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Abstract

In tumour xenograft experiments, treatment regimens are admin-

istered and the tumour volume of each individual is measured repeat-

edly over time. Survival data are recorded due to the death of some

individuals during the observation time period. Also, cure data are

observed due to a portion of individuals who are completely cured

in the experiments. When modelling these data, certain constraints

have to be imposed on the parameters in the models to account for

the intrinsic growth of the tumour in the absence of treatment. Also,

the likely inherent association of longitudinal and survival-cure data

has to be taken into account in order to obtain unbiased estimators of

parameters. In this paper, we propose such models for the joint mod-
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elling of longitudinal and survival-cure data arising in xenograft ex-

periments. Estimators of parameters in the joint models are obtained

using a Markov chain Monte Carlo approach. Real data analysis of

a xenograft experiment is carried out and simulation studies are also

conducted, showing that the proposed joint modelling approach out-

performs the separate modelling methods in the sense of mean squared

errors.

Keywords: Constrained parameters; joint longitudinal and survival-cure model;

Markov chain Monte Carlo; xenograft experiment.
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1 Introduction

In cancer drug development, demonstrating anti-tumor activity in an in vivo

experiment is an important and necessary step to make a promising experi-

mental treatment available to humans. The xenograft model is a commonly

used in vivo model in cancer research, for which severe combined immun-

odeficient (scid) mice are grafted with human cancer cells after which they

receive a treatment and are then followed up. Tan et al. [1] presented a

typical xenograft experiment, where several treatment regimens are adminis-

tered and an outcome variable, tumour volume, is measured at the start of the

treatment and then at regular follow-up times. In the literature, methodol-

ogy has been developed to analyze repeated measurements and survival times

collected from xenograft experiments. For example, Tan et al. [2] developed

a t-test via the EM algorithm and also a Bayesian approach for testing for

differences in effects between two treatment regimens. If no treatment were

given to the tumour-bearing mice, the tumours would keep growing until

the mice died or are sacrificed. Therefore, certain constraints have to be

imposed on the parameters in the model to account for the intrinsic growth

of a tumour in the absence of treatment. Tan et al. [1] considered a class

of regression models for longitudinal outcomes with constrained parameters.

Fang et al. [3] proposed a Bayesian hierarchical model to account for the pa-

rameter constraints. However, these authors ignored the very likely inherent

association between longitudinal responses and survival outcomes for data

coming from the same subject. As a result, such statistical inferences may
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be biased.

Joint models for both longitudinal and survival data have been developed in

recent years and are extensively reviewed by [4]. It is well known nowadays

that analyzing combined longitudinal data and survival data can lead to a

significant improvement in the efficiency of statistical modelling compared

to the separate analyses - see, for example, [5], [6], [7], [8], [9], [10], [11],

[12] and [13]. When there are cured individuals in the survival studies, ei-

ther due to immunes or long-term survivors, joint models for survival and

cured data have been considered by [14], [15], [16] and [17]. Longitudinal

and survival-cure models have been further developed by [18], [19] and [20].

The mixture distribution for the longitudinal model in [18] is very unique

which is not suitable to our study. Yu and his colleagues [19, 20] studied a

prostate cancer data, where longitudinal data have an inherent relationship

with survival outcomes and survival hazard rate are modelled separately for

cured patients and uncured patients. However, these models are not suit-

able for analyzing the tumour data arising in xenograft experiments for the

following reason. This is because these models assume the cure probability

only depends on the baseline covariates. This assumption may not be true

in xenograft experiments because the cure probability of a mouse will clearly

be related not only to the baseline tumor size but also to how fast the tumor

grows or other characteristics of tumor volumes.

In this paper, motivated by an xenograft experiment for mice, we propose new

joint models for longitudinal and survival-cure data by taking into account
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not only the likely inherent association of the different types of data but

also the intrinsic growth of a tumour in the absence of any treatment [21].

The random effects in linear mixed models for longitudinal data, after being

properly scaled, are incorporated into the Cox hazard model for survival

data and the logistic model for cure data, so that the inherent association

between the different types of data can be accounted for. The fixed effects

in the longitudinal linear mixed models, on the other hand, are imposed

constraints in order to account for the intrinsic growth of a tumour in the

absence of treatment. Posterior inferences for the parameters in the models

are obtained by using a Markov chain Monte Carlo (MCMC) method.

