mathematical tools used in the analysis of deterministic
dynamical systems. Fourthly, the behaviour of the PSO depends crucially on the structure of the fitness
function. However, PSOs have been used on such a wide range of fitness functions that it is difficult to
characterise a useful function space in which to study the role of the fitness function, and so it is hard to find
general results. Nonetheless some progress has been made, by considering simplifying assumptions such as
isolated single individuals, search stagnation (i.e., no improved solutions are found) and, crucially, absence

of randomness.
For example, Ozcan and Mohan [3] studied the behaviour of one particle, in isolation, in one dimension,

in the absence of stochasticity and during stagnation. Also, y and ŷ were assumed to coincide, as is the case
for the best particle in a neighbourhood. The work was extended in [4] where multiple multi-dimensional
particles were covered. Similar assumptions were used by Clerc and Kennedy’s model [5]: one particle, one
dimension, deterministic behaviour and stagnation. Under these conditions the swarm is a discrete-time
linear dynamical system. The dynamics of the state (position and velocity) of a particle can be determined
by finding the eigenvalues and eigenvectors of the state transition matrix. The model, therefore, predicts
that the particle will converge to equilibrium if the magnitude of the eigenvalues is smaller than 1.
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Algorithm 1 Classical PSO.

1: Initialize a population array of particles with random positions and velocities on D dimensions in the
problem space.

2: loop

3: For each particle, evaluate the desired optimization fitness function in D variables.
4: Compare particle’s fitness evaluation with its personal best fitness pbest i. If current value is better

than pbest i, then set pbest i equal to the current value, and yi equal to the current location xi in
D–dimensional space.

5: Identify the particle in the neighbourhood with the best success so far, and assign its position to the
variable ŷ.

6: Change the velocity and position of the particle according to the following equations:

vi
t+1 = wvi

t + φ1 ⊗ (yi − xi
t) + φ2 ⊗ (ŷ − xi

t) (1)

xi
t+1 = xi

t + vi
t+1 (2)

7: If a criterion is met, exit loop.
8: end loop

Note: φi represents a vector of random numbers uniformly distributed in [0, ci] and ⊗ is component-wise
multiplication.

A similar approach was used by van den Bergh [6] (see also [2]), who, again, modelled one particle, with
no randomness and during stagnation. As in previous work, van den Bergh provided an explicit solution
for the trajectory of the particle. He showed that the particle is attracted towards a fixed point. He also
argued that the analysis would be valid also in the presence of stochasticity. [6] also suggested the possibility
that particles may converge on a point that is neither the global optimum nor indeed a local optimum. This
implies that a PSO is not guaranteed to be an optimiser.

A simplified model of particle was also studied by Yasuda et al. [7]. The assumptions were: one one-
dimensional particle, stagnation and absence of stochasticity. Inertia was included in the model. Again an
eigenvalue analysis of the resulting dynamical system was performed with the aim of determining for what
parameter settings the system is stable and what classes of behaviours are possible for a particle. Conditions
for cyclic behaviour were analysed in detail.

Blackwell [20] investigated how the spatial extent of a particle swarm varies over time. A simplified swarm
model was adopted which is an extension of the one by Clerc and Kennedy where more than one particle
and more than one dimensions are allowed. This allowed particles to interact, in the sense that they could
change their personal best. Constriction was included but not stochasticity. [20] suggested that spatial extent
decreases exponentially with time.

Brandstätter and Baumgartner [10] drew an analogy between Clerc and Kennedy’s model [5] and a
damped mass-spring oscillator, making it possible to rewrite the model using the notions of damping factor
and natural vibrational frequency. Like the original model, this model assumes one particle, one dimension,
no randomness and stagnation.

Under the same assumptions as [5] and following a similar approach, Trelea [11] performed a lucid analysis
of a 4-parameter family of particle models and identified regions in the parameter space where the model
exhibits qualitatively different behaviours (either stability, harmonic oscillations or zigzagging behaviour).

The dynamical system approach proposed by Clerc and Kennedy has recently been extended by Campana
et al. [12, 13] who studied an extended PSO. Under the assumption that no randomness is present, the
resulting model is a discrete, linear and stationary dynamical system, for which [12, 13] formally expressed
the free and forced responses. However, since the forced response depends inextricably on the specific details
of the fitness function, they were able to study in detail only the free response.

To better understand the behaviour of the PSO during phases of stagnation, Clerc [16] analysed the
distribution of velocities of one particle controlled by the standard PSO update rule with inertia and stochastic

forces. In particular, he was able to show that a particle’s new velocity is the sum of three components: a
forward force, a backward force and noise. Clerc studied the distributions of these forces.

Kadirkamanathan et al. [17] were able to study the stability of particles in the presence of stochasticity

by using Lyapunov stability analysis. They considered the behaviour of a single particle – the swarm best –
with inertia and during stagnation. By representing the particle as a non-linear feedback system, they were
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able to apply a large body of knowledge from control theory. E.g., they found sufficient conditions on the
PSO parameters to guarantee convergence. Since Lyapunov theory is very conservative, the conditions found
are very restrictive, effectively forcing the PSO to have little oscillatory behaviour.

In summary, with very few exceptions all mathematical models of PSO behaviour have been obtained
under rather unrealistic assumptions. In particular, very little is known regarding how the sampling distribu-
tion of particles changes over time. In this paper we introduce a novel method, which allows one to exactly
determine the moments of a PSO’s sampling distribution and explain how they change over any number of
generations. The only assumption we make is stagnation, i.e., we study the sampling distribution produced
by particles in search for a better personal best.

To start with, we will apply the analysis to the PSO with inertia weight (Algorithm 1). However, we
should note that a PSO with constriction (see [5]) is algebraically equivalent to a PSO with inertia. Indeed,
in this PSO, particles are controlled by the equation

vi
t+1 = χ

(

vi
t + φ̃1 ⊗ (yi − xi

t) + φ̃2 ⊗ (ŷ − xi
t)
)

(3)

which can be transformed into Equation (1) via the mapping χ → w and χφ̃i → φi. So, the theory applies
to the PSO with constriction as well.

The paper is organised as follows. In Section 2 we derive recursions for the dynamics of first and second
order statistics of the sampling distribution of a PSO’s particle during stagnation. We study the fixed-points
for these quantities and the PSO’s stability in Section 3. In Section 4 we show the results of numerically
integrating the dynamic equations for the distribution’s statistics. We show how moments of higher order can
be studied in Section 6. We explicitly study the stability of order-3 and order-4 moments in Section 7. We
extend the model to include a variety of other forms of PSO, and we explicitly compare three of such forms
– a purely social PSO, the canonical PSO and a fully informed PSO [14, 15] – in Section 8. We show how we
can approximately reconstruct the sampling distribution of PSOs during stagnation from their moments in
Section 9. Finally, we provide some discussion, indications for future work and our conclusions in Section 10.

