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Abstract

In tumour xenograft experiments, treatment regimens are admin-

istered and the tumour volume of each individual is measured repeat-

edly over time. Survival data are recorded due to the death of some

individuals during the observation time period. Also, cure data are

observed due to a portion of individuals who are completely cured

in the experiments. When modelling these data, certain constraints

have to be imposed on the parameters in the models to account for

the intrinsic growth of the tumour in the absence of treatment. Also,

the likely inherent association of longitudinal and survival-cure data

has to be taken into account in order to obtain unbiased estimators of

parameters. In this paper, we propose such models for the joint mod-
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elling of longitudinal and survival-cure data arising in xenograft ex-

periments. Estimators of parameters in the joint models are obtained

using a Markov chain Monte Carlo approach. Real data analysis of

a xenograft experiment is carried out and simulation studies are also

conducted, showing that the proposed joint modelling approach out-

performs the separate modelling methods in the sense of mean squared

errors.

Keywords: Constrained parameters; joint longitudinal and survival-cure model;

Markov chain Monte Carlo; xenograft experiment.
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1 Introduction

In cancer drug development, demonstrating anti-tumor activity in an in vivo

experiment is an important and necessary step to make a promising experi-

mental treatment available to humans. The xenograft model is a commonly

used in vivo model in cancer research, for which severe combined immun-

odeficient (scid) mice are grafted with human cancer cells after which they

receive a treatment and are then followed up. [1] presented a typical xenograft

experiment, where several treatment regimens are administered and an out-

come variable, tumour volume, is measured at the start of the treatment

and then at regular follow-up times. In the literature, methodology has

been developed to analyze repeated measurements and survival times col-

lected from xenograft experiments. For example, [2] developed a t-test via

the EM algorithm and also a Bayesian approach for testing for differences

in effects between two treatment regimens. If no treatment were given to

the tumour-bearing mice, the tumours would keep growing until the mice

died or are sacrificed. Therefore, certain constraints have to be imposed on

the parameters in the model to account for the intrinsic growth of a tumour

in the absence of treatment. [1] considered a class of regression models for

longitudinal outcomes with constrained parameters. [3] proposed a Bayesian

hierarchical model to account for the parameter constraints. However, these

authors ignored the very likely inherent association between longitudinal re-

sponses and survival outcomes for data coming from the same subject. As a

result, such statistical inferences may be biased.
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Joint models for both longitudinal and survival data have been developed in

recent years and are extensively reviewed by [4]. It is well known nowadays

that analyzing combined longitudinal data and survival data can lead to a

significant improvement in the efficiency of statistical modelling compared

to the separate analyses - see, for example, [5], [6], [7], [8], [9], [10], [11],

[12] and [13]. When there are cured individuals in the survival studies, ei-

ther due to immunes or long-term survivors, joint models for survival and

cured data have been considered by [14], [15], [16] and [17]. Longitudinal

and survival-cure models have been further developed by [18], [19] and [20].

The mixture distribution for the longitudinal model in [18] is very unique

which is not suitable to our study. [19] and [20] studied a prostate can-

cer data, where longitudinal data have an inherent relationship with survival

outcomes and survival hazard rate are modelled separately for cured patients

and uncured patients. However, these models are not suitable for analyzing

the tumour data arising in xenograft experiments for the following reason.

This is because these models assume the cure probability only depends on the

baseline covariates, rather than being related with other characteristics of the

longitudinal measurements. This assumption may not be true in xenograft

experiments because the cure probability of a mouse will clearly be related

not only to the baseline tumor size but also to how fast the tumor grows or

other characteristics of tumor volumes.