The rest of the paper is organized as follows. In Section 2, we define the

joint longitudinal and survival-cure models for the xenograft experimental

data and provide the log-likelihood function for the complete data. In Sec-

tion 3, we specify prior distributions for the parameters and provide model

selection criteria for finding the best model. In Section 4, we use an MCMC

method to generate random samples from the posterior distributions of the

parameters and apply to the real xenograft data analysis involving two new

anticancer agents against rhabdomyosarcomas. In Section 5 we carry out

simulation studies to assess the performance of the proposed approach. Nu-

merical results show that the proposed joint modelling strategy outperforms

the separate modelling methods. Further comments and discussions are given

in Section 6.
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2 Data and Models

2.1 Data set

The xenograft experimental data in [1] and [24] are about two new anticancer

agents: temozolomide (TMZ) and irinotecan (CPT-11). TMZ is a methylat-

ing agent that has been approved for treatment of astrocytoma and is entering

various phases of clinical evaluation against tumours. CPT-11 has demon-

strated a broad activity against both murine and human tumour xenograft

models and clinically significant activity against many types of cancer. A

DNA analysis has formed the biochemical rationale for combining TMZ and

CPT-11. Our primary objective is to analyze the activity of TMZ com-

bined with CPT-11 against one rhabdomyosarcoma (Rh18) xenograft. Mice

from the same strain were used and they are virtually genetically identical.

In total, we have 51 subjects (mice) observed, which are divided into eight

groups for different treatment regimens. Two dose levels were considered

for both anticancer agents; for TMZ the two weekly dose levels considered

are 140mg/kg and 210mg/kg; for CPT-11 the two levels are 2.0mg/kg or

3.05mg/kg. Tumor-bearing mice were treated under certain levels of either

TMZ, CPT-11 or both. Note that the mice were treated on a one-week or

two-week courses per three-week cycle. Table 1 in the Supplementary Web

Materials provides more detailed information.

The tumour volume was measured at the initial time and once a week within

the follow-up period of 12 weeks. Figure 1 shows the change of tumor volume
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(cm3) with time for mice in each of the eight treatment groups.

[Figure 1 about here.]

From Figure 1, it is clear that in the control group (i.e., no treatment) the

tumor volume increases with time, while in other treatment groups the tu-

mor volume may decrease in the beginning and then increase at later times.

Figure 1 displays the longitudinal measurements observed until mice died or

were sacrificed due to the tumour volume quadrupled. Among these 51 mice,

in total 25 mice either died of toxicity or were sacrificed and the remaining

26 mice survived longer than the 12-week observation period. For these sur-

vived ones, their lifetimes cannot be observed but were censored at the end of

12 weeks. On the other hand, 14 mice quickly shrank their tumour volumes

smaller than 0.01cm3, which became too small to be observable by a reading

machine, and had no recurrent growth of tumour in the rest period of the

experiment. For this portion of mice, it is believed that they are very likely

cured already, see [1] for more details. We also note that a few of the mice

had the tumour disappear (< 0.01cm3) first but grow back in later weeks

up to the end of the experiment. These mice cannot be considered as cured

ones but the intermittent missing values are truncated as 0.01cm3. We are

therefore motivated by this dataset to build longitudinal models for repeated

measurements of the tumour volume, survival models for time-to-death or

sacrifice of the mice, and cure models for the cured mice, simultaneously.
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2.2 Longitudinal data sub-model

Consider in general the anti-tumour activity of S agents. Suppose that there

are n + 1 pre-specified follow-up times t0 < t1 < · · · < tn for each of the m

subjects/mice. Let Yi(tj) be the tumour volume of the ith mouse measured

at the time tj (j = 0, 1, · · · , n). To make the data normally distributed,

we assume that a log scale has been introduced to Yi(tj). Denote x
(s)
i (t)

(s = 1, · · · , r) as the cumulative dose of the sth agent (or interactions of two

agents) administered to the ith mouse until the time t.

The responses Yi(tj) (j = 1, ..., ni and i = 1, ...,m) may be modelled by a

linear mixed model [22]

Yi(tj) = ψ0 + ψ1tj + ψ2t
2
j +X i(tj)β + ui0 + ui1tj + εij, (1)

where the random effect ui = (ui0, ui1)′ follow a normal distributionN2(0,Σu),

ψ = (ψ0, ψ1, ψ2) and β = (β0, ..., βr)
′ are unknown parameter vectors,X i(tj) =

(x
(1)
i (tj), ..., x

(r)
i (tj)), and random errors εij are independent and normally

distributed with E(εij) = 0 and Var(εij) = σ2
ε .