2 Dynamics of first and second moments of the PSO sampling

distribution

If the PSO is in a stagnation phase (i.e., there are no fitness improvements), each particle effectively behaves
independently. Also, each dimension is treated independently. So, we can analyse each particle’s behaviour
in isolation. Dropping the superscript i in Equations (1) and (2), we can rewrite them as a single (second
order) difference equations, as was done by other researchers (e.g., in [6]), by making use of the relation
vt = xt − xt−1. We obtain

xt+1 = xt(1 + w) − xt(φ1 + φ2) − wxt−1 + φ1y + φ2ŷ. (4)

2.1 Dynamics of E[xt]

Unlike previous research, we will not make the simplifying assumption that φ1 and φ2 are constant in
Equation (4). Instead, we treat them for what they are, i.e., uniformly distributed stochastic variables, and
we apply the expectation operator to both sides of the equation obtaining

E[xt+1] = E[xt](1 + w) − E[xt](E[φ1] + E[φ2]) − wE[xt−1] + E[φ1]y + E[φ2]ŷ (5)

where we performed the substitution E[xtφi] = E[xt]E[φi] because of the statistical independence between
φi and xt. Because φi is uniformly distributed in [0, ci] we have

E[φ1] =
c1

2
E[φ2] =

c2

2
(6)

and, so,

E[xt+1] = E[xt]

(

1 + w − c1 + c2

2

)

− wE[xt−1] +
c1

2
y +

c2

2
ŷ (7)

Let p be a fixed point for this equation. This requires

p =
c1y + c2ŷ

c1 + c2
(8)
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For the sake of simplicity let us now restrict our attention to the case c1 = c2 = c (we will remove this
restriction in Section 8). Furthermore, let us rename (1 + w) = w′. So

xt+1 = xtw
′ − xtφ1 − xtφ2 − wxt−1 + φ1y + φ2ŷ (9)

and

E[xt+1] = E[xt](w
′ − c) − wE[xt−1] + c

y + ŷ

2
(10)

Naturally, the stability of this equation is determined by the magnitude of the roots of the associated
characteristic polynomial, or of the eigenvalues of the associated first-order vectorial difference equation.
Figure 1 plots the magnitude of the largest eigenvalue of the equation for c = 0.01, 0.02, ..., 4.00 and
w = 0.01, 0.02, ..., 1.0. The straight line on the surface limits the stable region. We will say that a PSO
for which E[xt] has a stable fixed-point is order-1 stable.

Note that if we assumed that φ1 and φ2 are constant and equal to their maximum value, c, Equation (9)
would become

xt+1 = xt(w
′ − 2c) − wxt−1 + c(y + ŷ) (11)

This equation has been studied extensively in previous research and has exactly the same form as Equa-
tion (10), except that here we have 2c instead of c and the magnitude of the forcing term, c(y + ŷ), is
doubled. So, the stability of Equation (10) has effectively been studied in previous research (e.g., [11], [6]
and [5]; see also [2] for an extensive review). Indeed, the stable region depicted in Figure 1 is exactly the
same as reported in [11, Figure 1(a)], and the explicit dynamics of E[xt] is explicitly given in previous work
(e.g., [6]) if parameters are appropriately rescaled.

1.0
2.0

3.0
4.0

0.0

0.5

1.0

 0.1

 1

 10

Magnitude of largest eigenvalue

max(|eigenvalue|)= 1

c

w

Magnitude of largest eigenvalue

Figure 1: Stability analysis based on the difference equation for E[xt] as a function of the parameters w and
c. The straight line on the surface bounds the order-1 stability region.
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2.2 Dynamics of E[x2
t ], E[xtxt−1] and StdDev[xt]

Let us now compute x2
t+1. From Equation (9) we obtain:

x2
t+1 = (xtw

′ − xtφ1 − xtφ2 − wxt−1 + φ1y + φ2ŷ)2

= x2
t w

′2 − x2
t φ1w

′ − x2
t φ2w

′ − wxt−1xtw
′ + φ1yxtw

′

+ φ2ŷxtw
′ − x2

t w
′φ1 + x2

t φ
2
1 + x2

t φ2φ1 + wxt−1xtφ1

− φ2
1yxt − φ2ŷxtφ1 − x2

t w
′φ2 + x2

t φ1φ2 + x2
t φ

2
2

+ wxt−1xtφ2 − φ1yxtφ2 − φ2
2ŷxt − xtw

′wxt−1 (12)

+ xtφ1wxt−1 + xtφ2wxt−1 + w2x2
t−1 − φ1ywxt−1

− φ2ŷwxt−1 + xtw
′φ1y − xtφ

2
1y − xtφ2φ1y − wxt−1φ1y

+ φ2
1y

2 + φ2ŷyφ1 + xtw
′φ2ŷ − xtφ1φ2ŷ − xtφ

2
2ŷ

− wxt−1φ2ŷ + φ1yφ2ŷ + φ2
2ŷ

2

Again we apply the expectation operator to both sides of the equation, obtaining

E[x2
t+1]

= E[x2
t ]
(

w′2 − 4µw′ + 2ν + 2µ2
)

+ E[xt−1xt] (−2ww′ + 4wµ)

+ E[x2
t−1]

(

w2
)

(13)

+ E[xt]
(

2µyw′ + 2µŷw′ − 2νy − 2µ2ŷ − 2µ2y − 2νŷ
)

+ E[xt−1] (−2µyw − 2µŷw)

+ νy2 + 2µ2yŷ + νŷ2

where we set µ = E[φi] = c/2 and ν = E[φ2
i ] = c2/3, for brevity.

As we discussed in Section 2.1, we have a recursion (and in fact an explicit solution) for E[xt], so the
recursion in Equation (19) could be solved if we had a recursion for E[xtxt−1]. Let us obtain such a recursion.

We multiply both sides of Equation (9) by xt, obtaining

xt+1xt = x2
t w

′ − x2
t (φ1 + φ2) − wxtxt−1 + xtφ1y + xtφ2ŷ (14)

thereby

E[xt+1xt] = E[x2
t ](w

′ − c) − wE[xtxt−1] + E[xt]c
y + ŷ

2
. (15)

With this additional equation we are now in a position to determine the dynamics of E[x2
t ] and E[xtxt−1],

in addition to the dynamics of E[xt] we derived in Section 2.1.
The recursions for E[xt], E[x2

t ] and E[xtxt−1] form the following set of coupled difference equations















































E[xt+1] = E[xt](w
′ − c) − wE[xt−1] + cy+ŷ

2

E[x2
t+1] = E[x2

t ]
(

w′2 − 4µw′ + 2ν + 2µ2
)

+
E[xt−1xt] (−2ww′ + 4wµ) +
E[x2

t−1]
(

w2
)

+
2E[xt](y + ŷ)

(

µw′ − ν − µ2y
)

−
2wµE[xt−1](y + ŷ) + νy2 + 2µ2yŷ + νŷ2

E[xt+1xt] = E[x2
t ](w

′ − c) − wE[xtxt−1] + E[xt]c
y+ŷ

2

(16)

These can be integrated either symbolically or numerically. By using the relation

StdDev[xt] =

√

E[x2
t ] − (E[xt])

2
(17)

one can also derive the dynamics for the standard deviation of the sampling distribution of a PSO during
stagnation.
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2.3 Initial conditions

Let us evaluate the initial conditions for Equations (16). To do so, we must specify how we perform the
initialisation of the particle swarm. As an example, let us consider the following very typical conditions: a)
a particle’s initial position, x0, is chosen uniformly at random in a symmetric range [−Ω, Ω], b) a particle’s
initial velocity, v0, is also chosen uniformly at random in the same range.