In this paper, motivated by a dataset from an xenograft experiment for mice,

we propose new joint models for longitudinal and survival-cure data by taking

into account not only the likely inherent association of the different types
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of data but also the intrinsic growth of a tumour in the absence of any

treatment [21]. The random effects in linear mixed models for longitudinal

data, after being properly scaled, are incorporated into the Cox hazard model

for survival data and the logistic model for cure data, so that the inherent

association between the different types of data can be accounted for. The

fixed effects in the longitudinal linear mixed models, on the other hand, are

imposed constraints in order to account for the intrinsic growth of a tumour

in the absence of treatment. Posterior inferences for the parameters in the

models are obtained by using a Markov chain Monte Carlo (MCMC) method.

The rest of the paper is organized as follows. In Section 2, we define the

joint longitudinal and survival-cure models for the xenograft experimental

data and provide the log-likelihood function for the complete data. In Sec-

tion 3, we specify prior distributions for the parameters and provide model

selection criteria for finding the best model. In Section 4, we use a MCMC

method to generate random samples from the posterior distributions of the

parameters and apply to the real xenograft data analysis involving two new

anticancer agents against rhabdomyosarcomas. In Section 5 we carry out

simulation studies to access the performance of the proposed approach. Nu-

merical results show that the proposed joint modelling strategy outperforms

the separate modelling methods. Further comments and discussions are given

in Section 6.
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2 Data and Models

2.1 Data set

The xenograft experimental data in [1] and [22] are about two new anticancer

agents: temozolomide (TMZ) and irinotecan (CPT-11). TMZ is a methylat-

ing agent that has been approved for treatment of astrocytoma and is entering

various phases of clinical evaluation against tumours. CPT-11 has demon-

strated a broad activity against both murine and human tumour xenograft

models and clinically significant activity against many types of cancer. A

DNA analysis has formed the biochemical rationale for combining TMZ and

CPT-11. Our primary objective is to analyze the activity of TMZ com-

bined with CPT-11 against one rhabdomyosarcoma (Rh18) xenograft. Mice

from the same strain were used and they are virtually genetically identical.

In total, we have 51 subjects (mice) observed, which are divided into eight

groups for different treatment regimens. Two dose levels were considered

for both anticancer agents; for TMZ the two weekly dose levels considered

are 140mg/kg and 210mg/kg; for CPT-11 the two levels are 2.0mg/kg or

3.05mg/kg. Tumor-bearing mice were treated under certain levels of either

TMZ, CPT-11 or both. Note that the mice were treated on a one-week or

two-week courses per three-week cycle. Table 1 in the Supplementary Web

Materials provides more details.

The tumour volume was measured at the initial time and once a week within

the follow-up period of 12 weeks. Figure 1 shows the change of tumor volume
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(cm3) with time for mice in each of the eight treatment groups.

[Figure 1 about here.]

From Figure 1, it is clear that in the control group (i.e., no treatment) the

tumor volume increases with time, while in other treatment groups the tu-

mor volume may decrease in the beginning and then increase at later times.

Figure 1 displays the longitudinal measurements observed until mice died or

were sacrificed due to the tumour volume quadrupled. Among these 51 mice,

in total 25 mice either died of toxicity or were sacrificed and the remaining

26 mice survived longer than the 12-week observation period. For these sur-

vived ones, their lifetimes cannot be observed but were censored at the end of

12 weeks. On the other hand, 14 mice quickly shrank their tumour volumes

smaller than 0.01cm3, which became too small to be observable by a reading

machine, and had no recurrent growth of tumour in the rest period of the

experiment. For this portion of mice, it is believed that they are very likely

cured already, see [1] for more details. We also note that a few of the mice

had the tumour disappear (< 0.01cm3) first but grow back in later weeks

up to the end of the experiment. These mice cannot be considered as cured

ones but the intermittent missing values are truncated as 0.01cm3. We are

therefore motivated by this dataset to build longitudinal models for repeated

measurements of the tumour volume, survival models for time-to-death or

sacrifice of the mice, and cure models for the cured mice, simultaneously.
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2.2 Longitudinal data sub-model

Consider in general the anti-tumour activity of S agents. Suppose that there

are n + 1 pre-specified follow-up times t0 < t1 < · · · < tn for each of the m

subjects/mice. Let Yi(tj) be the ni-dimensional vector of tumour volumes

of the ith mouse measured at the times t1, t2, · · · , tni
. To make the data

normally distributed, we assume that a log scale has been introduced to

Yi(tj). Denote x
(s)
i,t , s = 1, · · · , r, as the cumulative dose of the sth agent (or

interactions of two agents) administered to the ith mouse until the time t.

