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A pivotal characteristic of credit defaults that is ignored by most credit scoring models is
the rarity of the event. The most widely used model to estimate the Probability of Default
(PD) is the logistic regression model. Since the dependent variable represents a rare event,
the logistic regression model shows relevant drawbacks, for example underestimation of the
default probability, which could be very risky for banks. In order to overcome these draw-
backs we propose the Generalized Extreme Value (GEV) regression model. In particular, in
a Generalized Linear Model (GLM) with binary dependent variable we suggest the quantile
function of the GEV distribution as link function, so our attention is focused on the tail of
the response curve for values close to one. The estimation procedure used is the maximum
likelihood method. This model accommodates skewness and it presents a generalisation of
GLMs with complementary log-log link function. We analyse its performance by simulation
studies. Finally, we apply the proposed model to empirical data on Italian Small and Medium
Enterprises (SMEs).
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Generalized Extreme Value distribution; rare events; binary data.

1. INTRODUCTION
Credit risk forecasting is one of the leading topics in modern finance, as the bank

regulation has made increasing use of external and internal credit ratings (Basel
Committee on Banking Supervision, 2004). Statistical credit scoring models try to
predict the probability that a loan applicant or existing borrower will default over
a given time-horizon, usually of one year. According to the Basel Committee on
Banking Supervision (2004), banks are required to measure the one year default
probability for the calculation of the equity exposure of loans. In this framework,
banks adopting the Internal-Rating-Based (IRB) approach are allowed to use their
own PD estimates. Moreover, Basel II requires these banks to build a rating system
and provides a formula for the calculation of minimum capital requirements where
the PD is the main input. For that reason, in many credit risk models such as Cred-
itMetrics (Gupton et al., 1997), CreditRisk+ (Credit Suisse Financial Products,
1997) or CreditPortfolioView (Wilson, 1998), default probabilities are essential in-
put parameters.
Altman (1968) was the first to use a statistical model to predict the default prob-
abilities of firms, calculating his well-known Z-Score using a standard discriminant
model. Almost a decade later Altman et al. (1977) modified the Z-Score by extend-
ing the dataset to larger-sized and distressed firms. Even if different methodologies
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are now widely used for credit risk assessment (Hand and Henley 1997), most of
the academic literature (Altman and Sabato, 2006; Aziz et al., 1998; Becchetti and
Sierra, 2002; Charitou and Trigeorgis, 2002; Gentry et al., 1985; Keasey and Wat-
son, 1987; Lizal, 2002; Mossman et al., 1998; Ooghe et al., 1995; Platt and Platt,
1990; Zavgren, 1983) uses logistic regression to predict default.
Only a few authors (e.g. Kiefer, 2010) regard default as a rare event; this means
that the number of defaults in a sample is very small. The logistic regression shows
important drawbacks in rare events studies: the probability of rare event is un-
derestimated and the logit link is a symmetric function, so the response curve
approaches zero at the same rate it approaches one. Moreover, commonly used
data collection strategies are inefficient for rare event data (King and Zeng, 2001).
The bias of the maximum likelihood estimators of logistic regression parameters in
small sample sizes, which has been well analysed in the literature (McCullagh and
Nelder, 1989; Manski and Lerman 1977; Hsieh Manski and McFadden, 1985), is
amplified in the rare event study. Most of these problems are relatively unexplored
in the literature (King and Zeng, 2001).
Since for banks the underestimation of the PD is very risky, the main aim of this
paper is to overcome the drawbacks of logistic regression for estimating the PD. We
propose a new model for binary dependent data with an asymmetric link function
given by the quantile function of the Generalized Extreme Value (GEV) random
variable. In the extreme value theory, the GEV distribution is used to model the
tail of a distribution (Kotz Nadarajah, 2000; Coles, 2004). Since we focus our at-
tention on the tail of the response curve for values close to 1, we have chosen
GEV distribution. In GLMs (Agresti, 2002), the log-log and the complementary
log-log link functions are used, since they are asymmetric functions. In particular,
the complementary log-log link function is the quantile function of the Gumbel
random variable. The inverse function of the log-log is one minus the cumulative
distribution function of the Gumbel random variable. These models represent par-
ticular cases of the GEV regression model.
We apply the model proposed here to data on Italian SMEs. SMEs play a very
important role in the economic system of many countries and particularly in Italy
(about 90% of Italian firms are SMEs, see Vozzella and Gabbi, 2010). Further-
more, a large part of the literature (Altman and Sabato, 2006; Ansell et al., 2009;
Berger, 2004; Ciampi and Gordini 2008; Figini and Fantazzini, 2009; Figini and
Giudici, 2011; Jacobson et al., 2005; Saurina and Trucharte, 2004; Vozzella and
Gabbi, 2010 ) has focused on the special character of small business lending and
the importance of relationship banking for solving information asymmetries. The
information asymmetries puzzle particularly affects SMEs due to the difficulty of es-
timating and making known their fair value. Therefore, lending to SMEs is riskier
than lending to large corporates (Altman and Sabato, 2006; Dietsch and Petey,
2004; Saurina and Trucharte, 2004). As a consequence, Basel II (Basel Committee
on Banking Supervision, 2004) establishes that banks should develop credit risk
models specifically addressed to SMEs. Only a few studies consider SMEs (Altman
and Sabato, 2006; Altman et al. 2010; Figini and Fantazzini, 2009; Figini and Giu-
dici, 2011), since it is relatively difficult to gather data on SMEs.
The present paper is organised as follows. In the next section we explain the main
drawbacks of the logistic regression model for estimating the PD. In Section 3
we propose the GEV model for credit defaults. In Subsection 3.1 we present the
Weibull regression model as a particular case of the GEV model. In Section 4 we
analyse the performance of the proposed model through Monte Carlo simulations.
Finally, in Section 5 we apply our proposal to empirical data on Italian SMEs.
In particular, the first subsection describes the dataset and the second subsection
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shows the estimation results. In the following subsection, the predictive accura-
cies of the logistic regression model and the GEV model are compared for different
percentages of the defaults in the sample. Finally, the last section is devoted to con-
clusions. In the appendix, we report the score functions and the Fisher information
matrix of the parameters of the GEV model.