In these conditions, clearly, E[x0] = 0 and E[v0] = 0. So, E[x1] = E[x0 + v1] = E[x0] + E[v1] = E[v1].
Let us compute E[v1]. We have that

E[v1] = E[wv0 + φ1(y − x0) + φ2(ŷ − x0)]

= wE[v0] + E[φ1](y − E[x0]) + E[φ2](ŷ − E[x0])

= c
y + ŷ

2
.

So, E[x1] = cy+ŷ

2 . We also have that E[x2
0] = E[v2

0 ] = Ω2

3 , while E[x1x0] = E[(x0 + v1)x0] = Ω2

3 + E[v1x0],
the second term of which is given by

E[v1x0] = E[wv0x0 + φ1(yx0 − x2
0) + φ2(ŷx0 − x2

0)]

= wE[v0]E[x0] + E[φ1](yE[x0] − E[x2
0]) + E[φ2](ŷE[x0] − E[x2

0])

= −cE[x2
0]

= −c
Ω2

3
,

resulting in E[x1x0] = (1 − c)Ω2

3 .
The only remaining initial condition we need is E[x2

1] = E[(x0 + v1)
2] = E[x2

0] + 2E[v1x0] + E[v2
1 ] =

(1− 2c)Ω2

3 + E[v2
1 ], which, after similar additional calculations leads to E[x2

1] = 7c2
−12c+6w2+6

18 Ω2 + c2 (y+ŷ)2

3 .

3 Order-1 and -2 stability analysis for particles with randomness

The system of equations (16) can be written in matrix notation as the extended first order system

z(t + 1) = Mz(t) + b (18)

where
z(t) =

(

E[xt] E[xt−1] E[x2
t ] E[xtxt−1] E[x2

t−1]
)T

and

M =

0

B

B

B

@

w′
− c −w 0 0 0
1 0 0 0 0

4p
`

µw′
− ν − µ2

´

−4µwp w′2
− 4µw′ + 2ν + 2µ2 2w (2µ − w′) w2

cp 0 w′
− c −w 0

0 0 1 0 0

1

C

C

C

A

b =

0

B

B

B

@

cp
0

νy2 + 2µ2yŷ + νŷ2

0
0

1

C

C

C

A

It is then trivial to verify under what conditions E[xt], E[x2
t ] and E[xtxt−1] (thereby also StdDev[xt])

will converge to stable fixed-points. We need to have that all eigenvalues of M must be within the unit circle,
i.e. Λm = maxi |λi| < 1. When this happens we will say that the PSO is order-2 stable.

The analysis of the stability of the system can be done easily. Any good computer algebra system can
provide the eigenvalues of M in symbolic form. Two of them are simply:

1 + w − c ±
√

(w − c)2 − 2c − 2w + 1

2

The expressions for remaining three, however, are too big to report in this paper. The analysis reveals that
none of the eigenvalues depends on either y or ŷ (nor p). That is, whether or not the system is order-2 stable
does not depend on where personal best and swarm best are located in the search space.

Naturally, when Λm < 1, in principle we could symbolically derive the fixed-point for the system, which
we will denote as z∗. This would be simply given by

z∗ = (I − M)−1b
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For simplicity, below we will find explicit expressions for some components of z∗ by other means.
When the system is order-2 stable, by the simple change of variables z̃(t) = z(t) − z∗ can then represent

the dynamics of the system via following linear homogeneous equation

z̃(t + 1) = M z̃(t)

which can trivially be integrated to obtain the explicit solution

z̃(t) = M tz̃(0).

Naturally, all these operations can be performed numerically once c and w are fixed. For example, Figure 2
shows a plot of Λm as a function of c and w for y = −1 and ŷ = 1. The plot also shows a line where Λm = 1.
As we explained earlier, although in order to compute M we have to specify y and ŷ as well as c and w, Λm

is not affected by what values y and ŷ have. So, one obtains exactly the same plot, for example, for y = 9
and ŷ = 10 (same distance as y = −1 and ŷ = 1, but different p) or y = −10 and ŷ = 10 (different distance,
but same p as for y = −1 and ŷ = 1).

Naturally, knowing the region where the system is order-2 stable allows one to perform an informed choice
of the parameters of the PSO. We should note that in this respect the region of order-1 stability provided by
the analysis of the E[xt] alone, as it has effectively been done in previous research, does not provide enough
information to guarantee convergence of the particles. It only guarantees convergence of the mean. Compare,
for example Figure 2 with Figure 1. Note how the actual region of order-2 stability shown in Figure 2 lays
completely inside the region of order-1 stability obtained by analysing E[xt] only (Figure 1). Interestingly,
by choosing parameters between the two curves, one obtains PSOs where E[xt] → p, but StdDev[xt] drifts
(perhaps slowly) to infinity, which might be a desirable property if one wants PSOs capable of escaping from
local optima. Note also, that choosing parameters c and w within the region of convergence does not imply
that StdDev[xt] → 0. In the following we clarify when this is the case.

Simple inspection of the equations in Equation (16), reveals that the dynamics of E[xt] is independent
from those of E[x2

t ] and E[xtxt−1], while the converse is not true. This means that E[x2
t ] and E[xtxt−1]

cannot be at a fixed-point unless also E[xt] is. Let us assume that (c, w) is in the region of convergence for
E[xt]. Then, for sufficiently large t, E[xt] becomes almost indistinguishable from the fixed-point p = y+ŷ

2 . In
these conditions, for the purpose of finding fixed-points for E[x2

t ] and E[xtxt−1], we can replace E[xt] and
E[xt−1] with p in the second and third equations of Equation (16), obtaining

E[x2
t+1] = E[x2

t ]
(

w′2 − 4µw′ + 2ν + 2µ2
)

+ E[xt−1xt] (−2ww′ + 4wµ) + (19)

E[x2
t−1]w

2 + 4p2
(

µ − ν − µ2
)

+ νy2 + 2µ2yŷ + νŷ2

E[xt+1xt] = E[x2
t ](w

′ − c) − wE[xtxt−1] + p2c (20)

We know that if (c, w) are additionally within the convergence region for the system, shown in Figure 2, then
also E[x2

t ] and E[xt−1xt] will tend to a fixed-point. Let us find such fixed points. To do so we will assume
we are at those fixed points, which we call px2 and pxx, respectively. We substitute these into Equations (19)
and (20) to obtain

px2 = px2

(

w′2 − 4µw′ + 2ν + 2µ2
)

+

pxx (−2ww′ + 4wµ) + (21)

px2w2 + 4p2
(

µ − ν − µ2
)

+ νy2 + 2µ2yŷ + νŷ2

pxx = px2(w′ − c) − wpxx + p2c (22)

The second equation allows us to compute

pxx = px2

(

1 − c

w′

)

+ p2 c

w′
(23)

Substitution of this in the first equation in (19) gives the following fixed-points:

px2 =
4p2

(

µ − ν − µ2
)

+ νy2 + 2µ2yŷ + νŷ2 + p2 c
w′

2w (2µ − w′)

∆
(24)
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Figure 2: Magnitude of the largest eigenvalue of M as a function of the parameters w and c when y = −1
and ŷ = 1. The curved line on the surface encloses the order-2 stable region.

