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Summary

When we sense a touch, our brains take account of our

current limb position to determine the location of that touch
in external space [1, 2]. Here we show that changes in the

way the brain processes somatosensory information in the

first year of life underlie the origins of this ability [3]. In three
experiments we recorded somatosensory evoked potentials

(SEPs) from 6.5-, 8-, and 10-month-old infants while present-
ing vibrotactile stimuli to their hands across uncrossed- and

crossed-hands postures. At all ages we observed SEPs
over central regions contralateral to the stimulated hand.

Somatosensory processing was influenced by arm posture
from 8 months onward. At 8 months, posture influenced

mid-latency SEP components, but by 10 months effects
were observed at early components associated with feed-

forward stages of somatosensory processing. Furthermore,
sight of the hands was a necessary pre-requisite for somato-

sensory remapping at 10 months. Thus, the cortical net-
works [4] underlying the ability to dynamically update the

location of a perceived touch across limb movements
become functional during the first year of life. Up until at

least 6.5months of age, it seems that human infants’ percep-
tions of tactile stimuli in the external environment are heavily

dependent upon limb position.

Results and Discussion

When, as adults, we feel a tactile sensation on one of our
hands, we know where it comes from in external space irre-
spective of where our limbs rest; we are able to take account
of limb position in mapping tactile space onto the external
world. If human infants cannot do this, as some authors have
proposed [3, 5–7], it would suggest that early perceptions of
tactile space are heavily reliant on limb position [8, 9]. We
investigated this possibility and the early development of
tactile spatial representations by recording somatosensory
evoked potentials (SEPs) from infants in age groups spanning
6.5 to 10 months of age. In adults, arm posture is known to
modulate the early stages of somatosensory processing
[1, 10–13]; we examined developmental changes in such
effects of posture in infant SEPs.

In experiment 1, we presented 6.5- and 10-month-old infants
with vibrotactile stimuli on the hands when their hands were
both crossed and uncrossed. Because previous behavioral
studies [3] have demonstrated the developmental improve-
ments in orienting to tactile stimuli across changes in posture
*Correspondence: a.bremner@gold.ac.uk
between 6.5 and 10months of age, we expected to see parallel
differences in postural modulations of somatosensory pro-
cessing between these age groups. At scalp sites over the so-
matosensory cortex contralateral to the tactile stimuli, we
observed similar SEPs in both age groups (Figure 1); these
comprised several consecutive deflections within 500ms after
stimulus onset. Modulations of the SEPs by posture in the 10-
month-olds manifested as increased positivity, in contrast to
the increased negativity seen in adults [10, 11]. We observed
no clearly defined SEPs at corresponding ipsilateral recording
sites, and so we report only contralateral analyses across
experiments 1–3 (similar to what is reported in [14–17]).
We used a Monte Carlo simulation method (see Supple-

mental Information available with this article online) [18] in
which we were able to trace the time course of statistically
reliable modulations of the SEPs by posture on a sample-point
basis (intervals every 2 ms) across posture-difference wave-
forms (700 ms after stimulus onset) for each age group (see
Figure 1). No effect of posture was observed in the 6.5-
month-olds, but the 10-month-olds’ SEPs demonstrated a
statistically reliable early effect of posture for 162 ms, from
58 to 220 ms after stimulus onset (the simulation identified
any sequence of consecutive significant t tests longer than
104 ms to be reliable).
We next examined whether there was, as expected, a

greater effect of posture in the 10-month-olds than the 6.5-
month-olds. To do this, we calculated the ‘‘posture effect’’
(uncrossed-hands mean amplitude – crossed-hands mean
amplitude; mV) for each participant within the interval that
was significant in the 10-month-olds (58–220 ms). A one-tailed
t test showed a greater posture effect in the 10-month-olds
(M = 22.63, SD = 2.45) than the 6.5-month-olds (M = 20.86,
SD = 2.4) (t(25) = 1.87, p = 0.037), confirming an increase in
postural modulation of somatosensory processing between
6.5 and 10 months of age. Thus, whereas we find no evidence
that arm posture influences processing of tactile stimuli at
6.5 months of age, by 10 months of age, as in adulthood
[1, 10–13], posture modulated somatosensory processing. In
the 10-month-olds, the distribution of this effect over central
scalp sites and its early onset (also seen in adults [10, 11])
indicate that posture modulates the feed-forward stages of
processing in somatosensory cortex [19, 20].
Adults use both visual and proprioceptive cues about hand