Here we consider such a simple quadratic baseline tumor growth model

ψ0 + ψ1tj + ψ2t
2
j , because the plot of log-tumor size against time shows a

quadratic trajectory, see Figure 1 of the Supplementary Web Materials. For

simplicity we consider a simple linear random effects model ui0 + ui1t to

capture the within-subject correlation between the repeated measures of the

tumour volume. Note that the models can be extended to more complicated
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tumor growth models [23] involving more random effects.

As pointed out by [1], in the xenograft experiments the tumour born by an

immunosuppressants mouse in the control group is expected to grow over

the follow-up period. Ignoring this fact can lead to misleading inferences,

for example, resulting in underestimates of treatment effects [1]. In order to

reflect this fact in the model, ψ is assumed to be such that,

Condition 1: The quadratic polynomial in time

ψ0 + ψ1t+ ψ2t
2 (2)

is an increasing function for t > 0. �

As long as ψ1 + 2ψ2t > 0 where t > 0, Condition 1 above holds. A special

case is a straight line with ψ2 = 0 and ψ1 > 0. We denote Ψ = {ψ :

such that ψ1 + 2ψ2t > 0}. In other words, Ψ is the collection of all possible

values of ψ1 and ψ2 such that the quadratic polynomial in (2) is an increasing

function.

2.3 Proportional hazard and cure sub-models

Note that we cannot justify whether a mouse is really cured or not, since

when tumor size is less than 0.01 cm3 it can not be measured and we do

not know whether the tumor really disappear or not. It happened in several

mice that the tumor size became smaller than 0.01 and reoccur later on. In

practice, the experiment researchers usually assume that if the tumor size is
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less than 0.01 at week 12, the end of the experiment, then the tumor will

never reappear, i.e. a mouse is ‘cured’ eventually.

Let ξi = 0 denote the ith mouse ‘cured’ by agents and ξi = 1 be not ‘cured’.

Assume pi = Pr(ξi = 1), the probability of incidence that the event, death

caused by the tumour problem or toxicity of agents, occurs by the end of

the experiment. Obviously, a cured mouse does not experience the death

or sacrifice in the experiment period. Conversely, a mouse who died or was

sacrificed during the experiment period must have the incidence ξi = 1. In

addition, we may not know whether a mouse is cured or not, if the tumor is

larger than 0.01 by the end of the experiment.

Therefore it is clear that the binary incidence indicator ξ will have three

possibilities: (a) when the censoring occurs (δi = 0), the incidence indicator

ξi will be unobserved if the tumor size at the censoring time, i.e., week 12, is

larger than 0.01; (b) when the censoring occurs (δi = 0) and the tumor size

at the censoring time is not more than 0.01 at week 12. That is, the tumor

almost disappears by the end of the experiment, so that it can be treated as

ξi = 0 (cured); (c) the censoring does not occur, i.e., the failure indicator is

δi = 1, so that ξi = 1 (not cured).

Let Ti be the time to death for the ith individual, defined only for those

with ξi = 1, with the hazard function h(t|ξi = 1) and the survival function

S(t|ξi = 1). If a mouse survives longer than the experiment period, the

survival time of the mouse is censored as the mouse is either cured or has no

enough follow-up times. In other words, we actually observe T̃i = min(Ti, Ci)
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and δi = I(Ti ≤ Ci) where Ci is the censoring time and δi is the relative failure

indicator.

The marginal survival function of Ti therefore is given by

Si(t) = Pr(Ti ≥ t)

= Pr(Ti ≥ t|ξi = 0)Pr(ξi = 0) + Pr(Ti ≥ t|ξi = 1)Pr(ξi = 1)

= 1− pi + piS(t|ξi = 1) (3)

for t <∞. Note that Si(t)→ (1− pi) as t→∞, implying that the marginal

survival function Si(t) tends to the cure probability (1 − pi) for large t. As

long as the incidence probability pi and the conditional survival function

S(t|ξi = 1), or the conditional hazard function h(t|ξi = 1), are obtained, the

marginal survival function Si(t) can be formed using (4). In what follows we

discuss how to model h(t|ξi = 1) and pi in terms of covariates of interest.

For simplicity, we assume the censoring mechanism is noninformative and is

independent of the longitudinal response Y .

Farewell [25] proposed to use the following logistic regression model

Pr(ξi = 1|zi) =
exp(z′iλ)

1 + exp(z′iλ)

to model the incidence probability pi, where zi and λ are covariates and

parameters, respectively. He also suggested a parametric survival model for
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S(t|ξ = 1). Sy and Taylor [16] proposed the proportional hazard cure model

hi(t|ξi = 1,wi) = h0(t|ξi = 1) exp(w′iα),

where wi and α are covariates and parameters, respectively, and h0(t|ξi = 1)

is the conditional baseline hazard function. This model is not designed for

cases where longitudinal data exist.