8



pxx =
4p2

(

µ − ν − µ2
)

+ νy2 + 2µ2yŷ + νŷ2 + p2 c
w′

2w (2µ − w′)

∆

(

1 − c

w′

)

+ p2 c

w′
(25)

where

∆ = 1 −
[

(

w′2 − 4µw′ + 2ν + 2µ2
)

+
(

1 − c

w′

)

2w (2µ − w′) + w2
]

(26)

= c × c × (5w − 7) + 12(1 − w2)

6(w + 1)
. (27)

In order for a particle to converge, i.e., limt→∞ xt = p, it is not enough to have limt→∞ E[xt] = p: we
must also have limt→∞ StdDev[xt] = 0. This in turns requires limt→∞ E[x2

t ] = p2. That is, we require
px2 = p2. To see when this can be the case, let us analyse Equation (24) in more detail.

With little algebra one can see that

px2 =

(

∆ − 2(µ2 − ν)

∆

)

p2 +

(

4y(µ2 − ν)

∆

)

p +

(

2y2(ν − µ2)

∆

)

(28)

where we used the substitution ŷ = 2p − y.
So, in general px2 6= p2 except if y = p, i.e., ŷ = y. Then px2 = p2. So, except for the best particle in the

swarm, the standard deviation of the sampling distribution, StdDev[xt], does not converge to 0, but to

psd =

√

(−2(µ2 − ν)

∆

)

p2 +

(

4y(µ2 − ν)

∆

)

p +

(

2y2(ν − µ2)

∆

)

=

√

2
(ν − µ2)

∆
(p2 − 2yp + y2)

=

√

2
(ν − µ2)

∆
(p − y)2

=

√

2
(ν − µ2)

∆
· |p − y|

which we can finally rewrite as

psd =
1

2

√

2
(ν − µ2)

∆
· |ŷ − y| (29)

=
1

2

√

c × (w + 1)

c × (5w − 7) − 12w2 + 12
· |ŷ − y| (30)

Hence the search continues unless y = ŷ.
It is interesting to note that the observation that led to the definition of the bare-bones PSO [19] — that the

standard deviation of the search distribution is proportional to |ŷ − y| — was fundamentally correct. There
is, however, a multiplicative factor, 1

2

√

2(ν − µ2)/∆, in Equation (29) which depends on the parameters c
and w and that was not previously detected. This factor may explain part of the differences in performance
observed when comparing the bare-bones PSO and the classical algorithm. The factor is 1 only when

c =
48(w2 − 1)

19w − 29

As one can see from Figure 3, which graphs all (c, w) pairs for which psd = |ŷ − y|, the typical parameter
values used in the PSO literature, c = 1.49618 and w = 0.7298, are not one such pair. More precisely, for
these parameter values psd ≈ 1.0428× |ŷ − y|.

By setting ∆ = 0 and solving for c one obtains

c =
12(w2 − 1)

5w − 7

which represents the line where the magnitude of the largest eigenvalue of M is 1 (also shown as contour in
Figure 2). This is also plotted in Figure 3. As one can see, in this case the pair (c, w) = (1.49618, 0.7298) lays
below the curve, indicating that the variance of the sampling distribution of a PSO with standard parameters
has a fixed-point, i.e., the PSO is order-2 stable.
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4 Numerical integration of order-1 and -2 moments

In this section we report the results of numerical integration of the dynamic equations for E[xt], E[x2
t ] and

E[xtxt−1] (Equation (16)).
We start (Figure 4) by considering the case c = 1.49618 and w = 0.7298 which corresponds to the

parameter values recommended in [5] for the PSO with constriction. Note how, while E[xt] converges to p = 3
within 30 generations, StdDev[xt] converges onto a value of just over 2.0 (more precisely, 1.0428× |ŷ − y| =
2.0856) within about 70 generations. The picture is very different, however, if y = ŷ, as shown in Figure 5.
In this case, E[x2

t ] and E[xtxt−1] converge to p2. As a result, StdDev[xt] decreases to zero. The decrease is
exponential, corroborating Blackwell’s analysis of how the spatial extent of a particle swarm varies over time
[20] (see Section 1).

Examples of configurations where the mean converges to its fixed-point while StdDev[xt] does not converge
are shown in Figure 6. Note that this is not necessarily an undesirable behaviour. In some situations having
a sampling distribution that progressively widens if improvements cannot be found might be exactly what
one needs. What is important is to be able to control whether or not there is growth of StdDev[xt] and a
what rate. This is exactly what our model allows one to do.

By an appropriate setting of parameters we can even achieve a self-limiting growth in StdDev[xt], and,
furthermore, we can fix its asymptote by design. A way to achieve this is to note that if c = w′ = 1 + w, the
fixed-point for E[xtxt−1] in Equation (23) simplifies to pxx = p2. Then we have

px2 = px2

(

w′2 − 4µw′ + 2ν + 2µ2
)

+ p2 (−2ww′ + 4wµ) + (31)

px2w2 + 4p2
(

µ − ν − µ2
)

+ νy2 + 2µ2yŷ + νŷ2

which can be solved for px2 , obtaining, after simplification, the following fixed-point:

px2 =
(w + 1)2(2p − y)2/3 + 0.5y(2p− y)(w + 1)2 + y2(w + 1)2/3 + 2(w − 7

6 (w + 1)2 + 1)p2

− 1
6 (w + 1)2 − w2 + 1

(32)

With this in hand one can then compute psd =
√

px2 − p2. For example, for w = 0.5, y = −3 and ŷ = 9,
we obtain px2 = 45 and psd =

√
45− 9 = 6, while for w = 0.7 one obtains px2 = 621 and psd =

√
621− 9 =

24.739. As one can see in Figure 7, there are indeed the asymptotes to which the system converges.
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Figure 4: Numerical integration of Equations (16) for c = 1.49618, w = 0.7298, y = 2, ŷ = 4 and Ω = 5.
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5 Empirical validation of order-1 and -2 equations

A key question one needs to answer for any theoretical model, including the one proposed in this paper, is
“how accurate is the model?”. To answer this question we compared the behaviour of the model with the
behaviour observed in actual runs.

Note that Equation (4) defines a chain of stochastic variables, {xt}∞t=0, where each variable depends on
the previous ones and on the stochastic variables φi. For example

x2 = x1(1 + w − φ
(1)
1 − φ

(1)
2 ) − wx0 + φ

(1)
1 y + φ

(1)
2 ŷ

and

x3 = x2(1 + w − φ
(2)
1 − φ

(2)
2 ) − wx1 + φ

(2)
1 y + φ

(2)
2 ŷ

=
(

x1(1 + w − φ
(1)
1 − φ

(1)
2 ) − wx0 + φ

(1)
1 y + φ

(1)
2 ŷ

)

(1 + w − φ
(2)
1 − φ

(2)
2 ) − wx1 + φ

(2)
1 y + φ

(2)
2 ŷ

where φ
(t)
i are stochastic variables uniformly distributed in the ranges [0, c] (we used the superscripts (1) and

(2) to distinguish them in different generations). The number of variables involved in the determination of
each new variable grows rapidly with t. The situation is even worse for the chains of variables {x2

t }∞t=0 and
{xtxt−1}∞t=1 and Equations (12) and (14).

