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Abstract

We look at the possibility of integrating the percepts from multiple non-communicating observers as a means of achieving
better joint perception and better group decisions. Our approach involves the combination of a brain-computer interface
with human behavioural responses. To test ideas in controlled conditions, we asked observers to perform a simple matching
task involving the rapid sequential presentation of pairs of visual patterns and the subsequent decision as whether the two
patterns in a pair were the same or different. We recorded the response times of observers as well as a neural feature which
predicts incorrect decisions and, thus, indirectly indicates the confidence of the decisions made by the observers. We then
built a composite neuro-behavioural feature which optimally combines the two measures. For group decisions, we uses a
majority rule and three rules which weigh the decisions of each observer based on response times and our neural and
neuro-behavioural features. Results indicate that the integration of behavioural responses and neural features can
significantly improve accuracy when compared with the majority rule. An analysis of event-related potentials indicates that
substantial differences are present in the proximity of the response for correct and incorrect trials, further corroborating the
idea of using hybrids of brain-computer interfaces and traditional strategies for improving decision making.
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Introduction

The human visual system is far superior to any automated

computer system in the processing and interpretation of visual

scenes in ordinary conditions. Nonetheless, there are many

limitations in its ability to accurately perceive and interpret the

external environment, particularly in the presence of complex

scenes – where the perceptual load is high – in the absence of

sufficient time to complete the visual parsing or when attention is

divided amongst multiple tasks. The exact nature of the perceptual

and cognitive limitations has been studied for decades and

demonstrated, for example, by phenomena such as attentional

blink, repetition blindness, illusory conjunctions and the ventril-

oquist effect, all showing how stimuli can be missed, perceived

with the wrong features or mislocated [1–4]. Because of these, and

many other limitations, observers can typically attend and

accurately perceive only a subset of the features of a complex

scene, thus affecting their ability to assess situations, which, in turn,

may result in sub-optimal decisions.

These limitations can partly be overcome if two or more

individuals are involved in the assessment process, as, naturally, a

group of individuals has access to more information and can

therefore produce better decisions than a single individual.

Decision Making in Groups
Years of research on decision making have shown how group

decisions can be superior compared to individual decisions in

many different contexts (see, for example, [5–8]), including settings

where individuals are involved in visuals tasks [9]. However, there

are circumstances in which group decision-making can be

disadvantageous [10,11]. Flaws can be caused by, for example,

difficulties in coordination and interaction between group

members, reduced member effort within a group, strong

leadership, group judgement biases, and so on [6,8,9].

Therefore, though typically optimal group decisions are

mediated by communication and feedback, whereby members of

a group share information and get to know other members’

opinions [12], more communication and feedback is not neces-

sarily better. A recent study [13], for example, has found that

when there are time constraints or if leadership prevails, the

process of combining information from freely-communicating

individuals can be an obstacle to optimal decision-making.

Even when there is a group advantage, that does not always

necessarily increase monotonically with the number of group

members: the optimal group-size seems to depend on the task at

hand [14].

Group decisions can be negatively affected by communication

biases and group dynamics both in terms of the quality of the

decisions and in terms of timing. This can be particularly true in

circumstances where optimal decisions rely on accurate and rapid

information about the external environment, and decisions have to

be taken rapidly. In these circumstances, multiple individuals can

provide more accurate information. However, at the same time,

communication between those individuals and time pressure can

deteriorate the quality of a decision and slow down the decision

process.
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Neural Correlates of Decision Making and Collaborative
Brain-Computer Interfaces

A way to bypass some of the disadvantages of group decisions –

while at the same time preserving the advantages – is by exploiting

neural information about the perceptual and cognitive processes

related to decision making.

Neuro-imaging and other techniques can reveal important

information about the different cognitive stages that lead to a

decision. Early visual–evoked potentials, such as the P1 and N1,

are sensitive to the level of attention of an individual engaged on a

specific task, where, for example, the N1 amplitude decreases as

the attentional level decreases [15,16], while its latency is sensitive

to the difficulty of the task. The difficulty of a task also affects

amplitude and latency of the P300 [17], an event-related potential

(ERP) associated to target detection and recognition. While these

ERPs are typically associated with early perceptual and cognitive

processing of events, there are other, later components, that are

instead associated with decision processes preceding, for example,

an overt response made by the observing individual. One of these

is the Contingent Negative Variation, a slow ERP component

related to the preparation for a motor response and stimulus

anticipation. The amplitude of this component has been shown to

be smaller before incorrect responses compared with correct

responses [18]. The Error Related Negativity – an ERP

component occurring about 50–80 ms after an incorrect response

– can also provide information about levels of confidence of

decision making as it is affected by certainty or uncertainty about

own performance [19]. Further findings have shown how ERPs

can be related to both conscious and unconscious error detection

[20] and timing of decisions [21] – all factors that are relevant to

efficient decision making.

Moreover, neural correlates of an individual decision can be

detected as early as about 800 ms before an explicit response is

given, as shown for example by [21]. We should also note that it

has been known for a long time that other (behavioural)

measurements, such as the response times, are influenced by,

and thus can reveal, the confidence in a decision [22].

Given these psychophysiology findings, it would seem reason-

able to attempt to exploit this information to improve decision

making (e.g., decisions based on neural activity can potentially be

faster or better). However, EEG data are too noisy to use neural

correlates on their own to reliably provide information on (or aid)

single decisions (all the previously mentioned reports base their

findings on averaging the signals resulting from a large number of

repetitions of each event).

Nonetheless, it is plausible to think that collective decisions

could be based, or partly based, on the integration of the brain

activity of the members of a group. In fact, bypassing overt

interaction and communication between group members might

help overcome some of the drawbacks of group decision-making,

previously discussed, while still preserving a key benefit of group

interactions: that individuals who are not very confident in their

decisions will influence a group’s decision less and vice versa.

Group decision-making supported by the integration of neural

activity would be particularly suitable – but not limited – to

circumstances where decisions are based on a rapid and accurate

assessment of the environment and where fast reactions are

needed.

The possibility of aggregating the brain activity of members of a

group to reach optimal decisions has been recently explored by

[23], who integrated (offline) the EEG (electroencephalogram)

activity of up to 20 individuals engaged in a simple perceptual

decision-making task (i.e., discriminating between rapidly present-

ed pictures of cars and faces). It was found that combining neural

activity across brains of at least eight observers resulted in decisions

more accurate than decisions based only on behavioural responses

of single observers. Also, group decisions could be predicted not

only by the neural activity related to the decision processes, but

also by the neural activity correlated to early perceptual

processing. This shows that, in the specific experimental settings

of that study, ‘‘multi–brain’’ decisions can be taken faster than

decisions based on overt communication (decisions could be made

as early as 200 ms after stimulus presentation). However, accuracy

of groups based on the integration of the members’ neural signals

was never superior to groups’ behavioural performance. Also, in

the study, classification was facilitated by the neural signals that

are known to differentiate encoding of faces from encoding of

other objects (different brain areas are known to process faces

compared to object processing and face perception is known to

produce very distinctive EEG signals, i.e., particularly the N170

ERP [24]). Therefore, the method described by [23] might not

work as well in other settings where stimuli do not include faces.

The idea of multi–brain collaborative decision as proposed by

[23] has recently been applied to Brain Computer Interface (BCI)

research. For example, in [25] the performance of single and

offline collaborative BCI in a task of movement planning have

been compared. In the experiment described, through directly

extracting information from the posterior parietal cortex and

bypassing the motor related procedures, the collaborative BCI

system could accelerate a motor response by using an artificial

limb. However, this was achieved at the expense of accuracy: even

when integrating up to 20 users, this was never above 95% (while

performance of a non-BCI single user was 100%, with average

response times of 464 ms).