The models above, however, take no account of the likely relation among

the incidence probability, the conditional hazard function and the tumour

volume Y . As a result, the separate use of those models may lead to biased

statistical inferences. Instead, we propose to use the random effects ui in the

longitudinal model (1), to link the longitudinal and survival-cure models. In

other words, we use the following logistic regression model

Pr(ξi = 1|zi,ui) =
exp(z′iλ+ π′2ui)

1 + exp(z′iλ+ π′2ui)
(4)

to model the incidence probability, and use the following proportional hazard

frailty model (see [7])

hi(t|ξi = 1,ui,w) = h0(t|ξi = 1) exp(w′i(t)α+ π11(ui0 + ui1t) + π12ui0 + π13ui1) (5)

to model the conditional hazard function, where π1 = (π11, π12, π13) in (5)

and π2 = (π21, π22)′ in (4) are unknown link parameters. If the estimators of

π1 and π2 are statistically significant, we conclude that the joint modelling of

the longitudinal and survival-cure data is necessary. Otherwise, the separate
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modelling strategy may be preferred.

Note that the incidence probability in (4) considered here is the probability

that the incidence event eventually occurs. Therefore it does not depend on

time. In our model the incidence probability depends on zi (e.g. treatments)

and ui (the tumor characteristics: baseline effect ui0 and rate effect ui1). We

may consider that the incidence probability depends on time. This may be

done by using a competing risk model or a Markov transition model to model

the hazard rates for death event and cure event. But in the study the cure

event time was not observed exactly, and hence here we only consider the

simple model (4). Although a mouse whose tumor size is less than 0.01 at

week 12 was considered as cured, it is not clear when exactly the mouse’s

tumor disappears due to the constraint of the tumor size reading machine.

2.4 Complete log-likelihood function

Given random effect ui, we assume the longitudinal data and survival-cure

data are independent. It is noted that the incidence ξi may be observable

or unobservable, depending on whether or not the censoring occurs. De-

fine ξ = {ξo, ξm} as the set of all the incidences ξi’s, where ξo and ξm

are the collections of the observable and unobservable incidences, respec-

tively. The observed data are then D = {(Yi, Ti, δi, Xi, wi, zi) : i = 1, ...,m}

and ξo. Then the complete log-likelihood function of the parameters Θ =

(β,α,λ, σ2
ε ,Σ

2
u,ψ,π1,π2, h0) and the unobservable data (u, ξm), apart from
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a constant, can be written as

`(Θ,u, ξm|D, ξo)

= − N

2
log σ2

ε −
1

2σ2
ε

m∑
i=1

ni∑
j=1

(Yi(tj)− ψ0 − ψ1tj − ψ2t
2
j −X iβ − ui0 − ui1tj)2

+
m∑
i=1

{
δiξi

(
log h0(T̃i|ξi = 1) +w′i(T̃i)α+ π11(ui0 + ui1T̃i) + π12ui0 + π13ui1

)
− ξi

∫ T̃i

0

h0(t|ξi = 1) exp(w′i(t)α+ π11(ui0 + ui1t) + π12ui0 + π13ui1)dt
}
− m

2
log |Σu|

+
m∑
i=1

{
ξi(z

′
iλ+ π2ui)− log(1 + exp(z′iλ+ π2ui))

}
− 1

2
u′iΣ

−1
u ui. (6)

Note that for the above log-likelihood function, the domain for ψ is Ψ de-

fined in Condition 1, the intrinsic condition. Therefore, under the intrinsic

condition, the log-likelihood will be −∞, if the ψ /∈ Ψ; the log-likelihood is

given by the above formula (6) if ψ ∈ Ψ.

For the baseline hazard function h0(t|ξi = 1), we assume it is a piecewise

constant function as well, that is,

h0(t|ξi = 1) = h0k, for tk−1 ≤ t < tk (k = 1, · · · , nh), (7)

where h0 = (h01, · · · , h0nh
)′ are unknown parameters and nh is not greater

than n.

In our study w′i(t) is chosen as the cumulative dose level until time t and

it is thus a piecewise constant. Therefore the evaluation for the integration

in (6) is straightforward. Even if there is a dependence on t2 in the definite
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integration of (6), it can still be evaluated numerically by using the command

‘integrate’ in the R package. Therefore this will not limit the applicability of

our model.