Naturally, with so many stochastic variables determining the future of the sampling distribution we
should expect to need large numbers of runs to corroborate our results. We should also expect that as t
grows, eventually the experimental results will become increasingly affected by stochastic noise, making the
comparison between model and real system harder.

To limit these problems, we present statistics based on large numbers of independent runs of one one-
dimensional particle in stagnation. Because no fitness evaluation is needed, these can be done relatively
quickly on an ordinary computer. Figure 9(top) shows a comparison between the values of µt = E[xt]
computed using our model and the average positions of the particle recorded in one billion (1,000,000,000)
real runs in the first 30 iterations for the case c = 1.49618, w = 0.7298, y = 0, ŷ = 1 and Ω = 5. As one
can see there is a perfect match between the model’s predictions and the stagnation behaviour of particles
in real runs. As shown in Figure 9(bottom) the model also predicts exactly (within experimental errors) the
behaviour of the variance, σ2

t = E[(xt − µt)
2], of the sampling distribution.

The oscillations in the mean and the progressive reduction of the variance towards its (non-zero) fixed-
point present is a PSO predicted by our model when c = 1.49618 and w = 0.7298 are also clearly visible
in histograms of xt observed in actual runs. Figure 8, for example, shows the histogram of the sampling
distribution obtained in 1,000,000 independent runs for the case c = 1.49618, w = 0.7298, y = 0, ŷ = 10 and
Ω = 5.

Perfect matches between model and real runs are obtained for all choices of parameters. This further
confirms that our model is an exact characterisation of the behaviour of the sampling distribution of a
PSO, with all its stochasticity, during stagnation. Naturally, the first and second order moments of such a
distribution do not fully describe the distribution (there are infinitely many distributions with a given mean
and variance). However, as we will discuss in the next section, the method is general and can, in principle,
be applied to compute all the moments of the distribution.

6 Higher-order moments

In the previous sections we obtained and used recursions which describe the dynamics of first and second
order moments of the sampling distribution of a standard PSO during stagnation. One may then wonder
whether it would be possible to follow a similar approach to study the dynamics of higher-order moments.

The fundamental question in: what quantities would we have to deal with if we took higher powers of
both sides of Equation (4) as we did to derive Equation (12)? Generally, the r.h.s. we would be a sum of
terms of the form

a0 xa1

t xa2

t−1 wa3 φa4

1 φa5

2 ya6 ŷa7 (33)

where ak are suitable constants. Naturally, taking powers of Equation (4) and then multiplying both sides
by some power of xt, as we did to derive Equation (14), would also lead to equations involving terms such as
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those in Equation (33). That is, for any choice of b1 ∈ N and b2 ∈ N,

xb1
t+1x

b2
t =

∑

i

a0i x
a1i
t x

a2i

t−1 wa3i φ
a4i

1 φ
a5i

2 ya6i ŷa7i (34)

where aki are suitable constants. If we then take expectations for both sides we obtain

E[xb1
t+1x

b2
t ] =

∑

i

a0i wa3i ya6i ŷa7i E[φ
a4i
1 ] E[φ

a5i
2 ] E[x

a1i
t x

a2i
t−1] (35)

where we used the independence of φ1, φ2, xtxt−1 and, of course, their powers. Because φj is uniformly
distributed in the range [0, c], it is easy to verify that

E[φn
j ] =

cn

n + 1
. (36)

So,

E[xb1
t+1x

b2
t ] =

∑

i

ωi E[x
a1i
t x

a2i
t−1] (37)

where

ωi =

(

a0i wa3i ca4i
+a5i ya6i ŷa7i

(1 + a4i)(1 + a5i)

)

. (38)

It is important to note here that, because Equation (4) is linear in xt and xt−1, all the terms on the r.h.s. of
Equations (34) and (37) respect the relation a1i + a2i ≤ b1 + b2. This implies that it is possible to construct

recursions for moments of arbitrary order.
For example, if one wanted to push the analysis up to order 3, one would need to instantiate Equation (37)

for E[x3
t+1], E[x2

t+1xt], E[xt+1x
2
t ] and add the resulting equations to the three in Equation (16). If one wanted

to go to order four, an additional set of four equations (for E[x4
t+1], E[x3

t+1xt], E[x2
t+1x

2
t ] and E[xt+1x

3
t ])

would be needed, bringing the total to 10.
More generally, in order to compute statistics of order n one needs to construct and iterate

Q(n) =
n × (n + 1)

2
(39)
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second order difference equations. Since, after expansion, the r.h.s. of Equation (4) contains 7 atomic terms
of the form in Equation (33), the r.h.s. of Equation (37) contains 7b1 terms.1 So, the total number of terms
one needs to compute to construct the equations for order-n statistics is: 7 (for the order 1 equations) plus
(72 + 7) (for the order 2 equations) plus (73 + 72 + 7) (for the order 3 equations) etc., which gives us a total
of

T (n) =

n
∑

i=1

(n − i + 1) × 7i

terms. E.g., T (1) = 7, T (2) = 63, T (3) = 462, T (4) = 3262 and T (5) = 22869. Note that T (n) grows
exponentially approximately as 1.36×7n. So, although the number of equations one needs to deal with grows
quadratically, the computational effort required to instantiate them is exponential. The growth in number of
terms can be reduced if one makes explicit use of w′ (i.e., by adding the factor w′a8 in Equation (33). Then
T (n) = O(6n). Either way, manually deriving equations for moments of order 3 is already vary laborious.
The process, however, is clearly mechanisable. This can be using computer algebra systems, or by explicitly
representing and manipulating the ωi’s for each equation (this is what we did). As a result of mechanisation,
computing the equations for up to order 6 or 7 is feasible with an ordinary personal computer.

Some of the ωi’s in Equation (37) present the same pattern of exponents for w, c, y and ŷ, so terms can
be collected leading to more compact equations (for example, compare Equations (12) and (13)). Also, given
their size, one will normally want to study (e.g., integrate) Equations (37) numerically. In this case w, c, y
and ŷ are all numerical parameters. So, the ωi’s become constants and, after collecting terms, each equation
contains at most Q(n) terms, which, as we know, is quadratic in the order n. As a result, although the
complexity of the construction of the motion equations for the moments is exponential in the order of the
moments, their numerical integration is only of order O(n4).

Naturally, the system of Q(n) second order difference equations necessary to predict the dynamics of
moments of order 1 to n can be turned into a system of order 1 of the form in Equation (18), via the choice

z(t) =
(

E[xt] E[xt−1] E[x2
t ] E[xtxt−1] E[x2

t−1] E[x3
t ] E[x2

t xt−1] E[xtx
2
t−1] E[x3

t−1] . . . E[xn
t−1]

)T

This effectively means adding artificial update equations of the form E[xk
t ] = E[xk

t ] for k = 1, · · · , n, bringing
the total to Q′(n) = Q(n)+n. The transition matrix for the system is therefore of size Q′(n)×Q′(n). We will
denote this with Mn. For example, for n = 4, which would allow one to study the mean, variance, skewness
and kurtosis of the sampling distribution as a function of t, M4 is merely a 14 × 14 matrix.

Interestingly, Q′(n) grows so slowly that one can perform an eigenvalue analysis for any Mn that one is
able to compute. That is, the expensive part of the process is the construction of Mn. Once this is done,
iterating the system, establishing its stability or finding its fixed-points is a trivial matter.