In [26] an online collaborative BCI for detecting the onset of a

visual stimulus presented on a black background was proposed.

The presentation of the stimuli produced visually evoked potentials

that a collaborative BCI was able to detect more accurately than a

single-user BCI. Decisions could be made very rapidly (e.g., at

120 ms from stimulus onset) compared with participants’ behav-

ioural responses (response time was 332 ms on average), but with

substantially lower accuracy (approximately 85% vs virtually

100% for behavioural responses). Also, in the study there was no

decision but only detection of one type of event. A similar

methodology was adopted in [27], where as in [23] participants

were asked to discriminate between images of faces and images of

cars presented for 16.7 ms. However, unlike [23], here the task

was changed into a Go/NoGo task requiring participants to

respond only when faces appeared. This task was only performed

in the offline collection of data to be used for training a Support

Vector Machine classifier, while during online tests participants

were not required to give any response. However, in the latter

participants were given immediate feedback showing both the

correct and the actual BCI response. In the study, the online

performance of a collaborative BCI involving six individuals (78%

accuracy) was superior to that of a single-user BCI (65% accuracy),

but both were significantly worse than average behavioural

performance (92% accuracy). Decisions, however, could be made

within 360 ms, which is approximately 50 ms faster than the

average behavioural response time. (It is difficult to determine

what influence the feedback had on participants’ performance, but

we note that the use of feedback limits the applicability of the

technique only to decision-making studies where the correct

outcome is known beforehand.)

Multi-brain aggregation not only can facilitate rapid analysis of

the environment and decision making, but can also assess

characteristics such as group emotions, as shown in [28]. There,

an experiment was described in which a group’s emotional index
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was obtained by aggregating EEG and electromyographic signals

from two individuals who were observing emotion-triggering

images.

The studies described in this section show that there can be an

advantage, over single user performance, when brain activity of a

group of individuals is integrated. Also, the larger the group the

better the overall performance (groups of up to 20 people were

tested in both [23] and [25]). However, while the collaborative

BCIs described above can make faster decisions compared to

behavioural ones or single-users BCIs, higher accuracy is never

achieved (only in [27] performance of the collaborative BCI was

more accurate than the single-BCI’s performance).

Very recently [29] we have also started studying the potential of

a collaborative approach to BCI. In particular, we developed

collaborative versions of our analogue BCIs for real-time 2–D

pointer control developed in previous work [30–32] where the

pointer movement is controlled via the integration of the brain

activity of two users. The analysis of performance with three

participants indicated that our best collaborative BCI produces

trajectories that are statistically significantly superior to those

obtained in the single BCI user case.

Contributions of the Present Study
In the present study we examine the possibility of using neural

and behavioural features to improve the accuracy of group

decisions in a visual-matching task, where images were presented

to observers in taxing perceptual conditions (namely, high

perceptual load and high speed of stimulus presentation). As

previously discussed, in these cases human perception may not

only be incomplete but also incorrect or, at the very least,

imprecise. By integrating the neural activity and behavioural

responses from multiple observers we hoped to achieve more

accurate evaluations of such images. (We reported on preliminary

results of this exploration in a conference paper [33], where,

however, we used fewer participants, a completely different set of

features and less powerful prediction models than those reported

in this work. These resulted in much weaker neural correlates of

decision confidence and generally poorer performance than those

obtained here.)

BCI has hitherto implied the use of brain signals from a single

user, but, as seen in the previous section, the technology also gives

us access to data pertaining to various cognitive processes which

have only recently begun to be investigated in multi-user scenarios.

Our research departs from previous work in two important

respects.

A first distinguishing feature of the work reported in this article

is that here we focus on combining BCI technology with human

behavioural responses, in order to achieve more accurate decisions

than those obtained by a group of individuals making decisions by

a traditional majority rule. Previous work on collaborative BCI,

instead, has focused on achieving faster-than-human performance.

However, this has been done either at the cost of a significant

reduction of accuracy compared to a single BCI user, or at the

expense of using a large group of BCI users to achieve the

performance of a single non-BCI user (e.g., groups of 7 BCI users

were required to achieve the same accuracy of one non-BCI user

in [23]).

A second distinguishing feature of our work is that here we have

striven to derive neural correlates that can be predictive of the

certainty with which decisions are taken. We did not want neural

correlates associated with the particular choice of stimuli (e.g., face

processing is known to produce distinctive ERPs), a particular task

(e.g., Go/NoGo tasks produce very different ERPs in the Go

condition, where a motor response is required, than those in the

NoGo condition, where no response is provided) or a particular

way of giving behavioural responses (e.g., left– and right–hand

responses activate motor areas in opposite cerebral hemispheres)

as has been done in most of previous work.

The article is organised as follows. In the ‘‘Methodology’’

section we describe the method used in the study, including the

novel neural and neural-behavioural features we have defined to

capture user certainty and our group decisions strategies based on

those features. In the ‘‘Results’’ section, we provide a statistical

analysis of these features, we study group decisions based on our

decision strategies, relating them to both single-user and group

decisions based on the traditional majority rule, and we look at the

ERPs produced for different levels of certainty. We also show that

only using the fastest respondents in a group to make group

decisions may lead to decisions that are both more accurate and

faster than those of both single non-BCI users and BCI-assisted

whole groups. Finally, we conclude the article with some

conclusions on our findings and an indication of possible future

work.

Methodology

Our collaborative BCI involves the combination of three

features: (a) the neural features extracted from the EEG signals

of each group member (nf), (b) the decisions made by each

member and (c) the response time (RT). As indicated above,

response times are indicators of confidence (longer decision times

being normally associated with lower confidence). Also, our neural

features were specifically designed to represent confidence. Using

these features, we applied three different methods to weigh each

member’s decisions before algorithmically combining them and

achieve more accurate group decisions.

To test our ideas in a suitably constrained environment, we used

a particularly simple set of visual stimuli, which, however, were

presented very briefly thereby making the matching task

particularly arduous.

Participants
We gathered data from 10 participants with normal or

corrected-to-normal vision (average age 30.6, SD 9.5; 6 female,

8 right handed), who gave written informed consent to take part in

the experiment.

The research was part of a project entitled ‘‘Global –

engagement with NASA JPL and ESA in Robotics, Brain

Computer Interfaces, and Secure Adaptive Systems for Space

Applications – RoBoSAS’’ funded by the UK Engineering and

Physical Sciences Research Council (project reference EP/

K004638/1) which received ethical approval on the 30th of

May 2012 by the Research Director of the School of Computer

Science and Electronic Engineering of the University of Essex on

behalf of the university’s Faculty Ethics Committee.

Stimuli and Tasks
Participants underwent a sequence of 8 blocks of trials, each

block containing 28 trials, for a total of 224 trials. Each trial (see

Figure 1) started with the presentation of a fixation cross in the

middle of the screen for 1 second. This time allowed participants

to get ready for the presentation of the stimuli and allowed EEG

signals to get back to baseline after the response from previous

trials. Then observers were presented with a sequence of two

displays, each showing a set of shapes. The first set (Set 1) was

presented for 83 ms (5 frames of a 60 Hz screen) and was

immediately followed by a mask for 250 ms. The mask was a

vertical sinusoidal grating with a period of 1 degree subtending

Collaborative BCI for Aiding Decision-Making
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approximately 8 degrees. After a delay of 1 second, the second set

of stimuli (Set 2) was shown for 100 ms. Following this, observers

had to decide, as quickly as possible, whether or not the two sets

were identical. Responses were given with the two mouse buttons

(left for ‘‘identical’’, right for ‘‘different’’), controlled with the right

hand, and response times (RTs, expressed in seconds) were

recorded (more on this later). Each set consisted of three shapes

(subtending approximately 1.5 degrees and being approximately

1.8 degrees apart), which could be any combination of a triangle,

square and pentagon (see Sets 1 and 2 in Figure 1). Note that the

same shape was allowed to be present multiple times within a set.

