Dissecting the chromatin interactome of microRNA genes

Dijun Chen1,2,3,†, Liang-Yu Fu2,†, Zhao Zhang1, Guoliang Li2,4, Hang Zhang1, Li Jiang1, Andrew P. Harrison5, Hugh P. Shanahan6, Christian Klukas3, Hong-Yu Zhang2, Yijun Ruan2,4,*, Ling-Ling Chen2,* and Ming Chen1,*

1Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, 2Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China, 3Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany, 4The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA, 5Department of Mathematical Sciences and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK and 6Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

Received September 15, 2013; Revised November 18, 2013; Accepted November 20, 2013

ABSTRACT

Our knowledge of the role of higher-order chromatin structures in transcription of microRNA genes (MIRs) is evolving rapidly. Here we investigate the effect of 3D architecture of chromatin on the transcriptional regulation of MIRs. We demonstrate that MIRs have transcriptional features that are similar to protein-coding genes. RNA polymerase II–associated ChIA-PET data reveal that many groups of MIRs and protein-coding genes are organized into functionally compartmentalized chromatin communities and undergo coordinated expression when their genomic loci are spatially colocated. We observe that MIRs display widespread communication in those transcriptionally active communities. Moreover, miRNA–target interactions are significantly enriched among communities with functional homogeneity while depleted from the same community from which they originated, suggesting MIRs coordinating function-related pathways at posttranscriptional level. Further investigation demonstrates the existence of spatial MIR–MIR chromatin interacting networks. We show that groups of spatially coordinated MIRs are frequently from the same family and involved in the same disease category. The spatial interaction network possesses both common and cell-specific subnetwork modules that result from the spatial organization of chromatin within different cell types. Together, our study unveils an entirely unexplored layer of MIR regulation throughout the human genome that links the spatial coordination of MIRs to their co-expression and function.

INTRODUCTION

MicroRNAs (miRNAs) are a large family of small noncoding RNAs (~21 nt) that have emerged as key posttranscriptional regulators of gene expression in eukaryotic organisms. More than 1500 miRNA genes (MIRs) have been identified in the human genome (1) and they likely regulate the activity of more than half of all protein-coding genes (2). Functional investigations indicate that these MIRs control various developmental and cellular processes, and the dysregulation of their expression is being found to be associated with diverse human diseases, including cancers (3,4).

Despite these great advances in our recognition of the important biological roles of MIRs, our understanding of the transcriptional regulation of MIRs is still developing. It is generally believed that the transcription of most MIRs is mediated by RNA polymerase II (RNAPII) (5). There have been several exceptional cases of MIRs reported to be transcribed by RNAPIII (6-9). However, some of these putative RNAPIII-transcribed MIRs (for example,
mir-565, mir-886 and mir-1975) are actually other types of RNAs, such as tRNAs, Y RNAs and Vault RNAs, which are transcribed by RNAPIII (10–13), while others (for example, chromosome 19 MIR cluster, C19MC) displayed no occupancy by RNAPIII (7,8) but showed evidence of being transcribed by RNAPII instead (14). These misannotated MIRs have been subsequently removed from miRBase (1) ahead of further investigation.

MIRs originate from precursor molecules (pri-miRNAs). These transcripts can be encoded as independent transcription units (TU), in polycistronic clusters or within the introns of protein-coding genes (15,16), and contain poly(A) tails as well as cap structures (17). Approximately 50% of human MIRs are organized into introns of protein-coding genes (intragene MIRs) and are likely transcribed in parallel with their host transcripts (18), whereas MIRs located within intragenic regions (intragene MIRs) are believed to be derived from independent TUs (15).

Transcriptional regulation is not only determined by the DNA code at the linear chromosomal level. It also involves additional layers of higher-order chromosomal organization, which provides the chromatin context that can either facilitate or block the initiation of transcription (19). In particular, the development of chromosome conformation capture (3C) and similar techniques (20) have demonstrated that the spatial organization of chromatin has important transcriptional roles in regulating gene expression (21). Recent observations of RNAPII-associated chromatin interactions using ChiA-PET (22) showed that the transcription of protein-coding genes could be coordinated spatially through extensive promoter–promoter chromatin interactions in close proximity. Because the transcription of MIRs is RNAPII-mediated, the availability of a genome-wide RNAPII-associated chromatin interaction data provides us the opportunities to study, on a genome scale, how 3D chromatin interaction affects the transcription regulation of MIRs.

In this study, we have integrated comprehensive 3D chromatin interaction data (22) and genome-wide histone modification and expression data sets (Supplementary Table S1) from the Encyclopedia of DNA Elements (ENCODE) project (23). We establish a potential mechanistic link between chromatin-associated spatial interactions and transcriptional regulation of MIRs by RNAPII (Supplementary Figure S1).