position in remapping tactile space [10, 21–25]. Multisensory
neurons that remap multisensory correspondence between
touch and vision on the basis of visual and proprioceptive
cues to posture, both together and in isolation, have been
identified in primate premotor cortex [26]. To determine
whether visual cues are necessary for postural modulation
of touch at 10 months, in experiment 2 we presented an
additional group of 10-month-olds with the same stimulus
protocol as in experiment 1, but this time we used a black
cloth to obscure their sight of their arms and hands (see
Figure 2).
We again traced the emergence of statistically reliable

effects of posture on a sample-point basis, but we found no
effects across the recording epoch (Figure 2). We next looked
for a significant difference in the posture effect (mV difference)
between the 10-month-olds who had sight of their arms
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Figure 1. Experiment 1: Somatosensory Evoked Potentials in Crossed- and

Uncrossed-Hands Postures, Compared between 6.5- and 10-Month-Old

Infants

(A) Grand averaged SEPs in both posture conditions from central electrodes

(C3, C4) contralateral to the stimulated hand are shown for 6.5- and 10-

month-old infants. A difference waveform was also obtained for each group

by subtraction of the SEP waveform in crossed-hands posture from that in

uncrossed-hands posture. The shaded area indicates the time course of

statistically reliable effects of posture on somatosensory processing. There

was no effect of posture in the 6.5-month-olds, but a reliable effect was

found between 58 and 220 ms in the 10-month-olds.

(B) A 6.5-month-old infant adopting the crossed-hands posture in experi-

ment 1.

(C) Topographical representations of the voltage distribution over the scalp

in the 10-month-old infants from 150–200ms after the tactile stimulus. Small

black discs indicate the locations of the electrodes chosen for SEP ana-

lyses.
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(experiment 1) and those who did not (experiment 2) within the
interval (58–220 ms) that was significant in the group who had
sight of their arms. A trend toward a greater posture effect in
the infants with sight of their arms (M = 22.63, SD = 2.45)
than in those with no sight of their arms (M = 0.49, SD = 5.33)
approached significance, t(23) = 1.85, two-tailed p = 0.077.
The lack of posture effect in the 10-month-olds who could

not see their hands indicates that it is primarily visual limb
posture, at this age, that modulates somatosensory process-
ing. This contrasts with findings from adult humans and
monkeys, for whom both proprioceptive and visual signals
concerning the limbs, alone or combined, play roles in somato-
sensory remapping [10, 21–26]. The current findings suggest
that infants are immature in their use of static proprioceptive
cues to hand position and that somatosensory modulation
by visual hand position drives remapping at 10 months.
In experiment 3, we examined the emergence of somatosen-

sory remapping in 8-month-olds. Because 10-month-old
infants show influences of posture on the early perceptual
stages of somatosensory processing, we asked whether, at
an earlier point in the emergence of somatosensory remap-
ping, posture also influences early stages of processing.
Experiment 3 also investigated experiential factors driving
the emergence of somatosensory remapping in infancy.
Research with blind individuals indicates that visual percep-
tual experience might be important in the development of
external coding of touch ([5, 7, 27], but see [28]). Herewe inves-
tigated a different but overlapping hypothesis, namely, that
sensorimotor experience of movements of the body is what
drives the development of somatosensory remapping.
The emergence of somatosensory remapping in the

crossed-hands posture between 6.5 and 10 months of age
(observed in experiment 1 and in [3]) is developmentally
contiguous with the first reaches that infants make across
the body midline [29–31]. Given some individual differences
in midline crossing behaviors [31], we reasoned that we might
observe associations in the acquisition ofmidline crossing and
somatosensory remapping across infants.
We first examined 8-month-olds’ spontaneous midline-

crossing behaviors in a reaching task. During several trials,
an attractive toy was presentedwithin reach across three loca-
tions: at the midline or over the infant’s left or right shoulders.
Eleven of the infants tested made no midline-crossing reaches
at all. The other 15 infantsmade at least one and amaximum of
seven midline-crossing reaches. We divided these infants into
‘‘crossers’’ and ‘‘noncrossers’’ on the basis of whether they
had made a single reach which crossed the midline during
the lateralized trials of the reaching task (see Figure 3). There
were no significant differences in the age of the groups or in
their performance on standardized tests of motor ability.
Figure 2. Experiment 2: Somatosensory Evoked

Potentials in Crossed- and Uncrossed-Hands

Postures in 10-Month-Old Infants Who Could

Not See Their Hands

(A) Grand averaged SEPs in both posture

conditions from central electrodes (C3, C4)

contralateral to the stimulated hand. A posture

difference waveform was obtained by subtrac-

tion of the SEP waveform in crossed-hands

posture from that in the uncrossed-hands

posture. No effects of posture were observed at

any time point. Collapsing across posture condi-

tions revealed no differences between the SEPs

in experiment 2 and those from the 10-month-

olds in experiment 1.