The responses Yi(tj), j = 1, ..., ni and i = 1, ..., m, may be modelled by a

linear mixed model

Yi(tj) = ψ0 + ψ1tj + ψ2t
2
j + X i(tj)β + ui0 + ui1tj + εij, (1)

where the random effect ui = (ui0, ui1)
′ follow a normal distribution N(0, Σu),

ψ = (ψ0, ψ1, ψ2) and β = (β0, ..., βr)
′ are unknown parameter vectors, X i(tj) =

(x
(1)
i,tj

, ..., x
(r)
i,tj

) and the error term εi = (εi1, · · · , εi,ni
) is assumed to follow the

ni-dimensional normal distribution with mean 0 and covariance matrix σ2
εIni

.

As pointed out by [1], however, in the xenograft experiments the tumour

born by a immunosuppressants mouse in the control group is expected to

grow over the follow-up period. Ignoring this fact can lead to misleading

inferences, for example, resulting in underestimates of treatment effects. In

order to reflect this fact in the model, ψ is assumed to be such that,
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Condition 1

ψ0 + ψ1tj + ψ2t
2
j (2)

is an increasing function for t > 0. ¤

We use Ψ to denote all possible values of ψ which satisfy this condition.

2.3 Proportional hazard and cure sub-models

Let ξi = 0 denote the ith mouse cured by agents and ξi = 1 be not cured,

eventually. Assume pi = Pr(ξi = 1), the probability of incidence that the

event, death caused by the tumour problem or toxicity of agents, eventually

occurs. Obviously, a cured mouse does not experience the death or sacrifice

in the experiment period. Conversely, a mouse who died or was sacrificed

during the experiment period must have the incidence ξi = 1.

Let Ti be the time to death for the ith individual, defined only for those

with ξi = 1, with the hazard function h(t|ξi = 1) and the survival function

S(t|ξi = 1). If a mouse survives longer than the experiment period, the

survival time of the mouse is censored as the mouse is either cured or has no

enough follow-up times. In other words, we actually observe T̃i = min(Ti, Ci)

and δi = I(Ti ≤ Ci) where Ci is the censoring time and δi is the relative failure

indicator.

There are three possible outcomes for the the incidence indicator ξi: (a) when

the censoring occurs (δi = 0), the incidence indicator ξi will be unobserved if
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the tumor size is larger than 0.01; (b) when censoring occurs (δi = 0) and the

tumor size is no more than 0.01 at week 12 (the tumor almost disappear by

the end of the experiment), it is treated as ξi = 0 (cured); (3) the incidence

indicator ξi = 1 if the failure indicator δi = 1.

The marginal survival function of Ti therefore is given by

Si(t) = Pr(Ti ≥ t)

= Pr(Ti ≥ t|ξi = 0)Pr(ξi = 0) + Pr(Ti ≥ t|ξi = 1)Pr(ξi = 1)

= 1− pi + piS(t|ξi = 1) (3)

for t < ∞. Note that Si(t) → (1− pi) as t →∞, implying that the marginal

survival function Si(t) tends to the cure probability (1 − pi) for large t. As

long as the incidence probability pi and the conditional survival function

S(t|ξi = 1), or the conditional hazard function h(t|ξi = 1), are obtained, the

marginal survival function Si(t) can be formed using (4). In what follows we

discuss how to model h(t|ξi = 1) and pi in terms of covariates of interest.

For simplicity, we assume the censoring mechanism is noninformative and is

independent of the longitudinal response Y .