MATERIALS AND METHODS

Overview of the integrated data analysis strategy

The huge genome-wide data sets from the ENCODE project (23) provide us with an unprecedented opportunity to dissect the underlying mechanisms of chromatin organization and its impact on transcriptional regulation and gene expression using an integrative approach. In this study, we have performed integrative data analysis to investigate the relationships between the spatial organization of the human miRNAome, the local chromatin status and how it affects MIR regulation (Supplementary Figure S1). We began our analysis with the identification of putative MIR promoters using integrative data sources and prediction methods (see below). We then used ChiA-PET with RNAPII peak data and ChIP-seq of histone modifications and DNA methylation data to characterize the chromatin features of MIRs. We also correlated the chromatin status with gene expression data, and examined the expression patterns between MIRs and their nearby protein-coding genes. Next, we developed a statistical model to assign MIRs into different chromatin interaction models based on ChiA-PET interaction data, and thus obtained a global MIR–MIR interaction network. Finally, we integrated RNA-seq data and disease information to systemically uncover the relationship between chromatin organization, cell-specific MIR regulation and disease biology.

In this study, we focus our analysis on K562 (chronic myelogenous leukemia) and MCF7 (mammary gland, adenocarcinoma) cell lines (see http://encodeproject.org/ ENCODE/cellTypes.html for detailed information). The data sources used in this analysis are available in Supplementary Table S1 and summarized as below.

Data sources

Human protein-coding genes and functional information.

The human (Homo sapiens) protein-coding genes with HGNC (symbol from the HUGO Gene Nomenclature Committee) symbols were downloaded from Ensembl (http://www.ensembl.org/; release 65) and RefSeq database (http://www.ncbi.nlm.nih.gov/RefSeq/). The gene ontology (GO) annotation and ID mapping data were retrieved from Ensembl using the BioMart tool. The best-curated list of known disorder–gene associations was obtained from Online Mendelian Inheritance in Man database (http://omim.org/; December 2012). We only considered entries with the ‘(3)’ tag, for which there is strong evidence that at least one mutation in the particular gene is causative to the disorder. Subsequently, we manually classified each disorder into 20 primary disorder classes, according to the classification scheme described in (24).

Human MIRs and their disease annotation.

The human MIR annotation information was retrieved from the miRBase database (http://www.mirbase.org/; release 18) (1). MIRs are grouped into either ‘intragene’ or ‘intragene’ according to whether their genomic position overlaps existing gene models. Specially, pre-miRNAs embedded into annotated genes with the same strand are referred as ‘intragene MIRs’, whereas pre-miRNAs located between genes are ‘intergenic MIRs’. The information about disease-related MIRs was obtained from the miR2Disease (25) and PhenomiR (26) databases.

ChiA-PET data. The RNAPII-associated ChiA-PET data were retrieved from (22), the ENCODE data repository site (http://genome.ucsc.edu/ENCODE/) and NCBI/ GEO (GSE33664). The ChiA-PET data can be used to simultaneously identify protein binding sites and chromatin interactions in a whole-genome, de novo and unbiased manner (27). The ChiA-PET peaks reflect the binding intensity by RNAPII, while the interactions determine the genome-wide long-range chromatin contact map linked by RNAPII. We used both types of the data here to study the
transcriptional regulation of both protein-coding and MIRs.

RNA-seq data. The RNA-seq data sets for protein-coding genes and small RNA-seq data sets for MIRs were downloaded from the ENCODE data repository site (http://genome.ucsc.edu/ENCODE/). The mapped files (in bam format) were directly downloaded from the ENCODE Web site and were subjected to expression estimation. The expression levels in FPKM (fragments per kilobase of exon per million fragments mapped) estimated by Cufflinks (28) were averaged for each mRNA when there were multiple replicates available. For MIRs, their abundances were measured in terms of RPM (reads per million total small RNA reads) using small RNA-seq data.

Epigenetic modification data. DNA methylation data as well as ChIP-seq data for histone modifications were also retrieved from the ENCODE data repository site (http://genome.ucsc.edu/ENCODE/). To characterize the chromatin features, such as histone modifications, transcription factor bindings, DNase I hypersensitive sites and DNA methylation, for the transcriptional regulation of MIRs, we used the epigenetic mark data to measure their profile around MIR promoters. For each location (the predicted promoters; see below), the number of peaks or tags within ±5 kb from the center of the locations were counted.

Hi-C data. The processed topological domains for each chromosome were obtained from a recent Hi-C study (29), which provided higher-coverage experiments. Domain boundaries were identified using a hidden Markov model at the 40-kb resolution (combined data set, http://chromosome.sdsc.edu/mouse/hi-c).

miRNA-target interaction data. Predicted targets of miRNAs were retrieved from six databases: TargetScan (30), miRanda (31), miRDB (32), PicTar (33), DIANA-microT (34) and MicroCosm (1). To consider highly confident miRNA–target interactions, only interactions supported by at least two databases were used in this analysis.