Each shape was coloured either in pure white (corresponding to

normalised RGB (1,1,1)) or light grey (RGB (0.65,0.65,0.65)).

Shapes were presented on a black background.

We should note that the right hand was the non-preferred hand

for the 2 left-handed participants out of the 10 in our study. While

there are typically RT differences when participants use their non-

preferred hand over the preferred one, such differences are very

small [34] and whether the preferred hand is faster or slower than

the non-preferred one depends on the task (e.g., see [35]). So, it is

unlikely that this affected in any significant way our results.

With two shades of grey and three possible shapes for each of

the three elements in each set, there were a total of (263)3 = 216

different possibilities for each set, leading to a 2162 = 46,656

possible set combinations. Since each element of the three stimuli

in a set has two features (grey level and shape), we classified each

set pair based on the number of matching features the two sets in

the pair shared, a number that we called degree of match (DoM). If

all three stimuli of Set 1 differ in both shape and grey level from

the three stimuli in Set 2, we have a DoM of 0; if one element

shares a feature (e.g., the same shape), that is a DoM of 1; etc. So,

DoM ranges from 0 to 6 (6 corresponding to a perfect match

between Set 1 and Set 2).

Note that a feature was ‘‘shared’’ only when it was in the same

position in the two sets. Therefore, if, for example, Set 1 showed a

triangle in the first position, while Set 2 showed a triangle in the

second or third position, but not in the first position, that was not a

shared feature.

The combination of the shapes in Set 1 and their grey levels

were randomly selected. However, we found that randomly

selecting even the features of Set 2 would produce a dispropor-

tionate number of sets which had an intermediate DoM, thereby

under-representing the cases where a decision is particularly

difficult and also the ‘‘identical’’ condition. So, we imposed a

constraint that while stimuli would be random, there should be

equal proportions of each DoM category in each block. Once

randomly generated, the sequences of sets were stored, so that

identical sequences were used for all participants.

There are two reasons for this. Firstly, this ensures that all

participants underwent exactly the same experiment, which should

increase repeatability and reproducibility. Secondly, as we will

explain later, this allowed us to test offline the benefits of

combining the decisions of multiple users when presented with

identical displays.

The experimental blocks were preceded by a session of practice

to allow participants to familiarise with the task and the stimuli.

Participants were seated comfortably at about 80 cm from an

LCD screen. EEG data were collected from 64 electrode sites

using a BioSemi ActiveTwo EEG system.

Briefing, preparation of participants (including checking and

correcting the impedances of the electrodes used for EEG

recording) and task familiarisation took approximately 30 minutes.

Data Acquisition and Transformation
Response Time Measurement. To measure response times

we used button clicks on an ordinary USB mouse. The USB

polling rate was 125 Hz. So, the maximum hardware jitter on the

RT measurement was 8 ms (the sampling period). In the software

controlling the presentation of the stimulus and the synchronisa-

tion with the ActiveTwo EEG system, mouse click events were

captured in a while loop the body of which only contained a 5 ms

sleep. This adds a jitter of at most 5 ms. Finally, we marked the

EEG status channel of the ActiveTwo device with the event, which

had a further maximum jitter of 1 ms. So, the total maximum

jitter on RT was 14 ms. Response times in our experiment were

typically around 700 ms, but the shortest recorded RT across all

trials and participants was 251 ms. So, in the worst possible case

the relative error introduced by jitter in our RT measurements

could have been 7.2%, but on average we expect jitter to have

affected measurements by less than 2%.

EEG Signal Acquisition and ERPs. The EEG channels

were referenced to the mean of the electrodes placed on each

earlobe. The data were initially sampled at 2048 Hz and were

then band-pass filtered between 0.15 and 40 Hz with a 14677-tap

FIR filter obtained by convolving a low-pass filter with a high-pass

filter both designed with the window method. A form of correction

for eye-blinks and other ocular movements was performed by

applying the standard subtraction algorithm based on correlations

[36] to the average of the differences between channels Fp1 and

F1 and channels Fp2 and F2. The data were then low-pass filtered

with an optimal 820-tap FIR filter designed with the Remez

exchange algorithm [37] with a pass band of 0–6 Hz and a stop

Figure 1. Stimulus sequence used in our experiment. In each trial, a fixation cross was displayed for 1000 ms, followed by a black screen for
another 1000 ms. Then, Set 1 (a first stimulus composed by three shapes) was presented for 83 ms, followed by a mask (for 250 ms), a black screen
(for 1000 ms) and then Set 2 (a second stimulus structurally similar to the first) for 100 ms. The response time, RT, was computed from the onset of
Set 2.
doi:10.1371/journal.pone.0102693.g001
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band of 8–1024 Hz. The data were finally down-sampled to a final

sampling rate of 16 Hz.

The EEG data were segmented into epochs for the purpose of

extracting our neural feature. Normally in ERP analyses epochs

start in synchrony with the presentation of the stimulus (they are

‘‘stimulus-locked’’) and last for a certain time. However, here we

were also interested in the neural processing that immediately

precede and follows a participant’s response. This is best captured

by using a ‘‘response locked’’ approach, where epochs start a pre-

fixed amount of time before the user’s response. So, we decided to

look at two epochs of data: one lasting 1500 ms and starting on the

onset of Set 2 (we wanted to capture the neural signals that

immediately follow this stimulus since they might reflect the degree

of accuracy, or the level of attention, this stimulus was perceived

with) and one lasting also 1500 ms and starting 1000 ms before

the response (i.e., the epoch ends 500 ms after the response time).

However, the stimulus-locked component was not used in the final

system as the information about decision confidence is more

evident in the response-locked epochs, as we will see in the ‘‘ERP

Analysis’’ section. Thus, at a sampling rate of 16 Hz epochs

encompassed 24 time samples for each of the 64 EEG channels

used.

Space-Time Feature Extraction. Various linear transfor-

mations and basis changes on EEG signals have been proposed in

the literature to combine different channels and to extract

meaningful components. Principal Component Analysis (PCA)

has been used as a tool for the analysis of EEG and ERPs since the

mid sixties [38–40]. PCA is based on the idea that the data are a

linear combination of ‘‘principal components’’ which need to be

identified. PCA components are orthogonal and they maximally

account for the variance present in the data. Because of this, it is

often possible to accurately represent the original data with a small

set of components. Spatial PCA is used in ERP analysis to find

components that represent the covariance in the measurements

taken at different electrodes, typically measured over multiple

epochs. These components are obtained by extracting the

eigenvalues and eigenvectors of the covariance matrix. More

recently Independent Component Analysis (ICA) [41] has seen

considerable popularity in EEG and ERP analysis [42–44]. If a set

of signals is the result of linearly superimposing statistically

independent sources, ICA can decompose the signals into their

primitive sources or ‘‘independent components’’. When ICA is

applied to the signals recorded at different electrodes on the scalp,

it can separate important sources of EEG and ERP variability.