3 Bayesian Inference

We propose to use a Bayesian approach to make statistical inferences for

the joint models (1), (4) and (5) to avoid the analytical intractable inte-

gral problem involved in the marginalized log-likelihood function. Markov

chain Monte Carlo (MCMC) is applied in our implementation. Rather than

integrating out the random effects ui and the missing values ξm from (6),

we sample u and ξm, as well as other parameters, from their corresponding

conditional posterior distributions.

We specify independent normal priors for the parameters β, α and λ, of

which all are assumed to have very large variances. We also specify inverse

Gamma and inverse Wishart priors for the random errors variance σ2
ε and

random effects variance Σu, respectively. We choose a Gamma prior for each

h0j (j = 1, 2, ..., n), so that a conjugate posterior distribution for h0j is easy

to obtain. We assume a normal distribution, N(τ, ς), as the prior for each

component of the link parameters π1 and π2.

We propose to use the DIC value to select the most appropriate model. The

DIC value consists of two terms, one for goodness-of-fit measured by the

deviance evaluated at the posterior mean of parameters, and the other ac-
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counting for a penalty defined by twice of the effective number of parameters.

The latter is defined by the mean deviance minus the deviance evaluated at

the posterior mean. Under the model assumption with missing data, the DIC

is defined by

DIC = −4EΘ,u,ξm [`(Θ,u, ξm|D, ξo)|D, ξo)] + 2Eu,ξm [`(Θ̃,u, ξm|D, ξo)|D, ξo)]

where Θ̃ = E[Θ|D, U, ξm, ξo]. See [27] and [28] for more details.

4 Real data analysis

Following the notation in Section 2, we denote ni as the number of repeated

measurements for the ith mouse (ni ≤ 12). Let x
(1)
i (t) be the cumulative dose

of TMZ and x
(2)
i (t) be the cumulative dose of CPT-11, which are received

by the ith mouse till week t (t = 1, ..., ni, i = 1, ..., 51). To account for the

synergism of the two drugs, following [1] we take x
(3)
i (t) =

√
x

(1)
i (t)x

(2)
i (t) as

the interaction term. Let X i(t) = (x
(1)
i (t), x

(2)
i (t), x

(3)
i (t))′. The longitudinal

sub-model in (1) is then used to model the activity of the TMZ combined

with CPT-11 against Rh18 tumour growth for the ith mouse in the xenograft

experiments. In our data analysis studies, we rescale time points as tj = tj/10

and the dose level of TMZ divided by 100.

Among the 51 mice, in total 25 mice died of toxicity or were sacrificed as

the tumour volumes were quadrupled. On the other hand, 14 mice were

considered to be cured by the end of the experiment, as they survived 12
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months and have tumor size smaller than 0.01. The remaining 12 mice were

not cured by the end of the experiment but survived longer than 12 week,

so that their true lifetimes and cure incidence indicators are not observable.

We then use the survival model (5) to model the conditional hazard function

hi(t|ξi = 1,wi(t),ui), where wi(t) = X i(t−) is the value of X i right before

the time point t. The baseline hazard rate h0(t|ξi = 1) is assumed to be a

piecewise constant function

h0(t|ξi = 1) = h0j, tj−1 ≤ t < tj, (j = 1, ·, nh)

where we choose nh = 4 because in the 12-week period of experiment the

treatments are given to mice as a cycle of every three weeks (see Table 1 in

the supplementary file).

We also use the model (4) to model the incidence probability Pr(ξi =

1|zi,ui), where zi = (z
(1)
i , z

(2)
i , z

(3)
i , 1)′ in which z

(1)
i and z

(2)
i are the average

weekly-dose levels of TMZ and CPT-11 for subject i, respectively, and z
(3)
i

is the associated interaction term. Note that we use the weekly-average dose

levels z
(s)
i rather than the cumulative dose x

(s)
i (t) (s = 1, 2, 3) as the covari-

ates for modeling of the incidence probability Pr(ξi = 1|zi,ui). The reason

is that our aim is to model how the incidence probability Pr(ξi = 1|zi,ui)

depends on treatments rather than time or time-related variables such as the

cumulative dose x
(s)
i (t). It is noted that different weekly-average dose level is

taken as a different treatment here. Of course, it may be of interests to see

how the incidence probability is related to the tumor volume that changes
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over time. In this case, the model for the incidence probability is a dynamic

model and the latent Markov transition model proposed by [29] may be a

key to resolve the issue. We leave this as future work.

The parameters of interest in the survival-cure models are the fixed effects

parameters α = (α1, α2, α3)′, λ = (λ1, λ2, λ3, λ4)′ and the link parameters π1

and π2.