[23] proposed to use the following logistic regression model

Pr(ξi = 1|zi) =
exp(z′iλ)

1 + exp(z′iλ)

to model the incidence probability pi, where zi and λ are covariates and

parameters, respectively. They also suggested a parametric survival model for
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S(t|ξ = 1). [16] generalized the work of [23] to the following Cox proportional

hazard model

hi(t|ξi = 1,wi(t)) = h0(t|ξi = 1) exp(w′
i(t)α),

where wi(t) and α are covariates and parameters, respectively, and h0(t|ξi =

1) is the conditional baseline hazard function.

The models above, however, take no account of the likely relation among

the incidence probability, the conditional hazard function and the tumour

volume Y . As a result, the separate use of those models may lead to biased

statistical inferences. Instead, we propose to use the random effects ui in the

longitudinal model (1), to link the longitudinal and survival-cure models. In

other words, we use the following logistic regression model

Pr(ξi = 1|zi,ui) =
exp(z′iλ + π2ui)

1 + exp(z′iλ + π2ui)
(4)

to model the incidence probability, and use the following proportional hazard

frailty model

hi(t|ξi = 1,ui,w) = h0(t|ξi = 1) exp(w′
i(t)α + π1(ui0 + ui1t)) (5)

to model the conditional hazard function, where π1 in (5) and π2 in (4)

are unknown link parameters. If the estimators of π1 and π2 are statisti-

cally significant, we conclude that the joint modelling of the longitudinal

and survival-cure data is really necessary. Otherwise, the separate modelling
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strategy may be preferred.

Note that the cure probability in (4) considered here is the probability that

the cure event eventually occurs. Therefore it does not depend on time.

In our model the cure probability depends on z′i (treatment methods) and

ui (the tumor characteristics: baseline ui0 and rate ui1). We may consider

that the cure rate depends on time (the tumor volumes in time). This can be

done using a competing risk model or a Markov transition model to model the

hazard rates for death event and cure event. We here consider the simpler

model (4), because in our study the cure event time cannot be observed

exactly. This is because although mice which had tumor size less than 0.01

at week 12 were treated as cured, but we are not sure when exactly these

mice’s tumor disappear (due to the tumor size reading machine constraint).

2.4 Complete log-likelihood function

Given the random effect ui, we assume the longitudinal data and survival-

cure data are independent. It is noted that the incidence ξi may be observable

or unobservable, depending whether or not the censoring occurs. Define ξ =

{ξo, ξm} as the set of all the incidences ξi’s, where ξo and ξm are the collections

of the observable and unobservable incidences, respectively. The observed

data are D = {(Yi, Ti, δi, Xi, wi, zi) : i = 1, ...,m} and ξo. Then the complete

log-likelihood function of the parameters Θ = (β,α,λ, σ2
ε , Σ

2
u, ψ, π1, π2, h0)
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and the unobservable data (u, ξm), apart from a constant, can be written as

`(Θ,u, ξm|D, ξo)

= − N

2
log σ2

ε −
1

2σ2
ε

m∑
i=1

ni∑
j=1

(Yi(tj)− ψ0 − ψ1tj − ψ2t
2
j −X iβ − ui0 − ui1tj)

2

+
m∑

i=1

{
δiξi

(
log h0(T̃i|ξi = 1) + w′

i(T̃i)α + π1(ui0 + ui1T̃i)
)

− ξi

∫ T̃i

0

h0(t|ξi = 1) exp(w′
i(t)α + π1(ui0 + ui1t))dt

}
− m

2
log |Σu|

+
m∑

i=1

{
ξi(z

′
iλ + π2ui)− log(1 + exp(z′iλ + π2ui))

}
− 1

2
u′iΣ

−1
u ui. (6)

For the baseline hazard function h0(t|ξi = 1), we assume it is a piecewise

constant function as well, that is,

h0(t|ξi = 1) = h0k, for tk−1 ≤ t < tk (k = 1, · · · , nh), (7)

where h0 = (h01, · · · , h0nh
)′ are unknown parameters.