2. THE MAIN DRAWBACKS OF THE LOGISTIC REGRESSION FOR CREDIT
DEFAULTS AS RARE EVENTS

We consider n borrowers and the event default or non-default of each borrower
is represented by a Bernoulli random variable Yi with parameter πi that represents
the PD of the i-th borrower, for i = 1, 2, ..., n. To estimate πi a Generalized Linear
Model (GLM) (McCullag and Nelder, 1989; Dobson and Barnett, 2008) for Yi
considers a monotonic and twice differentiable function g(·), called link function,
and a covariate vector xi such that

g(πi) = β′xi.

In the logistic regression model the PD πi is a logistic cumulative distribution
function

π(xi) =
exp(β′xi)

1 + exp(β′xi)
(1)

with

β′ = [β0, β1, ..., βk] x′ = [1, x1, ..., xk].

The maximum likelihood method is usually used to estimate the parameters vector
β (McCullag and Nelder, 1989).
The sample number of defaults is very small (Kiefer, 2010), and for this reason
default is a rare event. When the logistic regression model is applied to predict
defaults and, in general, to rare events, it shows pivotal drawbacks. Firstly, the
logistic regression could underestimate the PD. Secondly, commonly used data col-
lection strategies are inefficient for rare event data (King and Zeng, 2001). In order
to overcome this drawback choice-based or endogenous stratified sampling (case-
control design) is used. The strategy is to select on Y by collecting observations
for which Y = 1 and a random selection of observations for which Y = 0. This
sampling method is usually supplemented with a prior correction of the bias of
MLE estimators. An alternative procedure is weighting the data to compensate
the differences in the sample and population fractions of ones induced by choice-
based sampling by the weighted exogenous sampling maximum estimator. Manski
and Lerman (1977) and McCullagh and Nelder (1989) show an analytical approx-
imation for the bias in the MLE estimates to account for finite sample. Such bias
increases when the logistic regression is applied to rare events. Thirdly, the logit
link is symmetric about 0.5

logit(π(xi)) = ln

(
π(xi)

1− π(xi)

)
= −logit(π(xi)) = −ln

(
π(xi)

1− π(xi)

)
.

This means that the response curve for π(xi) approaches zero at the same rate that
it approaches one. If the dependent variable represents a rare event, a symmetric
link function is not appropriated. Since a counting rare event is usually modelled
by a Poisson distribution (Falk et al, 2010), which has positive skewness, it is
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coherent to choose an asymmetric link function in order to obtain a response curve
that approaches zero at a different rate than it approaches one.
From the variance matrix

V (β̂) =

[
n∑
i=1

πi(1− πi)x′ixi

]−1

(2)

we can deduce that default characteristics (covariates of the values one of the
dependent variable) are more informative than non-default ones. The part of the
matrix (2) affected by the rarity of default event is the factor πi(1−πi). Most credit
scoring models yield small estimates of PD P{Yi = 1|xi} = πi for all borrowers.
However, if the logistic regression has some explanatory power, the estimate of πi
for defaults should be larger, and closer to 0.5, because PD studies are normally
very small, than among observations for non-defaults. The result is that πi(1− πi)
should be larger for ones than zeros and so the variance will be smaller. In this
situation, additional defaults will cause the variance to drop more and hence are
more informative than additional non-defaults.
For this reason, in this paper, we focus our attention on the tail of the response
curve for the values close to one.