(B) A 10-month-old taking part in experiment 2.

The experimenter’s arms holding the infant’s

hands under the gown are visible extending

toward the left.



Figure 3. Experiment 3: Somatosensory Evoked Potentials in Crossed- and

Uncrossed-Hands Postures in 8-Month-Old Infants WhoWere Classified as

Either ‘‘Crossers’’ or ‘‘Noncrossers’’

(A) Grand averaged SEPs from central electrodes (C3, C4) contralateral to

the stimulated hand are depicted for both crosser and noncrosser groups

of 8-month-old infants. A posture effect difference waveform was obtained

in each group by subtraction of the SEP waveform in the crossed-hands

posture from that in the uncrossed-hands posture. The shaded area indi-

cates the time course of reliable effects of posture on somatosensory pro-

cessing. There was no effect of posture in the noncrossers, but the crossers

showed an effect between 298 and 392 ms.

(B) A ‘‘crosser’’ and a ‘‘noncrosser’’ 8-month-old showing distinctive rea-

ches in the reaching task of experiment 3.

(C) Topographical representations of the voltage distribution over the scalp

in the crossers from 340–390 ms after the tactile stimulus. Small black discs

indicate the locations of the electrodes chosen for SEP analyses.
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Neither were there differences in the numbers of trials
completed or reaches made (see Supplemental Information).

We ran separate Monte Carlo simulations to examine the
time course of reliable postural modulations of SEPs for the
crossers and noncrossers; we expected greater posture
effects in the crossers (see Figure 3). In the crossers, an effect
of posture was observed for 94 ms, from 298 to 392 ms (any
sequence of consecutive significant t tests longer than
86 ms was considered statistically reliable). No effect of
posture was observed for the noncrossers. Comparing the
‘‘posture effect’’ (mV difference) for the crossers and noncross-
ers within the interval (298–392 ms) that was significant in the
crossers group failed to reveal the expected greater posture
effect in the crossers (M = 24.35, SD = 4.42) than in the non-
crossers (M = 22.68, SD = 7.02), (t(24) = 0.75, not significant
[n.s.]). There was no significant correlation observed between
the number of midline crosses and the posture effect in this
SEP interval across the 8-month-olds, r(26) = 0.19, n.s.

Thus, posture modulates somatosensory processing in 8-
month-old infants, although only in a group of infants who
had a tendency to cross their hands over the midline in a prior
reaching task. The effect of posture in this group began at a
later phase of the SEPs (298 ms after the stimulus) than it did
for the 10-month-olds in experiment 1, indicating that, at
this earlier stage of development, posture modulates touch
beyond the initial feed-forward phase of somatosensory pro-
cessing. The less focused distribution of the posture effect
(see in Figure 3) also suggests that a wider range of brain areas
(perhaps beyond SI and SII) are recruited in 8-month-olds.
No influence of posture on somatosensory processing was

seen in a group of 8-month-olds who were virtually identical
in age and motor ability but who demonstrated no tendency
to place their hands across the midline. Nonetheless, there
was no statistically reliable influence of group (crossers versus
noncrossers) on somatosensory processing. Although we
cannot rule out a role for cross-midline reaching, it seems likely
that sensorimotor experience might not be the only factor in
the emergence of somatosensory remapping. As mentioned,
visual experience in early life has been implicated in the
external coding of touch [5, 7]. It is also possible that matura-
tional brain changes [20] (e.g., in the corpus callosum [32–34])
occurring between 6 and 10 months influence both somato-
sensory remapping and the ability to adopt a wider range of
body and limb postures.
Irrespective of the developmental processes involved, we