In our study w′
i(t) is chosen as the cumulative dose level until time t and it

is piecewise constant. Therefore the evaluation for the integration in (6) is

straightforward.

3 Bayesian Inference

We propose to use a Bayesian approach to make statistical inferences for

the joint models (1), (4) and (5) to avoid the analytical intractable inte-

13



gral problem involved in the marginalized log-likelihood function. Markov

chain Monte Carlo (MCMC) is applied in our implementation. Rather than

integrating out the random effects ui and the missing values ξm from (6),

we sample u and ξm, as well as other parameters, from their corresponding

conditional posterior distributions.

We specify independent normal priors for the parameters β, α and λ of which

all are assumed to have very large variances. We also specify inverse Gamma

priors for the random errors variance σ2
ε and random effects variance Σu. We

choose a Gamma prior for each h0j (j = 1, 2, ..., n), so that a conjugate poste-

rior distribution for h0j is easy to obtain. We assume a normal distribution,

N(τ, ς), as the prior for each component of the link parameters π1 and π2.

We propose to use the DIC value to select the most appropriate model. The

DIC value consists of two terms, one for goodness-of-fit measured by the

deviance evaluated at the posterior mean of parameters, and the other ac-

counting for a penalty defined by twice of the effective number of parameters.

The latter is defined by the mean deviance minus the deviance evaluated at

the posterior mean. Under the model assumption with missing data, the DIC

is defined by

DIC = −4EΘ,u,ξm [`(Θ, u, ξm|D, ξo)|D, ξo)] + 2Eu,ξm [`(Θ̃,u, ξm|D, ξo)|D, ξo)]

where Θ̃ = E[Θ|D, U, ξm, ξo]. See [25] and [26] for more details.
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4 Real data analysis

Following the notations in Section 2, we denote ni as the number of repeated

measurements for the ith mouse (ni ≤ 12). Let x
(1)
i,t be the cumulative dose of

TMZ and x
(2)
i,t be the cumulative dose of CPT-11, which are received by the

ith mouse till week t, t = 1, ..., ni, i = 1, ..., 51. To account for the synergism

of the two drugs, following [1] we take x
(3)
i,t =

√
x

(1)
i,t x

(2)
i,t as the interaction

term. Let X i(t) = (x
(1)
i,t , x

(2)
i,t , x

(3)
i,t ). The longitudinal sub-model in (1) is then

used to model the activity of the TMZ combined with CPT-11 against Rh18

tumour growth for the ith mouse in the xenograft experiments. In our data

analysis studies, we rescale time points as tj = tj/10 and the dose level of

TMZ divided by 100.

Among the 51 mice, in total 25 mice died of toxicity or were sacrificed as

the tumour volumes were quadrupled. On the other hand, 14 mice were

considered to be cured by the end of the experiment, as they survived 12

months and have tumor size smaller than 0.01. The remaining 12 mice were

not cured by the end of the experiment but survived longer than 12 week,

so that their true lifetimes and cure incidence indicators are not observ-

able. We then use the survival model (5) to model the conditional haz-

ard function hi(t|ξi = 1,wi(t),ui), where wi(t) = X i(t−). We also use

the model (4) to model the incidence probability Pr(ξi = 1|zi,ui), where

zi = (z
(1)
i , z

(2)
i , z

(3)
i , 1)′, z

(1)
i and z

(2)
i are the average weekly-dose levels of

TMZ and CPT-11 for subject i, respectively, and z
(3)
i is the associated in-

teraction term. The parameters of interest in the survival-cure models are

15



the fixed effects parameters α′ = (α1, α2, α3), λ′ = (λ1, λ2, λ3, λ4) and the

link parameters π1 and π2, where the intercept λ4 is introduced to the in-

cidence model to take account of the fact that the incidence probability

pi = Pr(ξi = 1|zi,ui) can be very close to 1 if no treatment is given. This is

because there is an intrinsic growth of a tumour in the absence of treatment,

which eventually leads to the death or sacrifice of the mouse.