This can then be exploited, for example, to remove artifacts. In

[45] we introduced an alternative representation for EEG signals

based on a set of functions, which we called eigenbrains, that are

particularly suitable to represent the large-scale dynamics associ-

ated with ERPs. The method has some similarity with PCA in that

eigenbrains are the eigenvectors of a matrix. However, unlike for

PCA, this does not use the covariance matrix, but a matrix that

represents an approximate model of the brain as a collection of

coupled harmonic oscillators.

In this work, we decided to adopt a spatio-temporal PCA (as this

is an established and well-tested technique). In this version of PCA

we simply treat the channels and the time steps in an epoch as

separate stochastic variables. Therefore, with 64 channels and 24

time steps per epoch we obtained a 1,53661,536 covariance

matrix, the eigenvectors of which represent a new set of basis

vectors for representing ERPs. The values of the corresponding

1,536 features are simply obtained by performing the dot product

between each basis vector and the voltage values in an epoch.

Feature Selection. Naturally, it is always difficult to deal with

a highly dimensional feature space such as the one defined by our

Figure 2. Plots of the negative exponential weighting function v(x) adopted in our studies (see Equation (3)) to transform neural
and behavioural correlates of confidence into decision weights. The green line represents the weighting function used for response times,
while the blue line represent the function used for the nf feature. The shape of these functions allows confident decisions to count more than
uncertain ones.
doi:10.1371/journal.pone.0102693.g002
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spatio-temporal PCA and, so, some form of feature selection is

required. Fortunately, with PCA, the basis functions can be

ordered in terms of representational importance on the basis of the

magnitude of the corresponding eigenvalues, as these represent the

amount of variability/variance in the data represented by each

component. Considering only the n basis functions corresponding

to the n largest eigenvalues is, therefore, a simple form of feature

selection. As this has proven effective in many cases, in this work

we adopted this strategy and selected the first 24 principal

components as features. This corresponds to a 1 to 64 reduction

from the original 1,536 features.

Note, however, that since PCA aims at capturing the features of

the EEG signals irrespective of the task at hand, the feature

selection strategy adopted here may not necessarily be optimal for

the task at hand. In future work we plan to test more sophisticated

forms of feature selection.

Neural and Behavioural Correlates of Confidence in
Decision-making

One of the aims of our study was to identify a neural feature

representing the degree of certainty of the decision taken by an

observer. However, ground truth information on confidence is not

directly available. One can ask a participant to tell his or her

degree of confidence in a decision, but it is not clear how objective

this measure of confidence would be. So, here we concentrated on

trying to find a more objective surrogate of the certainty of a

decision. In particular, we tried to characterise the cases where the

response given by a user was correct vs the cases where the

response was incorrect. In a rational observer, we can safely

assume that incorrect responses are so because the perceptual

processes leading to the decision did not provide all the necessary

information to take the correct decision. It thus stands to reason

that in these conditions the confidence with which an observer

took a decision would be low for most of the ‘‘incorrect’’ trials. On

the contrary, the confidence with which an observer took a

decision would be higher for most of the ‘‘correct’’ trials.

Of course, when one is not confident as to what he or she has

seen, random guessing may be a significant element in the

decision. When an observer guesses, it is possible that he or she will

give the correct response just by shear luck. So, a fraction of the

trials where a correct response is recorded may be characterised by

low confidence in the decision. However, if the proportion of

correct decisions is sufficiently high (as in our experiments), in the

majority of ‘‘correct’’ trials the observer’s confidence will be

significantly higher than for ‘‘incorrect’’ trials.

Thus, finding predictors of whether the decisions made by a

participant will be correct or incorrect would essentially amount to

finding predictors of the degree of certainty of the participant in

making such decisions.

To perform this task, we used a method based on a form of

multivariate linear regression known as Least Angle Regression

(LARS) [46]. We should note that LARS is normally used for

identifying the coefficients of a linear model while at the same time

optimally deciding which variables/features should be included in

the model. However, in this work we only used LARS as a

regression algorithm with a prefixed number of features. We used

LARS as in future research we intend to explore its ability to

perform feature selection.

To prepare for LARS, we divided up the PCA-transformed

epochs within a training set into those where a correct response

was given and those where it wasn’t. We associated the desired

output +1 to trials resulting in an incorrect response and 21

otherwise. We then passed the epochs and their corresponding

desired output values to LARS. The model described by LARS

had the form

nf ~a0z
X
i[S

aixi, ð1Þ

Figure 3. Percentage of erroneous decisions made by each participant in the 224 trials of our experiment. Error rates ranged form 5%
to over 20% with an average error rate of 12.5%.
doi:10.1371/journal.pone.0102693.g003
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Figure 4. Box plots representing the distributions of the weights for different features and for different decisions (left) and
corresponding probability density functions estimated via Gaussian kernel density estimation. As indicated graphically in the plots on
the left and as discussed in the text, the differences between correct and incorrect decision weights are highly statistically significant for all methods.
doi:10.1371/journal.pone.0102693.g004

Table 1. Medians (across all participants) of the decision weights wdi associated to behavioural, neural and neuro-behavioural
methods presented in this paper, as a function of whether the user’s response was correct or incorrect.

wdi

Decision RT nf RTnf

correct 27.514 26.967 27.543

incorrect 22.721 21.943 22.412

doi:10.1371/journal.pone.0102693.t001
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where nf is the neural feature obtained, ai are constant

coefficients, xi are the features representing an epoch (in the

spatio-temporal PCA reference system) and S5f1, . . . ,1536g is

the subset of the 24 features selected as explained above. We can

now use this neural feature to express the certainty of the

participant in the response given and weigh its influence in the

group’s decision – see below. Note that LARS was applied on a

participant-by-participant basis.

Another method that we have used to measure the confidence

in decisions made by the participants involves the response times

RT as a behavioural correlate. As described in previous sections,

slower response times are generally associated with uncertainty in

the decision made by observers, while faster response times mean

that participants were more confident in their decisions. This

information can be used, similarly to the neural feature described

above, to weigh the influence of each observer in the group’s

decision.

Using Behavioural and Neural Features in Decision-
making

As we indicated above, one of our objectives was to combine the

behavioural and neural features from multiple users – in

conditions of complete absence of communication or any other

form of social influence – to see under what conditions their

decisions in a perceptual task would be more accurate than those

taken by a single observer. To achieve this, we decided to compare

the standard majority rule against rules where the confidence of

the observers (as assessed by the RT feature, the nf neural feature

or their combination – see below) is used to weigh their decisions.

In the case of majority, all observers’ decisions (either a ‘‘yes’’ or

a ‘‘no’’) counts the same. The final decision is based on straight

majority for teams with an odd number of members and majority

followed by the flipping of an unbiased coin in the case of ties for

teams with an even number of members. Of course, to reduce the

noise in our performance estimates we didn’t actually flip a coin.

Instead, we used the expected value of the outcome of the decision.

That is, when counting the number of correct decisions we added

0.5 to the count for every decision where there wasn’t a majority

since such decision would turn up to be correct in exactly 50% of

the cases.

For the other methods, the decision made by each observer is

weighed according to the information about certainty given by the

features used (RT, nf or a combination of them). For each

participant, i, within a group, a decision weight, wdi, is computed

(on a trial-by-trial basis). Then, we take the following joint

decision:

decision~
yes if

X
i[Y wdiw

X
i[N wdi

no otherwise,

(
ð2Þ

where Y and N represent the sets of all observers who decided

‘‘yes’’ and ‘‘no’’, respectively.