3. THE GENERALIZED EXTREME VALUE (GEV) REGRESSION MODEL
Extreme value theory is a robust framework to analyse the tail behaviour of

distributions. Embrechts (1999, 2000) considers the potential and limitations of
extreme value theory for risk management. Without being exhaustive, De Haan
et al. (1994) and Danielsson and de Vries (1997) study quantile estimation. Bali
(2003) uses the GEV distribution to model the empirical distribution of returns.
McNeil (1999) and Dowd (2002) give an extensive overview of extreme value theory
for risk management.
The class of GEV distributions is very flexible with the tail shape parameter τ
controlling the shape and the size of the tails of the three different families of
distributions subsumed under it. The three families of extreme value distributions
can be nested into a single parametric representation, as shown by Jenkinson (1955)
and von Mises (1936). This representation is known as the Generalized Extreme
Value (GEV) distribution and its cumulative distribution function is given by

FX(x) = exp

{
−
[
1 + τ

(
x− µ
σ

)]− 1

τ

}
−∞ < τ <∞ −∞ < µ < +∞ σ > 0

(3)
defined on SX = {x : 1 + τ(x− µ)/σ > 0}. The parameter τ is a shape parameter,
while µ and σ(> 0) are location and scale parameters respectively.
The Type II (Fréchet-type distribution) and the Type III (Weibull-type distribu-
tion) classes of the extreme value distribution correspond respectively to the case
τ > 0 and τ < 0, while the Type I class (Gumbel-type distribution) arises in the
limit as τ → 0. The corresponding distributions of (−X) are also called extreme
value distributions. We underline that Fréchet and Weibull distributions are re-
lated by a change of sign.
In this paper we propose a new GLM to overcome the drawbacks of the logistic
model to forecast defaults. We propose a generalisation of the complementary log-
log model by using the quantile function of the GEV distribution as link function.
We define the proposed model as Generalized Extreme Value (GEV) regression
model.
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To estimate the PD π(xi) = P{Yi = 1|xi}, we suggest the GEV cumulative distri-
bution function as the response curve

π(xi) = exp{−[1 + τ(β′xi)]
−1/τ}. (4)

in a GLM. For τ → 0 the expression (4) becomes the response curve of the comple-
mentary log-log model and for τ < 0 the Weibull response curve, particular cases
of the GEV model.
The link function of the GEV model is given by

{−ln [π(xi)]}−τ − 1

τ
= β′xi (5)

that represents a non-canonical link function.
For the interpretation of the parameters β and τ , we suppose that the value of
the j-th regressor (with j = 1, 2, ..k) is increased by one unit and all the other
independent variables remain unchanged. Let x∗ denote the new covariate values,
whereas x denotes the original covariate values. From the equation (5) we deduce
that βj = g(π(x∗))−g(π(x)) with j = 1, 2, .., k. This means that if the parameter βj
(with j = 1, 2, ..k) is positive and all the other parameters are fixed, by increasing
the j-th regressor the estimate of π(x) decreases. Otherwise, if βj is negative, by
increasing the j-th regressor the estimate of π(x) also increases.
Moreover, we analyse the parameter β0: for all fixed values of τ and for null values
of the independent variables, β0 has a positive monotonic relationship with the
estimate of π(x). Finally, we analyse the influence of the τ parameter on π(x). We
find that for β0 = 0 and by considering null values for all the covariates, from the
GEV model we obtain an estimate of π(x) that is approximately equal to e−1 for
all the values of τ . This means that the variations of π(x) depend on the covariate
variations and not on τ variations.
We propose to estimate the parameters of this model using the maximum likelihood
method. Let y = (y1, y2, ..., yn) a simple random sample of size n from Y , the log-
likelihood function is

l(β, τ) =
n∑
i=1

{
−yi[1 + τ(β′xi)]

−1/τ + (1− yi)ln[1− exp[−[1 + τ(β′xi)]
−1/τ ]]

}
.

(6)
Some simulation studies are developed to verify the existence of the maximum of
the likelihood function, considered as a function of only one parameter for fixed
values of the other parameters (likelihood profile function). Since the inverse of
the link function (4) is a cumulative distribution function only for the values {xi :
1 + τxi > 0}, the (6) exists only for {xi : 1 + τβ′xi > 0}.
The score functions, obtained by differentiating the log-likelihood function with
respect to the known parameters β and τ (see Appendix) are given by

∂l(β, τ)

∂βj
= −

n∑
i=1

xij
ln[π(xi)]

1 + τβ′xi

yi − π(xi)

1− π(xi)
j = 0, 1, ..., k; (7)

∂l(β, τ)

∂τ
=

n∑
i=1

[
1

τ2
ln(1 + τβ′xi)−

β′xi
τ(1 + τβ′xi)

]
yi − π(xi)

1− π(xi)
ln[π(xi)]. (8)