Annotation of MIR promoters

We annotated the MIR promoters or transcriptional start sites (TSSs) by integrating three different data sources (Supplementary Figure S2A). Firstly, the predicted TSSs were retrieved from the miRStart database (http://mirstart.mbc.nctu.edu.tw/) (35), which systematically incorporates high-throughput sequencing data derived from TSS-relevant experiments to identify TSSs of MIRs. We obtained 832 high-confidence TSSs MIRs from this web resource. For the rest of the MIRs, we searched the putative TSSs within the 50-kb-long upstream region of each pre-miRNA by using DeepCAGE tags (36) from the FANTOM web resource (http://fantom.gsc.riken.jp/; FANTOM4) (37). This led to the identification of another 274 MIR TSSs. We also predicted the promoter regions and TSSs of MIRs using genome-wide RNAPII binding peaks derived from ChIA-PET data (22), which is based on the previous observation that RNAPII binding peaks are proximal to the TSS of MIRs (38). The nearest RNAPII peak within 50 kb upstream of pre-miRNA was assigned to the TSS of that MIR. We identified 180 additional MIR TSSs based on RNAPII-associated ChIA-PET peak data (Supplementary Figure S2A). Previous studies have shown that H3K4me3 can be considered as a useful chromatin mark for identifying active MIR promoters (9,39), we thus manually checked the putative promoter regions of these newly identified MIRs using H3K4me3 data (Figure 1B). Intragenic MIR may have their own promoters or share promoters with their host genes. To confirm whether the closest RNAPII peak is the TSS of a MIR, we included promoter-associated histone markers, such as H3K4me2, H3K4me3, H3K9ac and H3K27ac (40), as additional evidences, on the basis that promoter-associated markers and RNAPII peak were in the same positions around the site and closest to the associated MIR. In total, we identified 1286 MIRs with predicted promoters. If the TSS of a MIR lies within ±2-kb region around the TSSs of nearby protein-coding genes, this MIR was considered to share promoters with nearby genes. Otherwise, the MIR was considered to have an isolated promoter. Of all the annotated MIRs, 536 (35.2%) showed shared promoters with nearby protein-coding genes. Several examples can be found in Supplementary Figure S3. The full list of MIR TSSs is used for further analysis and provided in Supplementary Data Set S1. The RNAPII binding peak intensity within ±2 kb from the MIR TSS site is available as Supplementary Data Set S2.

Construction of RNAPII-associated chromatin interaction network

Because MIRs and protein-coding genes are both transcribed by RNAPII, we used these two kinds of genes to construct a transcription-associated chromatin interaction network. The RNAPII-associated ChIA-PET interaction data in K562 and MCF7 cell lines were used to define the chromatin interaction network (Supplementary Figure S6A). Some detected ChIA-PET interactions may result from cancer-related genome translocation. We, therefore, removed genomic regions that mapped proximal to genomic structural variations in their respective genomes (42) before constructing the network. Next, for each ChIA-PET interaction (termed as ‘duplex interaction’), two sets of genes (including both protein-coding genes and MIRs) within ±2 kb from their predicted TSS sites to the two interacting anchor boundaries are considered to be chromatin linked to each other. These linked genes form complex interaction networks based on the connectivity of overlapping anchors from one duplex interaction to the others. We did this analysis for each replicate of the samples separately and for each type of cell lines (K562 cell line with three replicates and MCF7 with four replicates). To avoid gene interactions detected by chance, each pair of interacting genes should be recovered by at least two replicates. The whole chromatin interaction network consists of 2292 modules, which were referred to as chromatin communities (Supplementary Figure S6B). The full list of chromatin communities is provided in Supplementary Data Set S3.
Analysis of MIR-related chromatin interaction models

To define MIR-related chromatin interaction models, we focus on only MIRs in the whole network. Each interacting MIR pair should be supported by at least two independent replicates, unless they are neighbors on the genome (in which case they should be recovered by at least one replicate), as neighboring interactions are believed to be more reliable to detect in ChIA-PET technology (27) and adjacent MIRs (in clusters) prefer to be transcribed together (15). It is notable that, in this case, two MIRs are linked together either 'directly' by shared chromatin interactions or 'indirectly' via some intermediate interactions. We detected 202 pairs of directly MIR–MIR interactions, most (98.0%) of which were intrachromosomal and 83.3% of which were supported by at least two replicates. Although most (62.4%) interchromosomal interactions were linked indirectly, they were relatively reliable, as they were supported by at least two independent data sets. We also incorporated RNAPII-associated...
Widespread involvement of miRNA genes in functionally compartmentalized chromatin communities. (A) Top 30 GO biological process terms enriched in chromatin communities. Histogram shows the number of communities that a specific GO term is involved in. (B) Heatmap showing enrichment of disease classes for miRNA genes (MIRs) in communities with size ≥ 10. Rows present communities and column denote disease classes. The number of MIRs (No. MIRs >3) in each community is labeled on right. The significant enrichment categories (P < 0.001, χ² test on categories with at least two MIRs) are indicated with solid boxes in violet. The arrow (left) indicates the largest chromatin community as shown in C. The ten disorder classes from left to right are “Cancer,” “Cardiovascular,” “Connective tissue,” “Dermatological,” “Gastrointestinal,” “Hematological,” “Immunological,” “Muscular,” “Neurological” and “Psychiatric.” (C) Network designating the largest chromatin community. Nodes (representing protein-coding genes or MIRs) are colored according to their disease classification (24) and shown in pie chart (gray indicate non-disease genes). Please refer to the online version for the color legend. (D) Distribution of community size between communities with and without MIRs. (E) Degree distribution of MIRs and protein-coding genes in communities with size ≥ 10. See also Supplementary Figures S6 and S8.

Figure 2.