Following [21], the prior for each element of β, α and λ is chosen to be

N(0, 10000). The priors for σ−2
ε and each element of h0 are all chosen to

be Gamma(0.001, 0.001). The priors for Σu is chosen as the inverse-wishart

distribution with parameters (4, I2). For the link parameters π1 and π2, a

non-informative normal prior N(0, 100) is considered.

To see if the model links are really necessary, we consider the following four

possible link scenarios.

Case 1: longitudinal and survival-cure models are linked by π1 and π2.

Case 2: longitudinal and survival models are linked by π1 (i.e. π2 = 0).

Case 3: longitudinal and cure models are linked by π2 (i.e. π1 = 0).

Case 4: neither of these models are linked (i.e. π1 = 0,π2 = 0).

By assuming the normal prior N(0, 100) for π1 and π2, in Table 1 we sum-

marize the posterior means and 95% credit intervals of the parameters in the

models for each case above. We also provide the relative DIC values for all

the four possible scenarios. In each case, we uses 10,000 iterations of MCMC

sampling chains following a 5,000-iteration ‘burn-in’ period.

[Table 1 about here.]
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From Table 1, it turns out that the smallest DIC value is achieved by the

model that links all the three sub-models, implying that the joint modelling

may be necessary. The TMZ, the CPT-11 treatments and their interaction

all have significant negative effects on the tumour growth, implying the treat-

ments work in reducing the tumour growth. For the cure model, we can see

that the two treatments and their interaction have no significant effects on

the incidence probability. The only significant estimate is for the intercept

parameter λ4, which is about 3.353, leading to the incidence probability be-

ing 97% in the absence of treatments. In other words, without treatments

the tumour-beard mice have only 3% chances to be cured. For the survival

model, the CPT-11 has a significant positive effect on the survival time, but

and TMZ-11 and the interaction of the two treatments are not significant.

For the model that links all the three sub-models, the estimate for linking

parameter π1 = 0.607 is significant. This implies that individual tumor

growth is a significant risk factor for survivals. The link parameter π1 is

positive, which shows that the bigger the Rh18 tumour volume the higher

the hazard rate of death. For the linking parameter π2, the estimate for π22

are significant, but the estimate for π21 is not significant. This implies that

the gradient ui1 (the rate of individual tumor growth) is a significant risk

factor for cure probability. The higher the individual tumor growth rate, the

higher death probability (the smaller cure probability).

When only having link for longitudinal and survival sub-models (case 2 in

Table 1), the link parameter π1 is not significant anymore, which implies that
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the tumor growth does not have significant effects on survival. This is not

true in realistic. In addition, without having the second link parameter π2,

the parameter λ2 becomes significant (cases 2 and 4). The main reason for

this is that the random effects are not considered in cases 2 and 4, which

distorts the estimation of fixed-effect parameter λ.

When only having linking parameter π2 (case 3 in Table 1), the link param-

eter π22 is also significant. Although most results in case 3 are similar as

that in case 1, not having the first linking parameter (case 3) has a smaller

estimate for α2 = −0.143 than α2 = −0.217 in case 1. This means that

without the first linking parameter, we could underestimate the effects of

the treatment agent CPT-11, which is the only significant risk factor for sur-

vivals. For this reason and the DIC values, we suggest that case 1, the full

model, is more suitable for the data.

We also considered the models without using intrinsic growth constraint.

The results for the full model and separated models are provided in the sup-

plementary files. Basically the the results of having intrinsic growth and not

having intrinsic growth are consistent. The main difference is as following.

Without having constraint, the baseline tumor volumes (no treatment) are

estimated by φ2t
2 + φ1t + φ0, with φ2 = 5.11, φ1 = −2.15 and φ0 = −0.065.

This implies that without treatment, the tumor will decrease approximately

before time 0.2 (week 2 as we use week divided by 10 for the new time scale),

and then increase after that. However, this is not correct in practice, since

the tumor will surely increase if no treatments are received.
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5 Simulation studies

We mimic the real data in Section 4 in the following simulation studies. The

covariates X i(t), wi(t) and zi are the same as that in the real data study.