The asymptotic standard errors of the maximum likelihood estimators of the pa-
rameters in the models are given by the Fisher information matrix (see Appendix).
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Since the Fisher information matrix is not a diagonal matrix (see Appendix), the
maximum likelihood estimators of the parameters β and τ are dependent and they
cannot be computed separately.
Since the score functions do not have closed form, the maximum likelihood esti-
mators need to be obtained by numerically maximising the log-likelihood function
using iterative optimisation algorithms. Optimisation algorithms require the spec-
ification of initial values to be used in an iterative scheme.
Our suggestion is to use as initial point estimate for τ a value close to zero. For this
value the GEV model becomes the complementary log-log model. Hence, in order
to obtain the initial point estimate for β, we analyse the complementary log-log or
Gumbell regression model (see Agresti, 2002) with the response curve

π(xi) = exp(− exp(β′xi)). (9)

We compute the log-likelihood function of the Gumbel regression

l(β) =

n∑
i=1

{yi ln[π(xi)] + (1− yi) ln[1− π(xi)]} (10)

=

n∑
i=1

{yi ln[exp[− exp(β′xi)]] + (1− yi) ln[1− exp[− exp(β′xi)]]}

=
n∑
i=1

{yi[− exp(β′xi)] + (1− yi) ln[1− exp[− exp(β′xi)]]}.

The score functions are given by

∂l(β)

∂βj
=

n∑
i=1

xij ln[π(xi)]
yi − π(xi)

1− π(xi)
j = 0, 1, ..., k. (11)

To identify the initial values for β, we choose β∗j = 0 for j = 1, ..., k. By substituting
β∗j = 0 for j = 1, ..., k in equation (10) we obtain

β∗0 = ln[− ln(y)].

We use the initial values proposed for the complementary log-log model in order
to identify the initial values β∗ for the GEV regression model. In particular, we
propose to use τ∗ ' 0, β∗j = 0 for j = 1, ..., k and β∗0 = ln [−ln(y)].
Afterwards, by substituting the initial values for the parameter β in the equation
(8) we obtain the estimate of τ for the first step of the iterative procedure. By
using this estimate of τ in the equation (7), we obtain the estimates of βj with
j = 0, 1, ..., k for the first step in the GEV regression.

3.1 WEIBULL REGRESSION MODEL FOR PREDICTING DEFAULTS
A particular case of the GEV cumulative distribution function (3) for τ < 0 is

the Weibull-type cumulative distribution function

F (x) =

{
exp

{
−
[
−x−µ

σ

]k}
x < µ −∞ < µ < +∞ σ > 0 k > 0;

1 x > µ.
(12)

where µ and σ(> 0) are, respectively, a location and a scale parameters and k =
∣∣ 1
τ

∣∣
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is a shape parameter.
By considering the cumulative distribution function (12) in the GLM for binary
dependent variable, the response curve becomes

π(xi) = exp[−(β′xi)
k], (13)

where k > 0. We call this model Weibull regression model for binary data. The
response curve of the Weibull regression model (13) is a particular case of the
GEV response curve (4) for τ < 0. On the one hand, the Weibull response curve
is an asymmetric function, analogously to the response curve (9) of the Gumbel
regression model. On the other hand, unlike the Gumbel response curve (9), the
π(xi) in the Weibull model (13) approaches 1 sharply and approaches 0 slowly.
In particular, the behaviour of the Weibull response curve depends on k: if k
increases π(xi) approaches both 0 and 1 sharply. If the value of the j-th regressor
(with j = 1, 2, ..k) is increased and all the other independent variables remain
unchanged, the Weibull response curve (13) decreases when βj > 0 and increases
when βj < 0. The link function of the Weibull regression model is[

ln

(
1

π(xi)

)]1/k

= β′xi. (14)

We compute the log-likelihood function of the Weibull regression

l(β, k) =

n∑
i=1

{yi ln[π(xi)] + (1− yi) ln[1− π(xi)]} (15)

=

n∑
i=1

{−yi(β′xi)k + (1− yi) ln[1− exp(−(β′xi))
k]}.

The score functions are given by

∂l(β, k)

∂βj
= −k

n∑
i=1

xij
ln[π(xi)]

β′xi

yi − π(xi)

1− π(xi)
j = 0, 1, ..., k; (16)

∂l(β, k,y)

∂k
= −k

n∑
i=1

ln[π(xi)] ln[β′xi]
yi − π(xi)

1− π(xi)
. (17)

In order to apply an iterative algorithm, we need to identify the initial values β∗

and k∗ for the parameters. Our suggestion is to use k∗ = 1, β∗j = 0 for j = 1, ..., k
and

β∗0 = ln

[
1− n

y

]
. (18)

We obtain the initial value (18) by substituting β∗j = 0 for j = 1, ..., k and k∗ = 1
in (16). We highlight that the Weibull regression with k = 1 is a log-linear model
whose response curve is the cumulative distribution function of an exponential
random variable (McCullagh and Nelder, 1989).