ChIA-PET peak data to investigate transcriptional regulation of MIRs that are not assigned to the defined interaction models. We assigned all the annotated MIRs to three interaction models based on how the MIRs were involved in the interaction networks: (i) ‘basal transcription’ model in which MIR overlapped with standalone RNAPII peaks in its promoter region, but did not overlap with any interaction anchors; (ii) ‘MIR-related chromatin interaction’ model that involved a MIR(s) that interacted with other MIRs or protein-coding genes; while (iii) other ‘not assigned’ model in which the promoters of the MIRs were not supported by any RNAPII peaks or interactions (Supplementary Figure S8A). We found 293 (19%) MIRs involved in the basal transcription model and nearly half of the MIRs (734; 48%) in the ‘MIR-related chromatin interaction’ models (Supplementary Figure S8B). The list of MIR-related chromatin interaction models can be found in Supplementary Data Set S4.

Association analysis of chromatin communities with miRNA–target interactions

We outlined the strategy in Figure 3A. In brief, highly reliable miRNA–target pairs (see the above ‘Data sources’ section) were firstly mapped to chromatin interaction networks. There were 87,303 (21.4%) pairs in total mapped on the network (Supplementary Data Set S5). However, only 0.2% (160) of the mapped pairs was to arise from within the same communities. We observed that 104 (65%) of these self-interacting pairs were from the giant community, indicating targets show significant underrepresentation within the same community that ‘their’ MIRs come from, compared with that of by chance (P = 3.4 × 10⁻⁷⁹, Fisher’s exact test). To associate significantly overrepresented chromatin community interactions with the mapping of miRNA–target pairs, two communities were considered to be linked if there were at least 10 mapped miRNA–target interactions between them. The statistical significance of their interactions was tested by a hypergeometric test corrected for multiple comparison by a false discovery rate (FDR) at 0.001 level. The criterion of at least 10 mapped miRNA–target pairs between two communities is based on the observation that each target in the chromatin interaction network was predicted to be targeted by 10 MIRs on averages. With an extension analysis, we relax this criterion (for example, ≥5 interactions, Supplementary
Figure 3. miRNA genes as regulators linking functional-related communities. (A) Methodology of association analysis of chromatin communities with miRNA-target interactions. Genome-wide miRNA-target pairs were mapped to chromatin interaction networks. It is notable that, of the mapped pairs, only 0.2% were found within communities. Furthermore, in this investigation, two communities were considered to be linked if there were at least ten miRNA-target interactions between them and the statistical significance of their interactions was tested by a hypergeometric test corrected for multiple comparison by a false discovery rate at 0.001 level. Using the cutoff, a network involving in 148 communities is shown in C. (B) Distribution of the number of shared enrichment GO terms (left panel) and within communities (bottom panel). (C and D) Networks showing community-community interactions. Each node represents one community. Node size is scaled to the number of genes. Edge line width proportions to the number of miRNA-target pairs between communities. Edge shading corresponds to the statistically significant of their interactions. (C) Distribution of genes (including miRNA genes as regulators linking functional-related communities. (E) Methodology of association analysis of chromatin communities with miRNA-target interactions. Genome-wide miRNA-target pairs were mapped to chromatin interaction networks. It is notable that, of the mapped pairs, only 0.2% were found within communities. Furthermore, in this investigation, two communities were considered to be linked if there were at least ten miRNA-target interactions between them and the statistical significance of their interactions was tested by a hypergeometric test corrected for multiple comparison by a false discovery rate at 0.001 level. Using the cutoff, a network involving in 148 communities is shown in C. (B) Distribution of the percentage of genes in a community targeted by miRNA genes (MIR; dark grey). Random control (light grey) with the same number of genes chosen randomly. The Mann-Whitney U test was used to calculated the F-value. Analysis was done for miRNA-target interactions between communities (top panel) and within communities (bottom panel). (C and D) Networks showing community-community interactions. Each node represents one community. Node size is scaled to the number of genes. Edge line width proportions to the number of miRNA-target pairs between two communities. Edge shading corresponds to the statistically significant of their interactions. (C) Distribution of genes (including miRNA and protein-coding genes) within one community is shown in pie chart. (D) Distribution of disease class is shown in pie chart. The color denotation of disease classification is taken from (24). Please refer to the online version for details. Nodes with blank indicates no available annotated disease genes. Note that interacting communities shared similar patterns of disease distribution. (E) Distribution of the number of shared enrichment GO terms (left panel, biological process; right panel, molecular function) between two linked communities (left bar). As control (right bar), the distribution is calculated with the same number of genes chosen randomly. The F-value was calculated by the Mann-Whitney U test. (F) Histogram of the number of communities a MIR is involved in, identifying the five MIRs associated with the largest number of communities. See also Supplementary Figure S9.
Figure S9A), and performed the analysis analogous to that shown in Figure 3. We observed that (i) the overall layout of the community network remain largely unaltered; (ii) miRNA–target interactions are enriched between function-related communities; and (iii) miRNA–target interactions are preferentially depleted from within common communities. Overall, the main findings of the current study are robust to the relaxation of the criteria we used in our analysis.