The weights wdi for RT-based and nf-based methods were set

by transforming the corresponding feature through the following

negative exponential weighting function:

v(x)~ exp (x0{x), ð3Þ

where x0~4 for the RT-based method and x0~2:5 for the nf-
based method. Thus, when RT was used as a measure of

confidence, we set wdi~ exp (4{RTi), where RTi is the response

time for observer i in a particular decision. Similarly, when nf was

used to express certainty, we set wdi~ exp (2:5{nf i), where nf i is

the neural feature obtained from the LARS model in Equation (1)

for observer i corresponding to a particular decision.

Plots of the weighting function in Equation (3) for the two

methods are shown in Figure 2. The key reason for using a

negative exponential function is to allow very confident individuals

to count substantially more than uncertain or not so confident

individuals in the group’s decision. This allows neural (nf) and

behavioural (RT) correlates of decision confidence not just to

meaningfully break ties but also to swing the joint decision in

favour of a confident minority when the majority is sufficiently

uncertain. This function is also desirable as it is always positive,

avoiding negative weights which would imply changing ‘‘yes’’

decisions into ‘‘no’’ decisions or vice versa. The choice of x0w0
was to ensure there was reasonable variation in weights for both

RT-based and nf-based methods (as variation is a necessary

condition to do better than the majority rule). The particular

choices of x0~4 when RT is used as a measure of confidence and

x0~2:5 when nf is used were determined by the desire to make

the magnitude of the wdi produced by the two methods roughly

comparable.

We ask LARS to produce an output of -1 for correct decisions

and +1 for incorrect ones. Since participants typically make 10–

15% incorrect decisions, the average value for nf is between 20.7

and 20.8. On the contrary, RT is always positive, and typically

Table 2. Medians (across all participants) of the decision weights wdi associated to behavioural, neural and neuro-behavioural
methods, as a function of the degree of match, DoM, of the pair of stimuli used in a trial.

wdi

DoM RT nf RTnf

0 29.410 28.286 29.236

1 29.396 27.881 28.836

2 28.673 27.939 28.936

3 27.041 26.701 27.151

4 26.726 25.224 26.686

5 24.399 24.923 24.045

6 22.904 22.591 23.030

The DoM is the number of identical features the two stimuli in a pair have. Since each stimulus contains 6 features (the shape and colour of three polygons), in our
experiments a pair including two identical stimuli has DoM of 6.
doi:10.1371/journal.pone.0102693.t002
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around 0.7 seconds. So, by shifting the v functions used in the two

methods by values of x0 differing by 1.5, we are reasonably sure

that weights for these methods will be in approximately the same

range.

We also defined a third method (which we will call ‘‘neuro-

behavioural’’ or ‘‘RTnf-based’’ for reasons that will become

immediately apparent) for setting the decision weight wdi for the

contribution of a participant in a group’s decision using a linear

combination of the weights obtained with the RT-based and nf-

Figure 5. Average percentage of errors vs group size for the four methods for group decisions tested in this paper (top) and
average time required for groups of each size to make a decision (bottom). The plots also show error-bars representing the standard error
of the mean for each group size, except for groups of size 10 for which this cannot be computed as only one measurement is available. Statistical
comparisons for the error rates shown in the top plot are detailed in Tables 4 and 5 and are represented graphically in Figure 7.
doi:10.1371/journal.pone.0102693.g005
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based methods. More specifically, we set

wdi~
3

4
v(RTi)z

1

4
v(nf i): ð4Þ

where RTi is the response time for observer i in a particular

decision, nfi is the neural feature obtained from the LARS model

in Equation (1), and v is the weighting function described in

Equation (3).

The choice of the coefficients
3

4
and

1

4
was simply guided by our

experience with BCIs. BCIs tend to be relatively unreliable in

single-trial classification tasks. So, as our system requires trial-by-

trial decisions, by giving more influence to the confidence weight

inferred from RT we attempted to compensate for the higher noise

expected in nf. By combining these two methods we hoped to

obtain a more robust confidence measurement which would then

result in better decisions.

Learning Neural Correlates of Confidence
While in the RT-based method no machine learning or

adaptation of the model takes place, this is required when nf is

used to measure the confidence in the decision made. Our

application of LARS relies on the extraction of information from

the ERP data via PCA. Then LARS automatically selects the

coefficients for each component. Since this is a form of machine

learning, we must ensure that our results are not affected by over-

fitting.

Table 3. Average error rates (%) vs group size for the four methods for group decisions tested in the paper.

Group Size Majority RT nf RTnf

1 12.50 12.50 12.50 12.50

2 12.50 10. 27 10.41 9.74

3 7.23 7.16 7.36 7. 18

4 7.23 6.18 6.32 5.96

5 5.28 5.10 5.20 5.12

6 5.28 4.67 4.69 4.57

7 4.31 4.25 4.13 4.18

8 4.31 3.92 3.67 3.95

9 3.79 3.92 3.52 3.79

10 3.79 3.12 2.67 3.12

The minimum error rate for each group size is shown in bold face, the second best is in italics.
doi:10.1371/journal.pone.0102693.t003

Figure 6. Medians of the differences in error rates between group decisions made with RTnf and decisions taken by the best
performer in each group. Positive values indicate the extent to which groups were better than their best performers.
doi:10.1371/journal.pone.0102693.g006
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Ordinarily, validation of methods such as ours requires splitting

the available data into a training and a test set. Because the data

sets one can acquire in electrophysiology, neural engineering and

BCI studies are always relatively small compared to other

domains, we adopted, as is customary, a k-fold cross-validation
approach. In each fold we had a training set of (k{1)=k|224
trials and a test set of 224=k trials. We computed the PCAs and the

linear regression coefficients of LARS only using the training set.

We then reused these same values to estimate our features RT and

nf and the corresponding weights wdi as well as the weights

associated to the RTnf-based method for the trials in the test set.

In order to ensure all folds had the same number of samples, as the

number of trials (224) is divisible by 7 and by powers of 2 up to 25,

we used k = 2, 4, 7, 8, 14, 16, 28, 32, 56, 112 and 224 (leave-one-

out strategy) in our experiments, although we will mainly report

results for k = 16 (performance varied very little with k as we will

illustrate below).

Group Decisions based on Fastest Responders
As we discussed in the ‘‘Introduction’’ section, it is known that

response times are influenced by, and thus can reveal, the

confidence in a decision [22]. Typically, faster responses are

correct more often than slower responses. We decided to try to

exploit this effect within the context of group decisions. So, in

addition to the group decision methods discussed above, we also

tested the idea of making group decisions by only considering the

decisions of the faster responders in a group, as will be described in

detail in the ‘‘Results’’ section.

Results

Individual Decisions
To start our analysis, we looked at the differences in

performance shown by our participants when performing the task

in isolation and without any manipulation (weighting) of their

decisions.

The average error rate in the visual matching task used in our

experiment across all participants was 12.5%. However, as one

might expect, participants showed radically different individual

levels of performance as illustrated in Figure 3, with error rates

ranging from just below 5% to over 20%. Interestingly, if we look

at the subset of trials where matching pairs of stimuli were

presented, we see that participants gave incorrect decisions in only

0 or 1 out of the 28 matching pairs, thereby showing a very high

sensitivity to identical sets. The bulk of the errors, instead, were

due to participants having decided to classify as ‘‘matching’’

stimuli that actually did not match.

This pattern was common to all our participants except one

that, for unknown reasons, showed a much larger number of

missed matching pairs and overall gave responses that were hardly

distinguishable from random. So, this participants data were

discarded and replaced with data from a new participant.

Behavioural, Neural and Neuro-behavioural Features
Let us now turn our attention to our neural and behavioural

correlates of decision confidence.