4. SIMULATION STUDIES
In this section we compare the performance of the GEV regression model with the

probit and the logistic models using Monte Carlo simulations. In our Monte Carlo
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analysis we generate 1, 000 replications. In order to evaluate how the performance of
the models varies according to the number of observations, we consider two different
sample sizes: n = 500 and n = 1, 500. We consider three datasets generated from
a probit model, a logistic model and a complementary log-log model, respectively.
For each model we consider one covariate whose values are drawn from a normal
distribution N(0,1) with mean equal to zero and variance equal to one and the
parameter vector β′ = [0, 1]. The residuals are generated from a normal distribution
N(0,1), a logistic distribution with location parameter equal to zero and scale
parameter equal to one and a Gumbel distribution with location parameter equal
to zero and scale parameter equal to one, respectively.
In order to evaluate how the properties of the three models vary according to a
change of the sample percentage of defaults, we consider two different percentages
of defaults (Y = 1) in the samples, 1% and 5%.
For both sample sizes and for both percentages of one in the samples we evaluate
the predictive accuracy of the models using two performance measures: the Mean
Square Error (MSE) and the Mean Absolute Error (MAE), defined as

MSE =
1

n

n∑
i=1

(yi − ŷi)2 MAE =
1

n

n∑
i=1

|yi − ŷi| (19)

where yi and ŷi are the observed and the predicted dependent variables, re-
spectively. Models with lower MSE and MAE forecast the dependent variable
more accurately. The main aim of this subsection is to show that the GEV
model overcomes the drawback of the probit1 and the logistic regression models
in the underestimation of PDs. For this reason, we focus our attention on the
tail of the response curve for values of the dependent variable equal to one
that represents the default. Therefore, we compare the models by computing
MAE and MSE only for the defaulters (the values one). This means that in
the equations (19) we consider only the positive errors (yi − ŷi) > 0 and n is
the number of defaulters. We denote these errors by MAE+ and MSE+, respec-
tively. In particular, Table 1 reports the average of the MAE+ and the MSE+

computed on 1,000 Monte Carlo samples, for the sample percentage of defaults 5%.

TABLE 1 AROUND HERE

From the results reported in Table 1, our proposal model shows both the
MAE+ and the MSE+ lower than the respective errors of the probit and the
logistic regression models for both the sample sizes and for the different datasets
drawn from the probit, logistic and complementary log-log models. This means
that the GEV model overcomes the drawback of the underestimation of the PD
by applying the logistic and the probit models.
By comparing the errors for different sample sizes, unlike the probit and logistic
models, our model improves its accuracy by increasing the sample size from
n = 500 to n = 1, 500.
Table 2 reports the results of the averages of the MAE+ and the MSE+ for the
sample percentage of defaults of 1%.

TABLE 2 AROUND HERE

1The drawbacks explained in Section 2 are due to a symmetric link function. This means that not only
the logistic model but also the probit model show the above-mentioned disadvantages.
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Table 2 confirms the previous results: the values of the means of the MAE+

and the MSE+ are lower than those obtained with the probit and the logistic
regression models.
Moreover, by comparing the errors in Table 1 and Table 2 for different sample
percentages of defaults (rare events) the logistic and the probit models show a
worse performance for lower sample percentage of defaults. On the contrary, the
GEV model improves its accuracy. From these results the GEV model can be
considered a suitable regression model for predicting credit defaults.

5. DEFAULT PREDICTION OF ITALIAN SMALL AND MEDIUM ENTER-
PRISES

Data used in our analysis comes from AIDA-Bureau van Dijk, a large Italian
financial and balance sheet information provider. We consider defaulted and non
defaulted SMEs over the years 2005−2011. This time horizon is particularly impor-
tant, since it includes the financial crisis of 2008. This event is so relevant that the
periods of time after and before the crisis show totally different characteristics of
credit risk. The database contains accounting data of around 210,000 Italian firms
with total assets below 10 million Euros (Vozzella and Gabbi, 2010). We exclude
firms without the necessary information on the covariates from the sample.

In accordance with Basel II, the PD is one year forecasted. Therefore, let Yt be
a binary r.v. such that

Yt =

{
1, if a SME is defaulted at time t;
0, otherwise.

and let xt−1 be the covariate vector at time t − 1. We aim at estimating the
conditional PD π(xt−1) = P (Yt = 1|xt−1) by applying and comparing the GEV
and the logistic regression models.