Following [21], the prior for each element of β, α and λ is chosen to be

N(0, 10000). The priors for σ−2
ε and each element of h0 are all chosen to be

Gamma(0.001, 0.001). The priors for Σu is taken to be the inverse Wishart

distribution with parameters (4, I2). For each element of the link parameters

π1, π2, a non-informative normal prior N(0, 100) is applied.

To see if the model links are really necessary, we consider the following four

possible link scenarios.

Case 1: longitudinal and survival-cure models are linked by π1 and π2.

Case 2: longitudinal and survival models are linked by π1 (i.e. π2 = 0).

Case 3: longitudinal and cure models are linked by π2 (i.e. π1 = 0).

Case 4: neither of these models are linked (i.e. π1 = 0,π2 = 0).

In Table 1 we summarize the posterior means and 95% credit intervals of the

parameters in the models for each case above. We also provide the relative

DIC values for all the four possible scenarios. In each case, we uses 10,000

iterations of MCMC sampling chains following a 5,000-iteration ‘burn-in’

period.
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[Table 1 about here.]

From Table 1, it turns out that the smallest DIC value is achieved by the

model that links all the three sub-models, implying that the joint modelling

may be necessary. The TMZ, the CPT-11 treatments and their interaction

all have significant negative effects on the tumour growth, implying the treat-

ments work in reducing the tumour growth. For the incidence model, we can

see that the two treatments and their interaction have no significant effects

on the incidence probability. The only significant estimate is for the inter-

cept parameter λ4, which is about 3.101, leading to the incidence probability

being 96% in the absence of treatments. In other words, without treatments

the tumour-beard mice have only 4% chances to be cured. The parameters

λ2 = −2.799 and λ3 = −1.884 are not significant, but their large negative

values also suggest CPT-11 and the interaction of TMZ and CPT-11 may

have effects on the incidence probability, i.e. treatments will increase the

probability of cure. For the survival model, the CPT-11 has a significant

positive effect on the survival time, but and TMZ-11 and the interaction of

the two treatments are not significant.

For the model that links all the three sub-models, the estimate for the link

parameter π11 = 0.141 is significant. This implies that individual tumor

departure from the mean tumor size is a significant risk factor for survivals.

The link parameter π11 is positive, showing that the bigger the Rh18 tumour

volume departure from the mean tumor size the higher the hazard rate of

death. The link parameter π12, π13 are not significant, showing that the
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individual departures from the intercept and from the slope do not have

effects on survival. For the link parameter π2 = (π21, π22), the estimate for

π22 is significant, but the estimate for π21 is not significant. This implies

that the gradient ui1 (the rate of individual tumor growth) is a significant

risk factor for the incidence probability. The higher the individual tumor

growth rate, the lower the cure probability. Note that, for the full model

(case 1), the random slope is the only significant predictor of cure.

When only having the link for the longitudinal and survival sub-models (case

2 in Table 1), all the link parameters of π1 are not significant, which implies

that the tumor growth does not have significant effects on survival. This

conflicts with reality. In addition, without having the second link parameter

π2, the parameter vector λ2 becomes significant (cases 2 and 4). The main

reason for this is that the random effects are not considered in cases 2 and

4, which distorts the estimate of the fixed-effect parameter vector λ.

When only having the link parameter π2 (case 3 in Table 1), the link pa-

rameter π22 is also significant. Although most results in case 3 are similar to

those in case 1, without having the first link parameter (case 3) has a smaller

estimate for |α2| = 0.128 than |α2| = 0.257 in case 1. Without the first link

parameter, we may underestimate the effects of the treatment agent CPT-11,

which is the only significant risk factor for survivals. For this reason and the

DIC values, we suggest that case 1, the full model, is more suitable for the

data.

We also considered the models without using the intrinsic growth constraint.
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The results for the full model and separated models are provided in the

supplementary materials. Basically the results of having the intrinsic growth

and without having the intrinsic growth are consistent. The main difference

is as follows. Without having the constraint, the baseline tumor volumes (i.e.

no treatment) is estimated by φ2t
2 + φ1t+ φ0, with φ2 = 5.598, φ1 = −3.624

and φ0 = −0.187. This implies that without treatment, the tumor will

decrease approximately before time 0.3 (week 3 as we use week divided by

10 for the new time scale), and then increase after that. However, this is not

correct in practice, since the tumor will surely increase if no treatments are

received. With having the constraint, the baseline tumor volume is estimated

as 3.869t2 + 0.158t− 0.561, an increasing function of time t.

5 Simulation studies

We mimic the real data in Section 4 in the following simulation studies. The

covariates X i(t), wi(t) and zi are the same as that in the real data study.