To investigate the relationship between correct/incorrect

responses and the confidence with which decisions were taken,

we studied the distributions of the decision weights wdi associated

with RT and the neural feature nf, as well as the those based on

neuro-behavioural feature RTnf obtained as indicated in Equation

(4).

We started by binning the data (obtained via cross-validation)

on the basis of whether a decision made in a trial by an observer

was correct or incorrect. Table 1 reports the medians of the

decision weights associated to the behavioural feature RT and the

neural feature nf, and the neuro-behavioural mixing of the two,

RTnf, for correct and incorrect trials. The corresponding box plots

and density functions (obtained via a kernel-based estimator) are

shown in Figure 4. As one can see from these, the medians of the

decision weights are significantly lower for the incorrect decisions

than for the correct ones for all the features used. These differences

resulted to be highly statistically significant when we applied both

the Kruskal-Wallis test (a one-way, non-parametric, analysis-of-

variance test roughly equivalent to the parametric ANOVA test)

and the Wilcoxon rank sum test to the data. In all comparisons

and for both tests pv10{17 (with statistics H.77.6 and W.

363,600) in all cases. These tests indicate that trials where the

decision weights are characterised by lower values were also those

where decisions were more difficult (and were, therefore, taken

with a high level of uncertainty) than those characterised by higher

weights.

We should note that the use of the above-mentioned non-

parametric tests was required as the distributions of decision

weights (see Figure 4(right)) are clearly non-Gaussian. We used the

version of the Wilcoxon test included in the R package

exactRankTests which computes the exact test even in the

presence of ties. Sample sizes, which in non-parametric tests play

Table 4. p-values and corresponding H statistics (in brackets) returned by the Kruskal-Wallis test when comparing the
performance of single observers against the performance of groups of different sizes and adopting different decision methods.

Group Size Majority RT nf RTnf Sample sizes

2 0.751561 (0.1) 0.088386 (2.9) 0.274314 (1.1) 0.050447 (3.8) 10, 45

3 0.000094 (15.2) 0.000080 (15.5) 0.000077 (15.6) 0.000070 (15.8) 10, 120

4 0.000065 (15.9) 0.000009 (19.7) 0.000011 (19.3) 0.000006 (20.5) 10, 210

5 0.000002 (22.4) 0.000002 (23.0) 0.000002 (22.6) 0.000002 (22.9) 10, 252

6 0.000003 (21.7) 0.000001 (24.1) 0.000001 (24.2) 0.000001 (24.5) 10, 210

7 0.000001 (24.9) 0.000001 (24.9) 0.000000 (25.6) 0.000000 (25.5) 10, 120

8 0.000002 (22.4) 0.000002 (23.0) 0.000001 (23.3) 0.000002 (23.0) 10, 45

9 0.000174 (14.0) 0.000172 (14.1) 0.000146 (14.4) 0.000146 (14.4) 10, 10

10 0.113024 (2.5) 0.113024 (2.5) 0.113024 (2.5) 0.113024 (2.5) 10, 1

Samples sizes are indicated in the last column of the table. p-values below 0.01 are in bold face.
doi:10.1371/journal.pone.0102693.t004
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a role similar to the degrees of freedom for parametric ones, were

1960 for the ‘‘correct’’ class and 280 for the ‘‘incorrect’’ class.

We then binned the data on the basis of the degree of match of

the stimuli presented in each trial (as an indicator of the objective

difficulty of the task of discriminating them). Table 2 reports the

medians (across all participants) of the decision weights wdi

associated to different features as a function of the DoM of the

stimuli used in a trial. Overall, as we hypothesised, stimuli

configurations characterised by higher DoM, which are thus

objectively harder to decide upon, are associated with lower wdi,

suggesting that our neural and behavioural features do indeed

capture the confidence of decisions.

Group Decisions
We compared the performance of single observer decisions with

group decisions within groups of increasing size. All possible

memberships of the groups were tested. There are
m

n

� �
distinct

groups of size n constructed from a population of m observers.

Since we had m = 10 observers, we had 10 ‘‘groups’’ of sizes 1, 45

groups of 2 observers, 120 groups of 3, 210 groups of 4, and so on.

For each group we computed the number of errors made by the

group when using the four different methods of making decisions

studied in the paper (i.e., based on majority rule and our three

features RT, nf and RTnf). For each group size we then computed

the mean number of errors made with each method.

In Figure 5(top), we report the average percentage of errors as a

function of group size for the four methods for group decisions

tested in the paper. The data are also reported in numerical form

in Table 3. As one can see, in all methods studied except that

using majority rule for groups of size 2, group decisions were

superior to the decisions of single observers (we will look at the

Figure 7. Statistical preference-relation diagram representing the results reported in Table 5 graphically. For each group size, a one-
tailed Wilcoxon signed-rank test was executed, comparing the performance obtained with different decision methods. Solid arrows indicate that the
method at the arrow-head is statistically superior to the method at the other end of the arrow (p-value lower than 0.01) while dashed arrows indicate
near statistical significance (0:01ƒpv0:05).
doi:10.1371/journal.pone.0102693.g007
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statistical significance of this finding shortly), suggesting that

integration of perceptual information across non-communicating

observers is possible and beneficial. Also, we see that the straight

majority is generally outperformed by the other three methods.

This is particularly evident with groups having an even number of

members where the coin-tossing required by majority rule in the

presence of ties implies that performance is the same as that of

groups with one fewer member. The data also show that of the

three other methods, the RTnf-based method appears to be the

most consistent, being best or second best in 9 out of 10 cases. The

data also suggest that with large group sizes (from 7 upward) the

performance of majority starts saturating possibly to a worse

asymptote than the performance of the methods based on

confidence correlates.

It is also interesting to note that while performance of the nf-
based method appears to be inferior to RT-based and RTnf-based

methods for groups of sizes 2 to 6, it is the best method for groups

of 7, 8, 9 and 10 members. This suggests that our choice of

coefficients in Equation (4), while making RTnf a generally good

all-rounder, may have been suboptimal for the larger groups. We

will explore this issue in future research.

We will look at the statistical significance of these observations

later in this section. However, before doing this we want to make

two observations.

Firstly, let us focus on decision times. In Figure 5(bottom) we

report the average time required by groups of each size to make a

decision after the presentation of the second stimulus set. Since all

groups members must have made their decision before the group

can give a response, a group’s response time is the maximum

response time across group members. Unsurprisingly, the higher

accuracy shown by bigger groups in Figure 5(top) comes at the

cost of an increase group response time. In most cases it is unlikely

that waiting an extra few hundreds milliseconds would be a

problem. However, in the next section we show how the problem

can be bypassed.

Secondly, the improvement in performance seen in groups of

increasing size might simply be due to the increased likelihood of

inclusion of the top-performing participants in the larger groups.

For instance, our top performer, participant 4, will only be

included in 20% of the groups of size 2, in 50% the groups of size 5

and 90% of the groups of size 9. It is possible that the presence of

that participant in a group would be sufficient to drive the error

rate of the groups downward significantly. In principle, it might be

the case that groups don’t do better than their best performer. Of

course, we know that this is not the case, at least for groups of size

6 or above, simply because the group error rates are below the

error rate of our top participant. However, to investigate this issue

more thoroughly, for each group of a given size, we have

compared the performance of the group obtained by our RTnf-
based method to that of its best individual performer. Figure 6

reports the median difference in error rates between the two, for

each group size. The figure makes it quite clear that group

decisions are to a significant extent the result of a process of

integration of confidence across participants, and not only the

result of top performers driving group errors down.