Often default definitions for credit risk models concern single loan defaults of a
company versus a bank, as also emerges from the Basel II instructions. This is the
case for banks building models based on their portfolio data, i.e. relying on data on
individual loans which are reserved (e.g., Altman and Sabato (2006) develop a logit
model for Italian SMEs based on the portfolio of a large Italian bank). However,
traditional structural models (i.e. Merton, 1974) refer to a firm-based definition of
default: a firm defaults when the value of the assets is lower than the value of the
liabilities, i.e. when equity is negative. In this work default is intended as the end
of the SMEs activity, i.e. the status in which the SME needs to liquidate its assets
for the benefit of its creditors. In practice, we consider a default to have occurred
when a specific SME enters a bankruptcy procedure as defined by the Italian law.
The reason for this choice lies in the availability of data.
In accordance with Altman and Sabato (2006), we apply a choice-based or endoge-
nous stratified sampling to this dataset. In this sampling scheme data are stratified
by the values of the response variable. We draw the observations randomly within
each stratum defined by the two categories of the dependent variable (1=default,
0=non-default) and we consider all the defaulted firms. Then, we select a random
sample of non-defaulted SMEs over the same year of defaults in order to obtain a
percentage of defaults in our sample as close as possible to the default percentage
(5 %) for Italian SMEs (Cerved Group, 2011), in order to analyse the properties
of our model for two percentages of defaults (1% and 5%).
By applying choice-based sampling, the observations are dependent. Since the sam-
ple sizes of this application are high, according to the superpopulation theory
(Prentice, 1986) we can consider the sample as a simple random sample.
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5.1 ESTIMATION RESULTS
We apply the GEV regression model proposed in this work to the AIDA database.

This application is interesting since it concerns SMEs, on which the availability of
data is very difficult in the Italian credit market, which might differ in other coun-
tries.
In order to model the default event, we choose the independent variables that
represent financial and economic characteristics of firms according to the recent
literature (Vozzella and Gabbi, 2010; Ciampi and Gordini, 2008; Altman et al.,
2006). These covariates cover the most relevant aspects of the firm’s operations:
leverage, liquidity and profitability.
Firstly, we consider 16 covariates: liquidity ratio, current ratio, leverage, solvency
ratio, debt/EBITDA, return on equity, return on investment, turnover per em-
ployee, added value per employee, cash flow, banks/turnover, debt/equity ratio,
return on solvency, EBITDA/turnover, total personnel costs/added value, cash
flow/turnover.
Secondly, we examine the multicollinearity and remove the variables with a Vari-
ance Inflation Factor higher than 5 (Greene, 2000, p.257-258). Thirdly, by applying
the GEV model 7 variables are significant at the level of 5% for the PD forecast:

• Solvency ratio: the ratio of a company’s income over the firm’s total debt obli-
gations;

• Return on equity : the amount of net income returned as a percentage of share-
holders equity;

• Turnover per employee: the ratio of sales divided by the number of employees;

• Added value per employee: the enhancement added to a product or service by a
company divided by the number of employees;

• Cash flow : the amount of cash generated and used by a company in a given
period;

• Bank loans over turnover : short and long term debts with banks over sales
volume net of all discounts and sales taxes;

• Total personnel costs over added value: the ratio of a company’s labour costs
divided by the enhancement added to a product or service by a company.

In order to avoid overfitting, data are randomly divided into two parts: a sample
on which the regression models are estimated and a control sample on which we
evaluate the predictive accuracy of the models. Table 1 reports the parameter
estimates obtained by applying the GEV model to the sample of 1,485 defaulters
and 29,700 non-defaulters over the years 2005− 2008.

TABLE 3 AROUND HERE

In section 3 we explain the interpretation of the parameters of the GEV model.
According to these interpretations we can analyse the influence of each variable in
Table 1 on the PD estimate.
At first, Ansell et al. (2009) explain that the solvency ratio should have an inverse
relationship with the PD estimate, coherent with our result but in contrast with
the result obtained by Ansell et al. (2009). The return on equity and the added
value per employee show the same kind of relationship with the PD: the first re-
sult coincides but the second one is in contrast with Ciampi and Gordini (2008).
We highlight that our result for the added value per employee coincides with the
expectations.
On the contrary, the turnover per employee and the cash flow show a direct re-
lationship with PD, coherent with Altman and Sabato (2006) and Ciampi and
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Gordini (2008). The last two results in Table 1 are in contrast with the expecta-
tions: bank loans divided by turnover and total personnel costs divided by added
value show an inverse relationship with the PD estimate. For this reason we analyse
the results obtained in the literature for these two variables. Ciampi and Gordini
(2008) obtain a direct relationship of bank loans divided by turnover with the PD
estimate. Alternatively, Altman and Sabato (2006) consider the short term debt
over equity book value to model the PD and they show that this variable has
an inverse relationship with the PD estimate, analogously to our result. On the
contrary, Fantazzini and Figini (2009) show that the short term debt has a direct
influence on PD, coherent with the expectation. Ciampi and Gordini (2008) also
consider total personnel costs divided by added value in their regression model but
their analysis shows a result coherent with the expectations and in contrast with
the one shown in Table 1. Fantazzini and Figini (2009) also consider labour costs in
their model. In particular, they introduce the personnel expenses over sales in the
regression model and this variable shows a direct influence with the PD estimate.