Random control analyses

We performed several random control analyses during this study. The basis was to extract the same number of genes/interactions chosen randomly from the same background sample, and then to calculate similar properties. To obtain significant statistics, we performed \(10^3\) independent random control analyses for each analysis. The Mann–Whitney U test was used to test the significance of distributions between the random control and observed data sets, and to calculate the \(P\)-value. Specifically, (i) to obtain the random control of the distributions of miRNA–target pairs between and within communities in Figure 3B, we chose the same number of protein-coding genes randomly for each community (nothing to do with MIRs). We then calculated the percentage of genes targeted by MIRs between or within communities. (ii) To assess the significance of function similarity between communities linked by miRNA–target pairs in Figure 3E, we performed GO enrichment analysis for each community and calculated the number of shared over-presented terms for random control and observed samples. (iii) To test the significance of MIR–MIR interactions from the same family or disease category in Figure 5B and C, we randomly generated the same number interactions from the MIR interactome and then calculated the distribution. FDR values were calculated from the \(10^3\) random data sets as the probability of random values significantly greater than observed values (with the Mann–Whitney U test \(P < 0.001\)).

Statistical analysis and data visualization

Most statistical analyses in this study were performed by using the R statistical package (http://www.r-project.org; release 2.14.1). GO term enrichment analysis was performed using hypergeometric test corrected for multiple comparison by the Benjamini–Hochberg method (FDR < 0.05), implemented in GO::TermFinder software (43).

Most of the networks presented in this study were visualized using Cytoscape platform (44) with force-directed layouts. The network properties, such as scale-freeness, were performed using Network-Analyzer plug-in in Cytoscape.

For visualization purposes, the Integrative Genomics Viewer (IGV) (45) was used to view the interaction PET data and various peak data; Circos (46) was used to view in the MIR interaction map across the whole genome.

RESULTS

Transcriptional properties of MIRs

We first examined the transcriptional properties of MIRs using RNAPII-associated ChIA-PET data (22). The RNAPII peak data provided a rich source for predicting MIR promoters (see ‘Materials and Methods’ section). Based on searching RNAPII peaks within 50 kb upstream of pre-miRNAs, we identified 180 novel putative MIR promoters (Supplementary Figure S2A), which were not supported by other public databases (35,37,47). In total, we obtained 1286 (84.4%) MIRs with predicted promoters (Supplementary Data Set S1). From the combined data sets from K562 and MCF7 cell lines, we found that nearly two-thirds (66%; 343 intergenic and 658 intragenic MIRs) of the annotated MIRs showed high-confidence RNAPII binding sites around their predicted promoter regions (Supplementary Figure S2B and C and Supplementary Data Set S2). Most of these MIRs associated binding peaks are enriched around the predicted transcription start sites (TSSs) of the MIRs (Figure 1A). Similar observations were separately seen for intragenic and intergenic MIRs. Specially, we observed a high correlation between the distribution of RNAPII binding peaks in intragenic MIRs and the gene expression of their host protein-coding genes (Pearson correlation \(r = 0.98\); \(P < 2.2 \times 10^{-16}\); Supplementary Figure S2D), indicating that most, if not all, intragenic MIRs are co-transcribed with their host genes (see Supplementary Figure S3A and B for specific examples).

For some intergenic MIRs, they have their own promoters for transcription (Supplementary Figure S3C and D). Some intergenic MIRs share common promoters with their nearby protein-coding genes, suggesting co-transcription (Supplementary Figure S3E-G). Notably, MIRs and nearby genes with opposite directions of transcription showed higher correlation of RNAPII binding distributions \((r = 0.62)\) as compared with those with identical directions \((r = 0.39;\) Supplementary Figure S2E), suggesting the importance of the bidirectional arrangement of promoters as a regulatory mechanism within the human genome (48).

Next, we determined whether MIRs associated with higher RNAPII binding peaks were more likely to be actively transcribed. We analyzed the transcriptional levels measured by small RNA-seq reads from ENCODE (23) and observed that the binding intensity at promoter sites correlated well with the expression level of the corresponding MIRs (Supplementary Figure S2F). The higher the RNAPII occupancy, the higher the MIR expression level tends to be (Supplementary Figure S2G and H). Besides, we observed that MIRs and their host (for intragenic MIRs) and nearby protein-coding genes (for intergenic MIRs) had coordinated expression output (Supplementary Figure S2I).

In addition to transcriptional regulation directed by RNAPII, MIRs could also be subject to epigenetic control at the chromatin level, similar to that seen for protein-coding genes. We observed high enrichment of active chromatin marks, such as histone modifications including H3K4me3, H3K4me2, H3K4me1 as well as
histone acetylation and histone variant H2A.Z, within MIR promoter regions, that correlated well with RNAPII binding and expression output (Figure 1B and Supplementary Figure S4). By contrast, when these marks were weakened or totally lost, the binding peaks and expression levels changed accordingly.

To further explore the association of chromatin state dynamics with RNAPII-associated binding intensity, we systemically examined a comprehensive list of currently available chromatin marks and functional binding sites from the ENCODE consortium (see ‘Materials and Methods’ section). An unbiased pairwise association analysis was carried out on data sets from the K562 cell line. Heatmaps organized by hierarchical clustering revealed two clear groups of correlated pairs that distinguished active chromatin marks (red) from repressive marks (blue), where active marks were positively correlated with RNAPII peaks (Figure 1C).