In other words, we have three covariates in the simulation: two treatments

TMZ and CPT-11, and their interaction. These covariates are included in

both the longitudinal and survival models. We also choose two dose levels

for the TMZ 42 mg/kg and the CPT-11 0.61 mg/kg and then consider eight

groups of treatments as that in data analysis. The sample size is m = 51 and

the number of samples in each group is the same as that in the real data study.

The independent random effects ui are assumed to follow Normal distribution

N(0, Σu), the random errors εi follow Normal distribution N(0, σ2
εIni

), and

ui and εi are mutually independent.

Given the random effects ui and covariates zi, the incidence event ξi is gen-

erated from the model (4).

For those subjects with incidence indicator ξi = 1, on the other hand, the

survival model (5) is used to generate the survival outcomes Ti. The baseline

hazard rate h0(t|ξi = 1) is assumed to be a piecewise constant function

h0(t|ξi = 1) = h0j, tj−1 ≤ t < tj, (j = 1, · · · , n)

and h01 = 1.6, h02 = 3.0, h03 = 9.8, h04 = 16.7, which are the estimated

values in the real data analysis. It is assumed that the baseline hazard

has an increasing jump because the hazard rate increases in the absence of
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treatments.

Our data are generated from the full model, with linking parameters π1 = 0.6,

π21 = 0 and π22 = 1.22.

We compare the simulation results for two models, the model with the as-

sociation (π1 6= 0 and π2 6= 0) and the model without the association

(π1 = 0,π2 = 0). We simulate 100 data sets and calculate the sample mean

and the sample standard deviation for each parameter estimator. For each

data set, we draw 5,000 random samples from the posterior distributions fol-

lowing a 5,000-iteration ‘burn-in’ period in order to estimate the parameters.

Table 2 provides the parameter estimators, standard deviations and coverage

probability of credible interval.

When the latent association of longitudinal and survival-cure data does exist,

i.e., π1 6= 0 and π2 6= 0, the proposed joint modelling approach performs

very well. For example, the link parameter estimators of π1 and π22 are

statistically significant, which correctly identifies that the joint models are

really necessary. On the contrary, the separated modelling approach that

ignores the existing inherent association gives estimates with larger bias in

the survival models. In addition, the separate model has lower coverage

probability.

[Table 2 about here.]
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6 Discussion

In this paper we propose a joint modelling approach to account for the likely

inherent association for longitudinal data and survival-cure outcomes. We

propose to use common random effects to connect the different models. The

approach is then used to analyze a real data set arising from tumour xenograft

experiments. Bayesian inferences are obtained using an MCMC approach,

showing the parameter estimators from the posteriors are robust against the

priors of the link parameters. Our conclusion on the data analysis is mostly

consistent with [22] but the inherent association of different types of data is

taken into account so that more information is discovered. Simulation studies

show that the proposed joint modelling approach produces very satisfactory

parameter estimators.

Some further research needs to be studied when each mouse has multiple

tumours. [21] described an example of preclinical studies evaluating the

anti-tumour effects of exemestane and tamoxifen for postmenopausal breast

cancer, in which each mouse received subcutaneous injections at two sites

and developed four tumours in the process. It is anticipated that multivariate

longitudinal responses and multi-dimensional random effects will be involved

and additional correlation between tumours for the same mice should be

accounted for. We will report this in a follow-up paper.

In our study, the cure probability is just the probability that a mouse is

cured or not, eventually. It does not depend on time, which is a limitation

of our work. In other studies, it may also be interesting to consider that the
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cure probability depends on time, if the cure times are available. A Markov

transition model might be employed to deal with such problems.
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Figure 1: Observed tumor volumes for the eight treatment groups for 8
groups
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Table 1: Posterior mean (95% credible interval) of the parameters and the
DIC values.