5.2 PREDICTIVE ACCURACY
Since for banks the underestimation of the PD could be very risky, the main aim
of this subsection is to show that the GEV model overcomes the drawback of the
logistic regression in the underestimation of rare events.
The performance of models can be highly sensitive to the data sample used for
validation. To avoid embedding unwanted sample dependency, models should be
validated on observations that are not included in the sample used to estimate the
model. Hence, we run out-of-sample and out-of-time validations to compare the
GEV and the logistic regression models. For this aim we consider the confusion
matrix (Giudici, 2003), the Area Under the Curve (AUC) index (Hand, 2001), the
H measure and the MAE and MSE defined in equations (19). We consider the H
measure since it overcomes the drawbacks of the AUC when the class sizes and
the classification error costs are extremely unbalanced (Hand, 2009 and 2010);
both these characteristics are satisfied by credit scoring models.
It is much more costly to classify an SME as non-defaulter when it is a defaulter
than to classify an SME as non-defaulter when it is a defaulter. In particular, when
a defaulted firm is classified as non-defaulter by the scoring model, banks will give
it a loan. If the borrower becomes defaulter, the bank may lose the whole or a
part of the credit exposure. On the contrary, when a non-defaulter is classified as
defaulter, the bank only loses interest on loans. For this reason, the identification
of defaulters is a pivotal aim for banks’ internal models. For all these reasons, we
compute the MAE and the MSE only for defaulters, denoted MAE+ and MSE+.
Models are validated by using out-of-sample and out-of-time tests. In the out-
of-time approach, we estimate the model on the observations from the years
2005 − 2008. We test the model on three default horizons: one year (observations
of 2009), two years (observations of 2009-2010) and three years (observations of
2009-2010-2011). The out-of-sample and out-of-time sample sizes are reported in
Table 4 and Table 5.

TABLE 4 AROUND HERE

TABLE 5 AROUND HERE

As mentioned above, we consider PDs 0.05 and 0.01. Analogously to Figini
and Giudici (2011), we apply a bootstrap method (Efron and Tibshirani, 1993):
for each 1,000 bootstrap samples, the H measure, AUC, MAE+ and MSE+ are
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calculated. A test on the H measure is performed to determine if a model performs
significantly better than another, at a confidence level of 95%.

TABLE 6 AROUND HERE

For simplicity, we report the confusion matrices of the two models only for the
out-of-time sample 2009-2010-2011 in Table 6.
TABLE 7 AROUND HERE

TABLE 8 AROUND HERE

Table 7 and Table 8 report the means of 1the H measure, AUC, MAE+

and MSE+ on the sample (subscript “c”) and on the control sample (subscript
“cs”). In order to evaluate the weights of the errors MSE+ and MAE+ on the
respective (total) errors MSE and MAE, we compute the mean of the ratios
(MSE+/MSE) and (MAE+/MAE) weighted by the PDs 0.05 and 0.01. We
report their values between round brackets in Table 7 and Table 8.
From Table 7 and Table 8, our proposal shows the means of MAE+ and the
MSE+ lower than the respective errors of the logistic regression model for both
the sample and the control sample and for both the PDs. By comparing the
percentages in round brackets, we deduce that for the logistic regression model
the weights of misclassification of defaults are relevant. On the contrary, for our
proposal the weights of these errors are negligible in both the out-of sample and
the out-of-time samples. This means that the GEV model overcomes the drawback
of the logistic regression in the underestimation of PD.
Since the errors for the sample and the control sample are similar, the covariates
are significant for the default discrimination of both the regression models. This
means that both the models are well explained. In Table 8 the means of MSE+

and MAE+ show that our model is more accurate in forecasting defaults than the
logistic model when the time horizon changes and by considering a substantial
change in credit risk after 2008 due to the financial crisis. Our model improves
its accuracy by reducing the sample percentage of defaulters, while the logistic
regression model shows worse performance.
From Table 7 and Table 8, the average H measure for the GEV model is always
higher than the average H measure for the logistic regression model; this relation-
ship is inverted by the AUC. To understand this result we should consider that
the H measure is equivalent to averaging the misclassification loss over a cost ratio
distribution which enables us to represent the highly unbalanced misclassification
costs. Instead, this weight function in the AUC depends on the score distributions
(Hand, 2009), so different classifiers are incoherently evaluated using different
metrics.
We compare the performances of the two models by testing whether the difference
between the H measures is significantly different from zero at the confidence level
of 95% level. The approximate p-value, obtained by a nonparametric bootstrap
procedure (Davison and Hinkley, 1997), allows us to reject the hypothesis that the
models show the same performance.
Finally, in order to analyse the robustness of the GEV model we estimate the
coefficients of both the regression models on a sample with a given sample
percentage of defaults and we evaluate the accuracy on a sample with a different

1To compute the H measure and AUC, we use the H measure package of R-program. For the H measure
we consider a severity ratio of 0.01.
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sample percentage of defaults. By computing the average MAE+ and the average
MSE+ on all the SMEs, the errors of our model do not change in comparison with
the respective errors on a sample with the same percentage of defaulters. This
means that our model is robust for different sample percentages of defaulters. On
the contrary, for the logistic regression models the same errors are significantly
different.