Interestingly, the distribution of binding peaks for RNAPII closely followed the binding peaks of histone marks (such as H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K79me2, H3K4me1 and H2A.Z; as active promoters and/or strong enhancers), the elements bound with chromatin remodeling factors (such as BRG1 and CHD1), the binding sites for the chromatin insulator CTCF and DNase hypersensitive sites. In contrast, repressive histone modifications (such as H3K27me3 and H3K9me3), DNA methylation and bindings of polycomb proteins (such as CBX2 and CBX8), known to be present in broad domains that encompass inactive genes, showed opposite distribution patterns compared with that of RNAPII binding. To rule out the possibility that the expression of intragenic MIRS is just tracking the expression of their host protein-coding genes being regulated by the epigenetic factors, we performed association analysis for intergenic and intragenic MIRS separately. We observed that the overall patterns are consistent [r = 0.95 and P < 0.001, Mantel test (41); Figure 1C]. Collectively, our observations are in line with the emerging view derived from the surveys of protein-coding genes (Supplementary Figure S7). The overall correlation is highly stable across different cell types. The observation of multiple TADs associating with the same chromatin community suggests that these domains were organized into higher spatial structures by RNAPII for co-transcription. Besides, we noticed that MIRS are frequently observed in the community-associated TADs (Supplementary Figure S7).

To investigate the spatial organization of these chromatin communities, we took the recent Hi-C data (29) into account. We found that genes (including both MIRS and protein-coding genes) from the same chromatin community identified by ChIA-PET data are frequently present in the topological associated domains (TADs) identified by Hi-C experiments (Supplementary Figure S7). The overall correlation is highly stable across different cell types. The observation of multiple TADs associating with the same chromatin community suggests that these domains were organized into higher spatial structures by RNAPII for co-transcription. Besides, we noticed that MIRS are frequently observed in the community-associated TADs (Supplementary Figure S7).

To elucidate the links between expression patterns of MIRS and their chromatin regulation, we assigned all the annotated MIRS into three chromatin models (22) based on the RNAPII-associated ChIA-PET data: (i) 'basal transcription' model, (ii) 'MIR-related chromatin interaction' model and (iii) 'not assigned' (see ‘Materials and Methods’ section; Supplementary Figure S8A and Supplementary Data Set S4). These chromatin models showed both common and cell-specific manners in the two cell types (Supplementary Figure S8B). We found that MIRS associated with chromatin interactions, especially those in multi-MIR interaction models, showed significantly higher expression levels than those in basal transcription models. However, as a control, MIRS without supporting RNAPII-associated ChIA-PET data had the lowest expression levels (Supplementary Figure S8C). These findings were the same for both K562 and MCF7 cell lines. Altogether, our study of MIRS, along with other observations of protein-coding genes (22), suggest that spatially coordinate transcription factories exist in the nucleus and cooperatively transcribe both protein-coding genes and MIRS.
Widespread involvement of MIRs in functionally compartmentalized chromatin communities

We performed enrichment analysis of GO terms on protein-coding genes in the communities. Our results showed that the communities participated functionally in essential biological processes such as cell death, cellular metabolic processes, biosynthetic process, immune system development and cellular response to stress/stimulus (Figure 2A). Moreover, the functional investigation of disease annotations reveals that most of these communities are enriched in MIRs involved in cancer and/or hematological disorders (Figure 2B). As observed in the largest community (Figure 2C), disease-related genes (including 10 MIRs) tend to form coherent clusters with similar distributions of functional categories. Furthermore, cell-specific or conserved gene interactions are likely organized together. For example, mir-21 and TRIM33, which are both regulators involved in breast cancer (52), are located in an MCF7-specific cluster, whereas mir-194-2, mir-192 and MEND1 as leukemogenesis (53) in a K562-specific cluster. These observations raise the possibility of functional compartmentalization of chromatin in the nucleus.

We next explored the extent to which MIRs are involved in the defined chromatin communities. The largest community, as shown in Figure 2C, involved 896 genes (including 29 MIRs). For all the communities, we observed that only a small proportion (27.3%, 201 of 734) of these MIRs shared promoters with protein-coding genes. The MIRs with shared promoters had similar chromatin features to the MIRs with their own isolated promoters (r = 0.80 and P < 0.001; Supplementary Figure S5B). Remarkably, we found that MIR-associated communities are significantly more likely to have a large size (P < 2.2 × 10^{-16}; Wilcoxon’s rank sum test; Figure 2D), indicating that MIRs demonstrate widespread communication in the transcriptionally active genome, or alternatively, a community with more nodes has a higher chance to overlap with MIRs. This notion was further confirmed by the observation that MIRs have a larger number of interactions than protein-coding genes (P < 3.0 × 10^{-4}; Figure 2E).