Figure 8. Average percentage of errors vs group size and number of cross-validation folds for group decisions made with the RTnf-
based method. As can be seen from the overlapping error bars (representing the standard error of the mean) and extensive statistical comparisons
(see text), performance depends very little on the particular choice of the number of folds used for cross-validation.
doi:10.1371/journal.pone.0102693.g008
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To test if the observed differences in error rates in Figure 5(top)

and Table 3 are statistically significant, we compared the

distributions of errors made. We started by comparing the error

distributions of single observers with the error distributions of

groups of increasing size (for the four methods of group decision

tested) using the Kruskal-Wallis statistical test. Table 4 reports the

p-values and statistics returned by the test when comparing the

performance of single observers against the performance of groups

of different sizes and adopting different decision methods. This

shows that for groups of size 2, the RTnf-based method is very

close to be statistically significantly better than single observers,

while for the RT- and nf-based methods the overlap of the

distributions and sample sizes are such that statistical significance

is not achieved despite the performance of all methods being on

Figure 9. Comparison of the accuracies obtained with different groups sizes and different numbers of voters from within a group
against the corresponding response times for the group when using the majority (top) and RTnf (bottom) group-decision rules. Each
line colour represents a group size. Circles of different diameters represent different numbers of fastest responders (‘‘# voters’’) from each group
which were allowed to vote.
doi:10.1371/journal.pone.0102693.g009
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average 2 to 3% better than the single observers’ case (as shown in

Figure 5). On the contrary, for groups of size from 3 to 9 group

decisions are always significantly superior to single observers.

Finally, we should note that our group of size 10 is, unsurprisingly,

not significantly superior to single observers, even though its

performance is superior that of all the single observers (see

Figure 3), due to it being a sample of just one data point.

We then compared the error distributions across the group-

decision methods within each group size. Since errors are paired in

each comparison (by the fact that the two methods being

compared were applied to exactly the same groups), here we used

the one-tailed Wilcoxon signed-rank test. The corresponding p-

values and statistics are reported in Table 5.

As expected, we found that several of the small differences

shown in Figure 5(top) and Table 3 are not significant. To make it

easier to see which differences were significant, we summarise the

p-values obtained in our tests using the statistical-significance

preference-relation diagram shown in Figure 7. Groups of size 1

(all methods performing the same) and 10 (where we only have one

such group) are not reported as no difference is statistically

significant. For other groups sizes, while at one end of the

spectrum we see that majority is statistically almost always the

worst method of the four, at the other end we see that the RTnf-
based method is statistically superior to majority in 6 out of 8

group sizes, is superior to the RT-based method in 3 out of 8 group

sizes and is superior to the nf-based method in 5 out of 8 cases.

Both the nf-based and RT-based methods are also competitive

against majority. In particular, nf is superior to majority 6 times

and almost statistically superior one further time (being inferior to

it only for groups of size 3).

Nonetheless, one would probably choose the RT-based method

if group sizes were small or if there wasn’t a need for the slightly

better performance afforded by nf for larger groups. This is

because, of course, using RT on its own to measure the confidence

does not require the use of a BCI, with its associated and obvious

drawbacks in terms of practicality and setup time. However, if top

performance is required, the RTnf-based method seems to be the

overall leader, although had we been able to test larger groups it is

likely that the nf-based method would have emerged as the leader.

Figure 10. Stimulus-locked grand averages for channels Fz, Cz, Pz and Oz and corresponding temporal profile of the p-values of
the Wilcoxon signed rank test comparing participant-by-participant averages and of the Kruskal-Wallis test for all ERPs recorded
(irrespective of participant) in each error class. The dotted lines in the p-value plots represent the 5% confidence level. The corresponding axes
are oriented so that values above that line indicate statistical significance and vice versa.
doi:10.1371/journal.pone.0102693.g010
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We should note that the results obtained by using nf and RTnf
to measure confidence are very little influenced by the number of

folds chosen for cross-validation (while, of course, the results of

majority and the RT-based method are exactly the same for any

choice of folds as no learning process takes place in such methods).

To illustrate this, in Figure 8 we report the error rates for the

RTnf-based method as a function of group size and number of

folds. The error bars in the plots represent the standard error of

the mean. A statistical comparison of the performance obtained

with different numbers of folds using the Wilcoxon exact test with

Bonferroni correction showed that in only 13.8% of the 550

comparisons required by a full analysis (with 11 cross-validations,

there are
11

2

� �
~55 pairwise data-set comparisons for each

group size) differences were statistically significant. Also, for most

group sizes the differences are very small. This suggests that the

case of 16 folds on which we focused in most of the paper is

reasonably representative.

Performance of Fastest Responders
We considered again the relationship between performance and

response times. As expected from the literature [22], also in our

experiment there is a relationship between the relative speed with

which observers give their response and the correctness of the

decisions, with faster respondents being on average correct more

often than slower respondents (see Figure 4(top right)). Also, as we

have seen in Figure 5(bottom) the larger a group the longer the

delay in getting the group’s response. So, we wondered whether

we could improve group response times with relatively little impact

to group accuracy if we allowed only the faster responders in a

group to influence the group’s decision, as described in the

‘‘Methods’’ section. In particular, we considered groups of all sizes

and for each size we looked at what level of performance could be

achieved by making decisions based on the fastest respondent, the

two fastest respondents, the three fastest respondents, and so on, in

each trial.

Figure 9 compares the accuracies obtained with different groups

sizes (and different sub-group sizes) with the corresponding

response times for a group. More specifically, Figure 9(top) shows

a plot of the mean group response time vs the mean group error

rate for each group size when using the majority method. In the

Figure 11. Plots of stimulus-locked grand averages and p-values as in Figure 10 but for channels C3, C4, P5 and Pz (see caption of
Figure 10 and text for more details).
doi:10.1371/journal.pone.0102693.g011
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plot, circles of different diameters represent different numbers of

fastest responders (‘‘# voters’’ in the figure) from each group

which were allowed to vote. That is, with the exception of the

largest circle on each line (which represents the error vs RT trade-

off for groups where everyone votes), only the decision of the

fastest subgroup were used to determine group decisions.

Figure 9(bottom) reports the corresponding results for the RTnf-
based method. Let us analyse these data.

Firstly, results confirm that the fastest respondents (‘‘#
voters = 1’’) tend to be the most accurate. On average a single

observer has an error rate of 12.5% (see data point for the ‘‘group

size = 1’’ case) while selecting the response of the fastest performer

in each trial produces an error rate of less than 8% for groups of

size 5 or above (irrespective of decision method). Of course, the

larger the group considered the shorter the response time of the

fastest respondent. So, fastest respondents for groups of sizes 9 take

480 ms on average to make a decision, while the full group takes

approximately three times longer (1550 ms).

Secondly, we see that for the majority method there is no gain in

using fastest-pair (‘‘# voters = 2’’) decisions over fastest-respondent

decisions (‘‘# voters = 1’’), as the former are both slower and more

error-prone than the latter. On the contrary, for the RTnf-based

method, we see that fastest pairs are almost always more accurate

(but slower) than single fastest respondents. For instance, for

groups of size 3, single fastest respondents make decisions in

560 ms while pairs take 730 ms. However, while the error rate for

fastest respondents is the same (9.2%) for majority and RTnf, the

error rate for the fastest pair is 10.8% for majority but only 8.6%

for the RTnf-based method.