5. CONCLUSIONS REMARKS
In this work we aim to propose a new GLM regression model to overcome the

drawbacks of the logistic regression model in underestimating the PD in credit
risk analysis. As is well known, the GEV distribution is a suitable function for
modelling extreme values and rare events data. For this reason we propose the
quantile function of the GEV distribution as link function in a GLM for binary
dependent variables. The GEV model depends on the regression parameters and
on the shape parameter of the GEV distribution. Since the score functions do not
have closed form, we obtain the maximum likelihood estimators by maximising
the log-likelihood function using an iterative algorithm. We specify initial values
of parameters for this iterative algorithm and the Fisher information matrix. The
main advantage of the GEV model is its excellent performance to identify defaults.
Thanks to this characteristic, the drawback of the logistic regression model of
underestimating the PD is overcome. This result is highlighted by simulation and
empirical studies in this work.
We analyse empirical data on Italian Small and Medium Enterprises (SMEs) and
we model their PD over the years 2005-2011 by considering financial and economic
covariates. In the validation of the GEV and the logistic regression models, we show
the substantial underestimation of the PD by applying the logistic regression model.
By reducing the sample percentage of defaults, the predictive performance of the
logistic regression model to identify defaults becomes worse. On the contrary, the
accuracy of the GEV model to identify defaults improves by reducing the sample
percentage of defaults. Finally, we show that, unlike the logistic regression model,
the GEV model is a robust model. A possible future development of this work
could be the use of the GEV link function in a Generalized Additive Model.
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APPENDIX
In this appendix we obtain the score functions and the Fisher information matrix

for β and τ of the GEV regression model. The notation used here is defined in
Section 3. Firstly, in order to compute the score functions we consider the following
equations

∂li(β, τ, yi)

∂βj
=
∂li(π(xi))

∂π(xi)

∂π(xi)

∂βj

∂li(β, τ, yi)

∂τ
=
∂li(π(xi))

∂π(xi)

∂π(xi)

∂τ
(20)

with j = 1, 2, ..., k and i = 1, 2, ..., n. From equations (4) and (6) we obtain that

∂li(π(xi))

∂π(xi)
=

yi
π(xi)

− 1− yi
1− π(xi)

∂π(xi)

∂βj
= −xij(1 + τβ′xi)

−( 1

τ
+1) exp

[
−(1 + τβ′xi)

− 1

τ

]
∂π(xi)

∂τ
= −(1 + τβ′xi)

− 1

τ

[
1

τ2
ln(1 + τβ′xi)−

β′xi
τ(1 + τβ′xi)

]
exp

[
−(1 + τβ′xi)

− 1

τ

]

Substituting the former results in the equations (20), the score functions (7) and
(8) are obtained.
The second order partial derivatives of the log-likelihood function with respect to
parameters β, τ are

∂2li(β, τ, yi)

∂2βj
=
∂2li(π(xi))

∂2π(xi)

[
∂π(xi)

∂βj

]2

+
∂li(π(xi))

∂π(xi)

∂2(π(xi))

∂2βj

∂2li(β, τ, yi)

∂2τ
=
∂2li(π(xi))

∂2π(xi)

[
∂π(xi)

∂τ

]2

+
∂li(π(xi))

∂π(xi)

∂2(π(xi))

∂2τ

∂2li(β, τ, yi)

∂βjβk
=
∂2li(π(xi))

∂2π(xi)

∂π(xi)

∂βj
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∂βj∂βk

∂2li(β, τ, yi)

∂βjτ
=

∂

∂βj

[
∂li(β, τ, yi)

∂τ

]
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where

∂2li(π(xi))

∂2π(xi)
= − yi

[π(xi)]2
− 1− yi

[1− π(xi)]2

∂2(π(xi))

∂2τ
= π(xi)ln[π(xi)]

{[
1
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]2

[ln[π(xi)] + 1]
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− 2

τ3
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β′xi + 2τ(β′x)2

τ2(1 + τβ′xi)2

]}
∂2(π(xi))

∂βj∂βk
= xijxikπ(xi)(1 + τβ′xi)

−1/τ−2 {1 + τ + ln[π(xi)]}

The Fisher information is the negative of the expectation of the second derivatives
of the log-likelihood with respect to the parameters β and τ

−E
(
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∂βj∂βk
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∂βj
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1

τ2
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2π(xi)
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1
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(21)

since E

(
∂li(π(xi))

∂π(xi)

)
= 0.

By substituting the previous results in the equations (21) the Fisher information
matrix is obtained.