Systems coordination of chromatin communities through miRNA-target interactions

Mature miRNAs result in posttranscriptional repression of protein-coding genes (2). So it is reasonable that MIRs and their targets should escape to be transcribed together (as to be observed in the same communities). If not, it leads to a paradox, as it is not economical for the cell to first transcribe target genes and then later repress them by MIRs produced from the same factory. We thus asked whether miRNA–target pairs result from MIRs and their target genes that are produced from the same chromatin communities. We mapped a comprehensive list of high confident miRNA–target pairs to the above described chromatin communities (Supplementary Figure S6B and Supplementary Data Set S5). To our surprise, we found that only 0.2% of the total mapped miRNA–target interactions were found to be from the same communities, while nearly all (99.8%) of interaction pairs were mapped between different communities (Figure 3A). Permutation (10^6 randomizations) analysis showed that the actual percentage of genes in one community targeted by MIRs in another community was significantly higher than that of random control (FDR < 0.001; Figure 3B, Top), while the probability of MIRs targeting to genes from the same communities (the percentage of self-targetable) was comparable with that of by chance (Figure 3B, Bottom).

We suspected that MIRs may act as the linkers that connect distinct function-related communities via miRNA–target interactions. To test this hypothesis, we first constructed a chromatin-associated community–community interaction network by denoting the chromatin communities as its nodes and statistically significantly (P-value from hypergeometric test with correction for multiple comparisons, P < 0.001) miRNA–target interactions distributed among these communities as edges (Figure 3A). Here we needed at least 10 miRNA–target interactions mapped to each pair of communities. To be cautious, we performed an extension analysis by relaxing this criterion (for example, at least five interactions), and we found similar results (Supplementary Figure S9A). We, therefore, obtained a network involving 148 communities, 109 of which were MIR-related ones (Figure 3C). It is notable that about half of the genes in the communities were targeted by MIRs from the linked communities, demonstrating the widespread communication, at the posttranscriptional level, of the transcriptionally active genome. We found that expression of MIRs was negatively correlated with expression of their targets, albeit only weakly (Spearman’s rank correlation ρ = −0.14 for K562 and ρ = −0.11 for MCF7), supporting the notion of a fine-tuning role of MIRs in gene regulation. Accordingly, genes associated with targets in the communities showed slightly lower expression levels than nontarget genes (Student’s t-test P < 0.003; average expression levels with RPKM values 19.4 versus 23.4 in K562, and 20.1 versus 21.6 in MCF7; Supplementary Figure S9B).

We next investigated the disease distribution of genes in the interconnected communities. We found that connected communities showed coordinated distribution of genes with disease classes and dominant parts of genes were cancer-related (Figure 3D). Genes associated with the same disorder were proposed to share functional characteristics (24). We now asked whether the genes in connected communities share similar molecular functions and are involved in similar biological processes, as annotated in GO. We calculated the number of enriched GO terms shared among the linked communities (see ‘Materials and Methods’ section), finding significant elevation of homogeneity of GO terms with respect to random controls (Figure 3E). Together, our findings reveal that MIRs act as widespread systems regulators that act to coordinate the links between function-related communities, as examples shown in Figure 3F. MIRs such as miR-194-2, miR-21, miR-301a, miR-454 and miR-92b, each target nearly one-third of the communities, for example.
The interactome network of miRNAome in the 3D chromatin space

In the following sections, we focus our analyses on MIRs involved in the MIR–MIR chromatin interaction model, as it provides a structural framework for the study of synergistic transcription regulation of MIRs. This set of MIRs is nearly one-third (459 of 1523) of currently annotated MIRs (Supplementary Figure S8A and B). There were 1260 MIR–MIR interactions, nearly half (47%) of which are intrachromosomal (Supplementary Figure S10A, Inset). It is notable that these MIR–MIR interactions are not necessary to arise from the same MIR clusters, as we observed only 8.8% (111 of 1260) interactions belong to the clusters (Supplementary Figure S10B).

The whole MIR–MIR spatial chromatin interactome is likely to be formed from several hotspot regions, where MIRs have strong RNAPII occupancy with high expression levels and are extensively linked through chromatin interactions (Supplementary Figure S10A, Inner tracks). Certain chromosome regions showed enrichment of cell-specific MIR interactions. For example, MIRs from several chromosome regions, such as 17q22, 17q23 and 20q13 showed MCF7-specific complex interchromosomal interactions, whereas MIRs from 1p13, 9q34, 11q12, 13q31, 19p13 and 22q11 showed extensive K562-specific interactions (Supplementary Figure S10A). However, the distribution of MIR interactions did not necessarily correlate with their density across the genome, adding evidence to support the view that chromatin interactions of miRNAome are subject to cell-specific regulation. Interestingly, we observed several clusters of disease-related MIRs with high expression levels enriched at the hotspot regions (Figure 4). Moreover, nearly half of the interactome are involved in disease classes such as cancer (31.3%) and hematological (16.6%).

The MIR-related interactions identified from 3D chromatin space can be viewed from a network perspective (Figure 5A). After mapping expression data and disease information, several insights can be gained from this interactome network. First, the whole network is partitioned into well-demarcated domains (subnetworks) in which MIRs showed intensive contact via either common or cell-specific chromatin interactions. Furthermore, MIRs with similar expression patterns tended to be colocated, consistent with recent findings that genes involved in chromatin interactions showed correlated expression (22). Moreover, inactive or low-expressed MIRs are frequently observed at network boundaries (MIRs showing less connection with other MIRs) or connections between subnetworks (Figure 5A).