Par. Case 1 Case 2 Case 3 Case 4
DIC 693.8 721.6 724.6 768.4
φ0 -0.372 -0.359 -0.464 -0.349

(-0.790, -0.010) (-0.733, -0.024) (-0.819,-0.090) (-0.721, 0.013)
φ1 0.495 0.528 0.465 0.519

(0.016, 1.473) (0.027, 1.412) (0.015,1.516 ) (0.022, 1.586)
φ2 3.829 3.691 3.784 3.745

(3.059, 4.659) (2.780,4.842) (3.100, 4.535) (3.008, 4.569)
β1 -0.291 -0.239 -0.283 -0.269

(-0.558, -0.131) (-0.407, -0.082) (-0.442, -0.150) (-0.401, -0.112)
β2 -0.268 -0.277 -0.261 -0.264

(-0.328, -0.198) (-0.334, -0.218) (-0.322,-0.186) (-0.318, -0.189)
β3 -0.078 -0.093 -0.070 -0.080

(-0.142, -0.016) (-0.145, -0.035) (-0.125,-0.018) (-0.144, -0.029)
α1 -0.150 -0.111 -0.086 -0.057

(-0.395, 0.102) (-0.387, 0.111) (-0.298,0.124) (-0.270, 0.140)
α2 -0.217 -0.182 -0.143 -0.117

(-0.370, -0.103) (-0.305,-0.075) (-0.241,-0.046) (-0.219,-0.033 )
α3 0.431 0.462 0.223 0.383

(-0.210,0.893) (-0.061, 0.911) (-0.408,0.715) (-0.035,0.744)
λ1 0.020 0.023 -0.060 -0.037

(-2.639, 2.943) (-1.736, 1.892) (-2.763,2.791) (-2.095,2.003)
λ2 -2.723 -2.551 -2.603 -2.573

(-5.533, 0.254) (-4.359, -0.952) (-5.637,1.318) (-4.490,-0.837)
λ3 -2.793 -1.855 -2.101 -1.775

(-6.377, 0.290) (-4.290, 0.241) (-5.742,1.321) (-4.380, 0.576)
λ4 3.353 3.198 3.516 3.216

(0.548, 6.204) (1.433, 5.298) (0.756,6.635) (1.286, 5.423)
π1 0.607 0.505 0 0

(0.098, 1.228) (-0.015, 1.063) – –
π21 0.046 0 -0.248 0

(-2.567, 2.543) – (-3.086, 2.544) –
π22 1.219 0 1.852 0

(0.296, 3.113) – (0.451, 4.094) –
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Table 2: Simulation results for the case that there is a latent association, i.e.,
π1 6= 0 and π2 6= 0. The sample size m=51.

Par. True Separate modelling Joint modelling
Estimates St.D. Coverage prob Estimates St.D. Coverage

φ0 -0.40 -0.383 0.043 0.86 -0.392 0.030 0.92
φ1 0.50 0.556 0.026 0.88 0.535 0.022 0.94
φ2 3.80 3.707 0.082 0.89 3.736 0.128 0.92
β1 -0.30 -0.306 0.115 0.95 -0.297 0.141 0.95
β2 -0.27 -0.273 0.047 0.95 -0.264 0.067 0.96
β3 -0.20 -0.201 0.084 0.91 -0.211 0.082 0.90
α1 0 -0.198 0.206 0.95 -0.207 0.214 0.95
α2 -0.22 -0.207 0.084 0.92 -0.222 0.088 0.93
α3 0 0.137 0.244 0.96 0.137 0.267 0.96
λ1 0 0.913 0.606 0.96 0.926 0.645 0.95
λ2 0 -0.089 1.215 0.95 -0.294 1.160 0.95
λ3 0 0.019 0.653 0.95 -0.176 0.871 0.96
λ4 3.35 4.329 0.867 0.90 4.292 0.943 0.92
π1 0.6 - - - 0.482 0.142 0.95
π21 0 - - - -0.327 0.539 0.96
π22 1.22 - - - 1.397 0.596 0.96
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