In other words, we have three covariates in the simulation: two treatments

TMZ and CPT-11, and their interaction. These covariates are included in

both the longitudinal and survival models. We also choose two dose levels

for the TMZ 42 mg/kg and the CPT-11 0.61 mg/kg and then consider eight

groups of treatments as that in data analysis. The sample size is m = 51

and the number of samples in each group is the same as that in the real

data study. The independent random effects ui are assumed to follow Nor-

mal distribution N2(0,Σu), the independent random errors εij follow Normal
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distribution N(0, σ2
ε), and ui and εij are mutually independent.

Given the random effects ui and covariates zi, the incidence event ξi is gen-

erated from the model (4).

For those subjects with incidence indicator ξi = 1, on the other hand, the

survival model (5) is used to generate the survival outcomes Ti. To mimic

the data, the baseline hazard rate h0(t|ξi = 1) is assumed to be a piecewise

constant function

h0(t|ξi = 1) = h0j, tj−1 ≤ t < tj, (j = 1, · · · , n)

and h01 = 1.6, h02 = 3.0, h03 = 9.8, h04 = 16.7, which are similar to the esti-

mated values in the real data analysis. It is assumed that the baseline hazard

has an increasing jump because the hazard rate increases in the absence of

treatments.

Our data are generated from the full model, with linking parameters π11 =

0.6, π12 = 0.7, π13 = 0.0, π21 = 0 and π22 = 1.22.

We compare the simulation results for two models, the model with the as-

sociation (π1 6= 0 and π2 6= 0) and the model without the association

(π1 = 0,π2 = 0). We simulate 100 data sets and calculate the sample

mean and the sample standard deviation for each parameter estimator. For

each data set, we draw 5,000 random samples from the posterior distributions

following a 5,000-iteration ‘burn-in’ period in order to estimate the param-

eters. Table 2 provides the parameter estimators, standard deviations and
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coverage probability of credible interval.

From Table 2, we can see that the joint models and the separated mod-

elling give similar parameter estimates for the longitudinal sub-model. When

the latent association of longitudinal and survival-cure data does exist, i.e.,

π11 6= 0, π12 6= 0 and π22 6= 0, the proposed joint modelling approach per-

forms well. For example, the link parameter estimators of π11, π12 and π22

are statistically significant and very close to the true parameter values, which

correctly identifies that the joint models are really necessary. On the con-

trary, the separated modelling approach that ignores the existing inherent

association gives estimates with larger bias for most of the parameter esti-

mation, except for α2 and λ2. In addition, the separate model has lower

coverage probability for α1 and β3. The two models give similar coverage

probabilities for all other parameters. Overall, statistical inferences for the

survival models using the joint modelling approach are more sensible and

reliable than those using the separate modelling method.

[Table 2 about here.]

6 Discussion

In this paper we propose a joint modelling approach to account for the likely

inherent association for longitudinal data and survival-cure outcomes. We

propose to use common random effects to connect the different models. The

approach is then used to analyze a real data set arising from tumour xenograft
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experiments. Bayesian inferences are obtained using an MCMC approach,

showing the parameter estimators from the posteriors are robust against the

priors of the link parameters. Our conclusion on the data analysis is mostly

consistent with [24] but the inherent association of different types of data is

taken into account so that more information is discovered. Simulation studies

show that the proposed joint modelling approach produces very satisfactory

parameter estimators.

Some further research needs to be studied when each mouse has multiple

tumours. [21] described an example of preclinical studies evaluating the

anti-tumour effects of exemestane and tamoxifen for postmenopausal breast

cancer, in which each mouse received subcutaneous injections at two sites

and developed four tumours in the process. It is anticipated that multivariate

longitudinal responses and multi-dimensional random effects will be involved

and additional correlation between tumours for the same mice should be

accounted for. We will report this in a follow-up paper.

In our study, the cure probability is just the probability that a mouse is

cured or not, eventually. It does not depend on time, which is a limitation

of our work. In other studies, it may also be interesting to consider that the

cure probability depends on time, if the cure times are available. A Markov

transition model might be employed to deal with such problems.
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Figure 1: Observed tumor volumes for the eight treatment groups for 8
groups
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Table 1: Posterior mean (95% credible interval) of the parameters and the
DIC values. Parameter β corresponds to the covariate effects for the tumor
sizes; parameter α correspond to the covariate effects on the survival time;
parameter λ correspond to the covariate effects on the incidence probability.