Thirdly, we see that when only the fastest triplet of observers

(‘‘# voters = 3’’) is allowed to make a decision, there is a very

marked improvement in accuracy for both majority and the RTnf-
based method for all group sizes. The benefits of such a scheme

are particularly clear for larger groups where the fastest triplet’s

response is faster compared with the full group response, while the

accuracy is significantly better than for pairs or single fastest

respondents. For instance, for groups of size 9, the fastest triplet

Figure 12. Response-locked grand averages for channels Fz, Cz, Pz and Oz and corresponding temporal profile of the p-values of
the Wilcoxon signed rank test comparing participant-by-participant averages and of the Kruskal-Wallis test for all ERPs recorded in
each error class. The dotted lines in the p-value plots represent the 5% confidence level. The corresponding axes are oriented so that values above
that line indicate statistical significance and vice versa.
doi:10.1371/journal.pone.0102693.g012
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has an error rate of 4.4% and a response time of 610 ms for both

majority and the RTnf-based method.

Fourthly, for fastest subgroups of four observers (‘‘# voters = 4’’)

we see a similar situation to that of the fastest pairs. That is, one

never gains from using the fastest four observers to make a decision

with majority rule, as accuracy is worse than for the three fastest

observers and speed is slower. However, with the RTnf-based

method we see that, for groups of size 4, 5, 6 and 7, the four fastest

observers are more accurate (but obviously slower) than any

smaller subgroup. This behaviour seems to be present also at

larger subgroup sizes.

ERP Analysis
We used two statistical tests to analyse our ERP data sets. To get

an indication of the differences in the statistical distributions of

ERPs for correct and incorrect responses in our data-set, we

grouped all ERPs (irrespective of the participant they pertained to)

into two corresponding sets. We then applied the Kruskal-Wallis

test to compare the voltages measured in each channel at each

time step in the two data sets. We also performed a two-tailed

Wilcoxon signed-rank test for paired samples to compare the mean

ERPs obtained on an individual basis.

We should note that for the central-limit theorem, means tend

to be distributed according to a normal distribution. So, in

principle one could also use a paired-sample t-test to perform this

comparison. We performed both this test and the Wilcoxon test on

our data. Differences in p-values were minimal. Here we prefer to

report only the results of the statistically weaker Wilcoxon test as

this relies on fewer assumptions.

Figures 10 and 11 show the stimulus-locked grand averages

(averages of individual averages) of the ERPs recorded in our

experiment for correct and incorrect responses for channels Fz,

Cz, Pz, Oz, C3, C4, P5 and P6 (first and third rows) and the p-

values of the statistical tests comparing the signals for correct and

incorrect trials (second and fourth rows) in the period immediately

following the onset of stimulus Set 2. Figures 12 and 13 show

corresponding response-locked grand averages.

If we look at the grand averages in Figures 10 and 11, we see

that generally there are seemingly small differences between the

ERPs for correct and incorrect trials. Differences do exist,

however, particularly in the region where the P300 wave peaks

Figure 13. Plots of response-locked grand averages and p-values as in Figure 12 but for channels C3, C4, P5 and Pz (see caption of
Figure 12 and text for more details).
doi:10.1371/journal.pone.0102693.g013
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(approximately 500 ms after the presentation of Set 2) and for

central and posterior electrodes in the right hemisphere, i.e., Cz,

Pz, C4 and P4. Similar differences are present in many other

channels in the same regions, as shown in Figure 14(left) which

shows a snapshot of the scalp potentials recorded 500 ms after the

presentation of the stimulus (in a stimulus-locked reference

system).

If we look at the response-locked grand averages in Figures 12

and 13, however, we see much larger differences between the

correct and incorrect responses in all 8 channels shown, either in

Figure 14. Scalp maps of the neural activity recorded 500 ms after the presentation of Set 2 as represented by the stimulus-locked
grand averages (left), and 500 ms before the response (centre) and at the response (right) as represented by the response-locked
grand averages. The activity for correct and incorrect trials is depicted in the first two rows of the figure; their difference is reported in the third
row; the corresponding p-values of the Kruskal-Wallis test are shown in the fourth row.
doi:10.1371/journal.pone.0102693.g014
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the period preceding the response or during it or in both, with

most of these differences being highly statistically significant.

Similar differences are present in most other channels, as shown in

Figure 14 which shows snapshots of the scalp potentials recorded

500 ms before the response (centre) and at the response (right).

We should note that a response-locked reference system

amplifies the differences in the duration of the memory-retrieval

and decision phases following the presentation of the stimulus for

the two conditions. More specifically, P300s start approximately

600 ms before the response for incorrect decisions and approx-

imately 400 ms before the response for correct decisions (as the

corresponding median response times are approximately 880 ms

and 690 ms, respectively). They peak at approximately 400 ms

and 200 ms before the response, respectively. This temporal shift

and the small differences in P300 amplitude seen in the stimulus-

locked grand averages for the two conditions cause the large

statistically significant differences observed in a response-locked

reference system up to 150 ms before the response (see

Figure 14(centre)).

Conclusions

The purpose of this study was to investigate whether a

collaborative BCI could be developed that would improve group

decisions in a visual matching task over the performance of both a

single non-BCI user and an identically-sized group of non-BCI

users. The approach we have taken is unusual in relation to

previous studies on collaborative BCI in that here we have

exploited not only neural data but also behavioural measures of

confidence to weigh group members’ decisions on a decision-by-

decision basis.

Experimental evidence gathered with 10 participants conclu-

sively indicates that group decisions (whether BCI-assisted or not)

are nearly always statistically significantly superior to single user

decisions. Also, BCI-assisted group decisions obtained by weight-

ing observers’ decisions via our nf-based and RTnf-based methods

were almost always statistically better than those obtained by

equally-sized (non-BCI) groups adopting the majority rule.

We analysed the relationship between performance and

response times. As predicted, we found that faster individual

response times are associated with increased accuracy. We also

found that the larger a group, the longer it takes to gather all the

single decisions and give a group response, so that the advantage

obtained by groups over a single observer in terms of accuracy is

associated with a disadvantageous response time. Based on these

observations, we considered a scheme where only the fastest

respondents of each group influence the group’s decision and

found that this improves significantly the group’s response time

with very little or no cost in terms of accuracy, making groups not

only more accurate but also faster than single observers.

As discussed in the section entitled ‘‘Decision Making in

Groups’’, although there are many advantages of group decision

making, difficulties in communication and interaction, strong

leadership and group judgement biases can sometimes be

obstacles, particularly when accurate and fast decisions have to

be taken. Our method achieves some of benefits of groups

decisions, namely error correction and knowledge/certainty

integration, without requiring intra-group communication and,

thereby, avoiding some of the potential weaknesses of group

decision-making.

One of the aims of our study was to develop a method based on

neural features related to the decision process. As discussed in the

‘‘Introduction’’ section, several ERP components may be possibly

used as predictive of the accuracy or confidence of one’s response.

We chose to include in our neural feature all ERPs in the

proximity of the response (before and after it) by providing the

system with a 1500 ms response-locked window of EEG starting

1 s before the response. We found that this provides reliable

information on decision confidence, but in future research we will

also explore other possibilities.

Finally, this study has also some limitations. In particular, here

observers performed a relatively simple visual matching task,

which is nowhere as complex as those carried out in realistic

decision-making situations. So, in the future we will need to

investigate whether the benefits of our hybrid collaborative BCI

approach for group decisions also accrue with more demanding

real-world scenarios, with different perceptual modalities (e.g.,

audio signals) and with more complex decisions. Future research

will also need to clarify whether it is possible to extend our

approach to decisions where different team members are exposed

to different sources of information (unlike here, where they were

exposed to exactly the same information).
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