have demonstrated dramatic changes in infants’ processing
of tactile information across the first year of life. At 6.5 months
of age, posture plays no role in SEPs, yet by 10 months arm
position influences the early feed-forward stages of somato-
sensory processing. This represents strong evidence that
somatosensory remapping across changes in limb position
emerges in the first year, a conclusion that is supported by
evidence of improvements in behavior: orienting responses
to tactile stimuli on the hands across changes in arm posture
also improve between 6.5 and 10 months [3]. An important
contribution of the current study is to demonstrate, using
electrophysiological recordings, the stages of processing at
which posture plays a role across these ages. Whereas
improvements in behavioral orienting responses to tactile
stimuli could be driven by changes in perceptual and post-
perceptual processes alike, emerging effects of posture on
the early stages of somatosensory processing (experiment 1)
unambiguously point to the emergence of a new mode of
tactile spatial perception. Interestingly, early in the emergence
of these processes, postural remapping of touch appears to
occur later in processing. It could be that at 8 months infants
are at an initial developmental stage in which they are required
to resolve conflict between different frames of reference
(anatomical versus external) for encoding tactile stimuli and
related responses, prior to the emergence of changes to the
early perceptual tactile processes described above.
Changes in body posture represent a particular challenge

when individuals must map touches in external space (see
[35]). Although 6.5-month-old infants are able to locate and
orient to tactile stimuli when their hands are in typical positions
[3], we have shown striking changes subsequently in the way
the infant brain processes touch. Infants come to learn to
use cues about limb position (initially visual cues only) to
remap where touches are in the external world. The first
evidence of this is in 8-month-olds and appears to occur at so-
matosensory processing stages associated with stimulus
evaluation and responding. In 10-month-olds, remapping
becomes perceptual, a function of the early feed-forward
stages of processing in somatosensory cortex.
That there are developmental changes in how touch is map-

ped onto external space shows that, in agreement with argu-
ments made by Molyneux and Locke over 300 years ago [36]



Table 1. Participant Characteristics in Experiments 1–3

Group n Sex

Mean Age

(Days)

Age Range

(Days)

Experiment 1 6.5-month-olds 15 7 f,

8 m

198

(SD = 8.3)

185–214

10-month-olds 12 7 f,

5 m

304

(SD = 12.3)

288–322

Experiment 2 10-month-olds 13 9 f,

4 m

302

(SD = 10.7)

279–315

Experiment 3 8-month-old

crossers

15 7 f,

8 m

258

(SD = 13.4)

243–279

8-month-old

noncrossers

11 8 f,

3 m

256

(SD = 13.3)

241–283
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(and also with the recent work of Held and colleagues [37]),
humans are not provided a priori with an ability to represent
space across sensory modalities. This conclusion places
strong qualifications on accounts of multisensory develop-
ment that argue that certain ‘‘amodal’’ aspects of sensory
stimulation, such as spatial location, are readily available to
perception in early life [38–40]. Early perceptions of tactile
space are solipsistic in that they are strongly anchored to the
usual position of the limbs. Infants have to learn how touch
maps onto the external world across changes in limb position.
Experimental Procedures

Table 1 provides the characteristics of all participant groups (experiments

1–3). Across experiments 1–3, ERPs were recorded while infants were

presented with vibrotactile stimuli to their palms. A single tactor was

attached to each of the infants’ hands. Each trial comprised four discrete

tactile stimuli presented to the hands, one hand at a time in succession.

Each stimulus lasted 200 ms, and interstimulus intervals varied randomly

between 800 and 1,400 ms. The order of hand stimulation was randomized

under the constraint that each hand was stimulated twice on each trial. The

experimenter changed the infants’ hand posture between each trial (order

was counterbalanced). The stimulus presentation protocol was designed

in such a way as to discourage overt orienting responses to the tactile stim-

uli (see Supplemental Information). Testing took place until the infant

became fussy and inattentive.

Brain electrical activity was recorded continuously via 128 electrode

Hydrocel Geodesic Sensor Nets (Electrical Geodesic, Inc.). Analyses of

ERP data focused on central sites (C3 and C4) contralateral to the stimu-

lated hand (see Supplemental Information). In experiment 3, prior to EEG

recording, the infants were tested on a battery of motor scales and a reach-

ing task designed to measure any tendency to cross the midline (full details

are provided in the Supplemental Information).
Supplemental Information

Supplemental Information includes three figures, two tables, and Supple-

mental Experimental Procedures and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2014.04.004.
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5. Röder, B., Rösler, F., and Spence, C. (2004). Early vision impairs tactile

perception in the blind. Curr. Biol. 14, 121–124.
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