In the next section we provide results for statistics of order 3 and 4, i.e., n = 4, a value of n for which
computing Mn takes only a few seconds. However, before we do this, we need to consider the initial conditions
for the system. In particular we need to compute E[xk

0 ] and E[xk
1xl

0] for generic k > 0 and l ≥ 0.
Under the assumption that a particle’s initial position, x0, is chosen uniformly at random in a symmetric

range [−Ω, Ω], we have

E[xk
0 ] =

{

0 if k is odd,
Ωk

k+1 otherwise.
(40)

In order to compute E[xk
1xl

0] we need to consider the equation

x1 = x0 + wv0 − x0(φ1 + φ2) + φ1y + φ2ŷ (41)

where a particle’s initial velocity, v0, is a stochastic variable uniformly distributed the range [−Ωv, Ωv] (often
Ωv = Ω). By taking the k-th power of both sides of the equation, multiplying by xl

0, and taking expectations,
as we did to construct Equation (37), one obtains the desired expressions for E[xk

1xl
0]. Like for Equation (37),

these expressions contain a number of terms that grows exponentially for with n. However, this process, too,
can be trivially mechanised.

1The exponent b2 does not influence the number of terms. This is because the recursion for E[xb1
t+1

xb2
t

] in obtained as follows:

a) we compute xb1

t+1
, which is given by an expression containing 7b1 terms; b) we multiply each term by xb2

t
, which changes the

exponents a1i but does not alter the number of terms; c) we apply the expectation operator, which again does not modify the
number of terms.
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Figure 10: Magnitude of the largest eigenvalue of M4 as a function of the parameters w and c. The curved
line on the surface encloses the order-4 stable region.

7 Skewness and kurtosis of the PSO’s sampling distribution

We constructed the recursions for moments of up to order 4 as described in the previous section for the
canonical PSO. In principle, we could do for these exactly the same type of analysis we did for the mean and
standard deviation of the sampling distribution.

For example, Figure 10 shows the magnitude of the largest eigenvalue, Λm, of M4 as a function of the
parameters w and c. The system is order-4 stable, i.e., mean, variance, skewness and kurtosis have a stable
fixed point, whenever Λm < 1, i.e., within the curved region enclosed by the contour shown in the figure.
Note how this contour is qualitatively similar to that in Figures 2 and 3, but it encloses a smaller region.

For easier comparison we show the lines where Λm = 1 for M1, M2, M3 and M4 in Figure 11 (ordered from
top to bottom, respectively). The regions of order-1, -2, -3 and -4 stability are nested. Note how the Λm = 1
lines for M2 and M3 coincide for many values of w. Note also that the standard setting, c = 1.49618 and
w = 0.7298, lays within the narrow region of order-3 stability. This implies that while mean, variance and
skewness of the standard PSO tend to a fixed-point, kurtosis is unstable and will tend to grow indefinitely.
Interestingly, a growth in the kurtosis of samples was observed by Kennedy[19], although this was effectively
computed under the assumption that the sampling distribution is time-independent. So, the values of xt

recorded in a run at t grows were treated as different samples from the same distribution, while we know this
may be incorrect.

In order to corroborate these findings, one needs to cover the (c, w) plane with a regular lattice of points.
We used a grid side of 0.04, giving us 25 divisions for the w axis and 100 divisions for the c axis, for a total
of 25,000 points. For each such point one then needs to perform a large set of runs of the PSO, computing
mean, variance, skewness and kurtosis at each time step. We used 1,000,000 runs for each (w, c) pair. Runs
lasted 100 iterations. Finally one needs to analyse the dynamics of each of these statistics to determine
whether the system is stable. This last step is particularly difficult since no empirical criterion can really do
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Figure 11: Plot of the regions of order-1, -2, -3 and -4 stability for the canonical PSO.

what eigenvalue analysis does. However, it is clear that, after some transient, moments that have fixed points
will tend to have less energy in their power spectrum than those that are unstable (excluding, of course, the
continuous component of the spectrum). So, we computed the power spectrum for each moment and each
(c, w) and then applied an empirically chosen threshold to classify the dynamics. The result of this process
is shown in Figure 12 (B-splines were used to smooth the contours of the regions of stability). As one can see
there is a very close resemblance between these regions and those shown in Figure 11 except for the case of
the mean where ample oscillations were often still present after 100 iterations for values of c > 2 leading to
large energy components being still present in the power spectrum with consequent misclassification. Much
longer runs would be required to more closely match the profile of the order-1 stability region.

That the predictions of the model are exact is also confirmed by the comparison of the dynamics of
predicted and recorded higher order moments. Figure 13(top) shows a comparison between the skewness
E[(xt − µt)

3]/σ3
t computed using our model and the average positions of the particle recorded in one billion

(1,000,000,000) real runs in the first 30 iterations for the case c = 1.49618, w = 0.7298, y = 0, ŷ = 1
and Ω = 5. As one can see there is a very good match between the model’s predictions and the stagnation
behaviour of particles in real runs. Only after about 20-25 generations the sampling errors start accumulating
enough to show significant differences. As shown in Figure 13(bottom) the model also predicts very well
the behaviour of the (excess) kurtosis E[(xt − µt)

4]/σ2
t − 3 of the sampling distribution.2 Note that for

c = 1.49618 and w = 0.7298 the system is order-3 stable, and so, although the oscillations of the skewness
shown in Figure 13(top) appear to grow bigger and bigger, suggesting instability, this is actually only a
transient effect, as shown in Figure 14 where we integrate the equations over 200 generations instead of 30.

8 Comparison between different PSOs

In the previous sections we studied the canonical PSO with the restriction that the acceleration coefficients,
c1 and c2, were identical: c1 = c2 = c. One may wonder, however, whether allowing such coefficients to

2Following standard practice, in this paper whenever we use the term “kurtosis” we will refer to the excess kurtosis E[(xt −

µt)4]/σ2
t
− 3. The excess kurtosis of the normal distribution to 0.
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Figure 12: Plot of the regions of order-1, -2, -3 and -4 stability for the canonical PSO estimated in real runs.

differ would produce qualitatively very different dynamics. For example, what would happen if we set one of
the ci to zero as in a purely cognitive or purely social PSO model? This effectively would reduce to one the
sources of random influences on a particle’s dynamics. Conversely, one might wander what would happen
if we increased such sources of influence, as is done, for example, in the Fully Informed Particle Swarm
(FIPS) [14, 15].