Par. Case 1 Case 2 Case 3 Case 4

DIC 477.1 518.3 530.7 555.4

Longitudinal
submodel ψ0 -0.561 -0.442 -0.227 -0.484

(-0.996, -0.232) (-0.755, -0.199) (-0.635,0.202) (-0.765, -0.164)
ψ1 0.158 0.286 0.242 0.472

(0.005, 0.696) (0.008, 0.829) (0.007,0.690 ) (0.014, 1.241)
ψ2 3.869 4.251 4.402 4.243

(3.401, 4.307) (3.655,4.946) (3.804, 5.038) (3.560, 4.901)

Longitudinal
TMZ β1 -0.289 -0.272 -0.248 -0.237

(-0.404, -0.177) (-0.399, -0.130) (-0.347, -0.136) (-0.401, -0.112)
CPT-11 β2 -0.253 -0.236 -0.231 -0.256

(-0.297, -0.206) (-0.280, -0.181) (-0.279,-0.194) (-0.318, -0.189)
Interaction β3 -0.070 -0.069 -0.128 -0.052

(-0.130, -0.016) (-0.112, -0.012) (-0.245,-0.052) (-0.144, -0.029)

Survival
TMZ α1 -0.142 -0.056 -0.073 -0.056

(-0.461, 0.198) (-0.297, 0.167) (-0.285,0.126) (-0.267, 0.146)
CPT-11 α2 -0.257 -0.119 -0.128 -0.118

(-0.453, -0.092) (-0.218,-0.017) (-0.222,-0.039) (-0.210,-0.031 )
Interaction α3 0.509 0.380 0.232 0.402

(-0.322,1.380) (-0.090, 0.740) (-0.299,0.665) (-0.010,0.741)

Cure
TMZ λ1 -0.368 -0.241 0.092 0.018

(-2.797, 2.487) (-1.581,2.176) (-2.316,2.769) (-1.794,2.196)
CPT-11 λ2 -2.799 -2,289 -2.455 -2.301

(-5.513, 0.667) (-4.138, -0.617) (-5.029,-0.068) (-4.263,-0.773)
Interaction λ3 -1.884 -2.025 -2.022 -1.910

(-5.234 1.696) (-4.427, 0.266) (-5.184,1.243) (-4.663, 0.577)
Constant λ4 3.101 2.813 3.404 2.942

(0.399, 5.395) (0.720, 4.007) (1.203,6.169) (1.051, 5.036 )

Links between survival and longitudinal
ui0 + ui1t π11 0.141 0.035 0 0

(0.033, 0.295) (-0.177, 0.378) – –
ui0 π12 0.161 0.0152 0 0

(-0.599, 0.717) (-0.258, 0.344) – –
ui1 π13 0.092 0.003 0 0

(-0.387, 0.311) (-0.235, 0.202) – –
Links between curel and longitudinal
ui0 π21 -0.713 0 -0.164 0

(-4.672, 2.044) – (-2.801, 1.684) –
ui1 π22 2.006 0 1.128 0

(0.433, 5.676) – (0.372, 2.685) –
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Table 2: Simulation results for the case that there is a latent association, i.e.,
π1 6= 0 and π2 6= 0. The sample size m=51.

Par. True Separate modelling Joint modelling
Estimates St.D. Coverage prob Estimates St.D. Coverage

ψ0 -0.40 -0.395 0.038 0.95 -0.382 0.040 0.96
ψ1 0.80 0.835 0.244 0.94 0.823 0.279 0.95
ψ2 3.60 3.587 0.170 0.95 3.604 0.168 0.96
β1 -0.30 -0.309 0.018 0.96 -0.308 0.016 0.93
β2 -0.27 -0.273 0.010 0.90 -0.273 0.010 0.90
β3 -0.01 -0.015 0.012 0.85 -0.008 0.012 0.90
α1 0 -0.184 0.140 0.88 -0.171 0.139 0.90
α2 -0.22 -0.220 0.054 0.96 -0.236 0.077 0.96
α3 0 0.135 0.122 0.93 0.116 0.155 0.94
λ1 0 0.759 0.658 0.90 0.701 0.772 0.93
λ2 0 -0.164 0.531 0.97 -0.184 0.552 0.97
λ3 0 -0.070 0.362 0.95 -0.060 0.334 0.97
λ4 3.35 4.154 0.881 0.91 4.015 0.960 0.91
π11 0.6 - - - 0.544 0.206 0.95
π12 0.7 - - - 0.688 0.201 0.96
π13 0.0 - - - 0.056 0.125 0.94
π21 0.0 - - - -0.055 0.197 0.96
π22 1.22 - - - 1.186 0.173 0.96
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