To answer these (and other) important questions on the sampling distribution of different PSO models
we adopt a FIPS-like general class of PSOs described by the following difference equation

xt+1 = xt + wvt +

m
∑

i=1

φi(ŷi − xt) (42)

where the φi’s are stochastic variables uniformly distributed in the range [0, ci], ci being constants, and the
ŷi’s are the personal best positions of neighbours of the particle (the particle itself may be included in its
own neighbourhood). Naturally, this equation can be converted into the following

xt+1 = xt(1 + w) − wxt−1 −
m
∑

i=1

φixt +
∑

i

φiŷi (43)

which is a generalisation of Equation (4). All of the steps we performed in Section 6 can be repeated for
Equation (43). These lead to recursion of the form in Equation (37) with the only difference that the
coefficients ωi take the more general form

ωi =

(

a0i wawi c
ac1i
1 · · · cacmi

m ŷ
ay1i
1 · · · ŷaymi

m
∏m

j=1(1 + acji)

)

(44)

where a0i , awi , ac1i , · · · , acmi , ay1i , · · · , aymi are appropriate constants.
Because Equation (43) contains 3+2×m terms, the complexity of the expansion now grows exponentially

as O ((3 + 2 × m)n), where n is the order of the moments we are interested in. So, the larger m, the heavier
the computation load required to compute Mn. Once the transition matrices Mn are computed, however,
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Figure 14: Predicted dynamics of the skewness of the PSO sampling distribution over 200 generations for
c = 1.49618, w = 0.7298, y = 0, ŷ = 1 and Ω = 5.

they are exactly of the same size for all PSO models within the class defined by Equation (42). Initial
conditions can be found following the approach described in Section 6. Calculations are expensive but can
be mechanised. We did this for the examples described below.

An extensive comparison of different PSOs is beyond the scope of this paper. However, as an example of
the kind of comparisons one can make using our approach, we considered the PSOs in Equation (42) with
N = 3. Within this class of PSOs we considered three variants:

a) a purely social variant of PSO, which we will call social PSO for brevity, where c1 > 0 and c2 = c3 = 0
(due to symmetries, the behaviour of a purely cognitive PSO where c2 > 0 and c1 = c3 = 0 is effectively
identical to that of this social PSO);

b) the canonical PSO we have studied so far in the paper, which is obtained by setting c1 = c2 > 0 and
c3 = 0; and

c) the simplest version of FIPS with a neighbourhood of three individuals, e.g., obtained using an lbest

topology and an interaction radius of 1, where c1 = c2 = c3 > 0. We will call this version FIPS3.

In order to perform a fair comparison of the stability properties of these PSO variants, we study them in
conditions where the sum of the amplitudes of the random components, φi, is identical across models. That
is, we set c =

∑

i ci, we compare models with the same c value. Again we analyse eigenvalues. Figures 15–
18 show the lines in the (w, c) plane where the magnitude of the largest eigenvalue of Mn, Λm, is 1 for
n = 1, 2, 3, 4 and for the three PSO variants mentioned above. Let us analyse these figures in detail.

Firstly, we should note that the regions of order-1 stability for the three models are identical. This is
because the dynamics of the mean of the three models is governed by equations of the same form, namely:

E[xt+1] = E[xt]
(

1 + w − c

2

)

− wE[xt−1] + constant, (45)

where the constant term may differ in different PSO variants.3 Note also that the rightmost point in each
plot is an artifact due to the fact that, at w = 1, Λm = 1 for M1 irrespective of the value of c.

The regions where the variance is stable for the three models, instead, are different, with FIPS3 having
the largest region of order-2 stability, followed by the canonical PSO, and, finally, by the social PSO. Exactly

3This is irrelevant for the stability of the system, since stability is determined by the homogeneous part of the equation.
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Figure 15: Lines below which the mean of the sampling distributions for a social PSO, a canonical PSO and
FIPS with a neighbourhood of three individuals have a fixed point (order-1 stability). Note: the three lines
coincide.

the same happens with skewness (Figure 17) and kurtosis (Figure 18), with the order-3 stability region largely
coinciding with the order-2 ones also for FIPS3 and the social PSO. These results are counter intuitive. One
would expect that the more sources of randomness, the φi’s, there are, the more a PSO should be unstable.
However, the exact opposite happens. The social PSO, where the only influence is φ1, is the least stable of
all models, while FIPS3, which has three sources of randomness, is the most stable. What are the reasons
for this behaviour?

We can understand this by rewriting Equation (43) as follows

xt+1 = xt(1 + w) − wxt−1 − xtΦm + Ψm (46)

where Φm =
∑m

i=1 φi and Ψm =
∑

i φiŷi. Both Φm and Ψm are the sum of independent and uniformly
distributed variables: the variables φi in the case of Φm and the variables ŷiφi in the case of Ψm.

We know that
∑

i ci = c. To simplify our treatment, let us further assume that the φi’s are i.i.d., i.e.,
that all ci are identical, and, so, ci = c/m. We can then apply the central limit theorem to Φm. This predicts
that for sufficiently large m, the distribution of Φm is approximately Gaussian with mean

∑

i ci/2 = c/2 and
variance

∑

i(c
2
i /3− (ci/2)2) =

∑

i c2
i /12 = c2/(12m). So, the larger m, the smaller the variance of Φm, and,

consequently the less the stochasticity of Equation (46).
In the case of the stochastic variable Ψm, the quantities φiŷi are not identically distributed even if all ci

are identical. This is because, in principle, each ŷi may be different. This prevents the use of the standard
central limit theorem. We can, however, apply Lyapunov’s central limit theorem to Ψm. The conditions for
its application are:

1. the variables φiŷi must have finite mean, which is the case since µi = E[φiŷi] = ciŷi/2 = cŷi/(2m),

2. the φiŷi must have finite variance, which, again, is the case since σ2
i = E[(φiŷi − µi))

2] = (ciŷi)
2/12 =

(cŷi/m)2/12,

3. φiŷi must have finite third central moment, which is satisfied since r3
i = E[(φiŷi − µi))

3] = 0, and,
finally,

4. the Lyapunov condition, limm→∞

(
Pm

i=1
r3

i )1/3

(
P

m
i=1

σ2

i )1/2
= 0, must be satisfied, which, again, is the case since all

r3
i = 0.
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Figure 16: Lines below which the variance of the sampling distributions for a social PSO (bottom), a canonical
PSO (middle) and FIPS with a neighbourhood of three individuals (top) have a fixed point (order-2 stability).
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Figure 17: Lines below which a social PSO, a canonical PSO and FIPS3 are order-3 stable (from bottom to
top, respectively).
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Figure 18: Lines below which the kurtosis of the sampling distributions for a social PSO (bottom), a canonical
PSO (middle) and FIPS3 (top) have a fixed point (order-4 stability).

Then for sufficiently large m, also the distribution of Ψm is approximately Gaussian with mean
∑

i cŷi/(2m) =
c
2 ×

(
P

i ŷi

m

)

and variance c2

12 m
×
(

P

i ŷ2

i

m

)

. Note that
P

i ŷi

m
and

P

i ŷ2

i

m
are the mean ŷi and the mean ŷ2

i ,

respectively. So, these are finite quantities if, as is normally the case, all ŷi are finite.4 So, like for Φm, the
larger m, the smaller the variance of Ψm, and, consequently the less the stochasticity of Equation (46).

Effectively the larger m the more Φm and Ψm become deterministic and approach constant values. This
explains why adding more and more sources of randomness – while keeping c constant – produces progressively
more and more stable PSOs.

9 The density function of the PSO sampling distribution

The technique described in this paper, in principle, would allow one to determine all the moments of the
sampling distribution of the PSO at all times. The question then is, could we derive the PSO sampling
distribution itself? The answer is of course in the positive since knowing all the moments of a distribution
implies knowing its moment generating function. This, in turn, allows one to obtain the density function of
the distribution via inverse Laplace transform.

In practice, however, it is impossible to compute all the moments of the PSO sampling distribution. This
is for two reasons. Firstly, there are infinitely many such moments. Secondly, as we have seen in the previous
sections, the cost of computing moments is exponential in the order of the moments. The next question is
then, to what extent can we still reconstruct the PSO’s density function from a finite number of moments?
This is an instance of the well-known truncated moment problem, a difficult, inverse ill-posed problem for
which many approaches have been proposed. Here we consider only one such approach.

A particularly simple idea is to consider a family of density functions f(x; λ1, λ2, ...) with parameters λ1,
λ2, etc. with sufficient expressive power to represent distributions with widely different shapes, with more
or less asymmetries, with tails of different characteristics, etc.. Then one can use optimisation techniques
to identify the parameters of the distribution f which minimise the difference between the moments of f
and the moments of the PSO’s sampling distribution. This is called the moment matching method. Once
the parameters λ1, λ2, etc., are identified, f can be used as an approximation of the true PSO sampling
distribution. This approach to reconstructing probability distributions from moments was proposed [23] (see

4PSO search is normally confined to a pre-fixed, finite region of R
N , and so, all ŷi must be finite.
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Figure 19: Examples of GLD probability density functions.

also [22, 21]) where a Generalised Lambda Distribution (GLD) was used. We adopt this same approach here.
GLD is a four-parameter distribution defined via its quantile function:

Q(u) = λ1 +
1

λ2

(

uλ3 − 1

λ3
+

1 − (1 − u)λ4

λ4

)

(47)

where u ∈ [0, 1]. Its density function can be obtained via the relation

f(x; λ1, λ2, λ3, λ4) =

(

dQ(u)

du

)

−1

=
λ2

u(λ3−1) + (1 − u)(λ4−1)
. (48)

where u = Q−1(x).
The GLD is enormously flexible in terms of the shape of the distribution. For example, as shown in Fig-

ure 19, the uniform, Gaussian, exponential and Gamma distribution are all special cases of GLD. Effectively
λ1 is determines the location of the distribution, λ2 determines its scale, while λ3 and λ4 determine other
shape characteristics. In particular, only if λ3 = λ4 the distribution is symmetric.

Because GLD has 4 parameters, all we need are four moments – the mean, variance, skewness and kurtosis
– of the PSO’s sampling distribution in order to identify such parameters with the moment-matching method
described above.

As an illustration, we apply this technique to reconstruct the sampling distribution during stagnation of
a canonical PSO with parameters c = 1.49618, w = 0.7298, y = 0, ŷ = 10 and Ω = 5 (the same parameters
as in Figure 8). In Figure 20 we show snapshots at times t = 0, 2, 4, 12 and 24 of the theoretical sampling
distribution together with estimates of the distribution based on 1,000,000 actual runs. In all cases the match
between the moments of the GLD and those of the PSO sampling distribution was exact (within experimental
errors). Also, there is considerable agreement between the theoretical lines and histograms obtained in real
runs. Note how widely the mean of the density function oscillates in the first few generations. Also note the
asymmetry in the distributions due to the oscillations of the skewness.

10 Discussion, future work and conclusions

Several theoretical analyses of the dynamics of particle swarms have been offered in the literature over the last
decade. These have been very illuminating. However, virtually all have relied on substantial simplifications,
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Figure 20: Estimates of the sampling distribution of a canonical PSO with parameters c = 1.49618, w =
0.7298, y = 0, ŷ = 10 and Ω = 5 during stagnation, reconstructed via GLD best fitting vs. histograms over
1,000,000 real runs. Snapshots at times t = 0, 2, 4, 12 and 24 are shown. For each theoretical sampling
distribution we report the parameters of the corresponding GLD rounded to the second decimal figure.

and on the assumption that the particles are deterministic. Naturally, these simplifications make it impossible
to derive an exact characterisation of the sampling distribution of the PSO. This distribution has, therefore,
remained, so far, the “holy grail” of PSO research.

By using of surprisingly simple techniques, in this paper we started by exactly determining perhaps the
most important characteristic of a PSO’s sampling distribution, its variance, and we have been able to explain
how it changes change over any number of generations. The only assumption we made is stagnation, so our
characterisation is valid for as long as a particle searches for a better personal best.

Knowing the dynamics of the variance of the PSO’s sampling distribution and being able to control it,
as, for example, we illustrated in Section 4, is very important because it allows one to understand the search
behaviour of the PSO and adapt it to a problem at hand.

The dynamics of the variance of the PSO’s sampling distribution is also important from a theoretical
standpoint. In order for a particle to converge, it is not enough to require limt→∞ E[xt] = p: we must
also have limt→∞ StdDev[xt] = 0. In the absence of accurate information on StdDev[xt], previous research
has effectively assumed that limt→∞ E[xt] = p would eventually drive StdDev[xt] to zero. This assumption
has, for example, been used in the proof provided in [6] and [2] that the PSO is not guaranteed to be an
optimiser. However, as we have shown in this work, limt→∞ StdDev[xt] = 0 only if y = ŷ, and so whether
or not the PSO is an optimiser is still effectively a conjecture. How could our results help obtain a formal
proof of convergence? The stagnation assumption essentially removes the dependence on the details of the
fitness function. Our results can be used to prove convergence when stagnation has occurred. So, a proof
of convergence for the PSO would require finding under which conditions and for what fitness functions the
system stagnates. We will pursue this line of attack in future research.

After applying our analysis to first and second order statistics of the sampling distribution, we then moved
on to study higher order statistics (Sections 5–7). In particular we analysed in detail the skewness and kurtosis
of the distribution. Because of the complexity of the calculations involved, this required mechanising the
derivation of the recursions for these moments.

We applied the analysis to the PSO with inertia weight, but, as we explained in Section 1, the analysis is
also valid for the PSO with constriction via a simple parameter mapping.

We also generalised our model so as to include FIPS. This made it possible to explicitly compare the
stability of different forms of PSO, leading to a deeper understanding of their properties. In particular, we
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showed that, while FIPS and standard forms of PSO present exactly the same order-1 stability, in FIPS
higher order moments are more stable than in the other PSOs, and we were able to explain why this is the
case using two forms of central limit theorem (Section 8).

Finally, with all these tools in hand, we went in search for the “holy grail” – the actual PSO sampling
density function. We treated the problem as an ill-posed inverse problem, which we regularised thanks to the
use (and best fit) of a family of distributions – the Generalised Lambda Distribution (GLD). All empirical
evidence we have suggests that this distribution approximates very closely the sampling behaviour of PSOs.
So, much so that one would be tempted to try to prove that, indeed, the PSO’s sampling distribution is
always and exactly a GLD, albeit, naturally, with parameters that are functions of time, i.e., λi = λi(t). We
will explore this issue in future research.

Whether or not GLD is the exact PSO sampling distribution or just a very good approximation, if one
could determine (again either exactly or approximately) how the λi(t)’s are affected by the parameters c,
w, y and ŷ and by the initial conditions x0 and v0, it would then be possible to accurately simulate the
behaviour of the PSO by sampling from f(x; λ1(t), λ2(t), λ3(t), λ4(t)). This is easily done since GLD deviates
can trivially be produced by picking u uniformly at random in the interval [0, 1] and applying Equation (47),
i.e., Q(U [0, 1]) is Generalised Lambda distributed. We will study this more sophisticated form of bare-bones
PSO in future research.
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