MIRs from the same gene family have frequent contact (FDR < 0.001; Figure 5B), supporting the idea that genes with similar functions are spatially organized so as to coordinate transcription. This observation provided direct evidence that MIRs from the same family showed co-expression in the derived MIR co-expression networks (54–56). We note that the genes for MIRs within a specific disease category, such as breast cancer, lung cancer and leukemia, are frequently collocated (FDR < 0.001; Figure 5C). Moreover, MIR loci that have spatial interactions tended to be involved in the same disease category. Specifically, of the 154 MIR–MIR interactions in which both MIRs are annotated as disease-related, 132 (86%) have at least one disease category in common (Figure 5D). Taken together, these observations provide evidence that abnormal chromatin conformation and regulation tends to be associated with disease.

Cell-line specificity of chromatin interactions for MIR regulation

To investigate whether the cell-line specificity of chromatin organization correspond to cell-specific expression and the function of MIRs, we performed a comparative analysis between K562 and MCF7 cell lines. Of the 1260 MIR–MIR interaction pairs identified in our analysis, 49 (623) and 10% (124) were specific to K562 and MCF7 cell lines, respectively (Supplementary Figure S8D), suggesting differences in the chromatin architectural context for MIR regulation between the two cell types. Accordingly, MIRs involved in cell-specific interactions also showed cell-specific expression (Supplementary Figure S8E), implying that cell-specific chromatin organization provides the topological basis for cell-specific MIR transcription regulation.

We focused on the two largest cell-specific subnetworks of MIR interactions as indicated in Figure 5A. For the interactions specific to K562 cells, which contained 67 MIRs from nine linked chromosomes (Figure 6A), we observed that several leukemia-regulated MIRs extensively interacted via spatial chromatin links (Figure 6B), including mir-17-92 cluster (13q31.3, including mir-17, mir-18a, mir-19a, mir-19b-1, mir-20a and mir-92a-1), mir-126 and mir-150 (57–63). Remarkably, nearly all the expressed MIRs (94%, 46 of 49) were upregulated in K562 cells comparing with MCF7 (Figure 6A). Furthermore, the nearby protein-coding genes showed similar expression patterns with these MIRs (Figure 6C). This adds further evidence supporting our view that these two types of genes are organized into the same chromatin architecture and undergo coordinated transcription. We found that the MIRs in K562-specific interaction network showed significant enrichment in disease categories such as leukemia, hematological and gastrointestinal-related cancers (Fisher’s exact test \(P < 0.1; \) Figure 6D) when compared with MIRs in MCF7-specific network. In the MCF7-specific MIR interaction network (Supplementary Figure S11), disease-related MIRs, such as mir-21, mir-301a and mir-454 have been shown to play a role in the regulation of breast cancer (64–66). Interestingly, these MIRs were extensively linked via chromatin interactions with two protein-coding genes, PPM1D (67) and BRIP1 (68,69), which are known to be involved in breast cancer. Altogether, the above results suggest that cell-specifically expressed MIRs are subject extensively to cell-specific regulation of the 3D organization of chromatin.

DISCUSSION

In this study, we have presented an investigation of the relationship between the spatial coordination of chromatin
and the transcriptional regulation of MIRs. By integrating a large compendium of genome-wide data sets from the ENCODE project (23), including ChIA-PET data, ChIP-seq for various histone modifications, DNA methylation data and RNA-seq data, we have established a link between the 3D spatial organization of chromatin interactions and the expression and function of the human miRNAome. Our work sheds light, at least in part, on a complex landscape of the transcriptional network involving MIRs.

Previous studies have demonstrated similarities in the transcriptional regulation of MIRs and protein-coding genes. The first evidence comes from the early biological studies demonstrating several instances in which MIRs are transcribed by RNAPII (5,17). Additionally, there is evidence that a set of RNAPII-associated transcription factors, such as c-Myc, cAMP-response element binding protein (CREB) and MyoD (70–73), regulate MIR expression. Notably, bioinformatics analysis reveal that CpG islands, TATA box sequences, transcription start sites (TSSs), conserved transcription factor binding sites and initiation elements are enriched within the promoter regions of MIRs (9,74–78). Consistent with these observations, our data reveal further similarities in the transcriptional properties of MIRs and protein-coding genes. We observed with confidence that nearly two-thirds of MIRs

Figure 4. The chromatin contact map of miRNAome. Circos diagram representing disease-related MIR chromatin interactome. The linkage of two connected MIRs is colored according to their involvement of disease classes (inner track). A pair of MIRs may involve in more than one disorder classes. The color key is shown on the right bottom (see the online version for details). MIRs (outer track) are colored according to their cell specificity. Inset pie chart: distribution of MIR-related chromatin interactome in ten disorder classes.
have RNAPII binding peaks within their annotated promoter regions in the K562 and MCF7 cells (Supplementary Figure S2B). As expected, the binding intensity correlates well with the level of expression (Supplementary Figure S2F–H). Although intergenic and intragenic MIRs had distinct patterns of RNAPII occupancy (Supplementary Figure S2D and E), most RNAPII binding peaks are enriched around the proximal TSSs (Supplementary Figure S2C). Furthermore, MIRs share consistent patterns of chromatin marks for transcriptional regulation, compared with that of protein-coding genes, which are found to be correlated with RNAPII occupancy in the promoter regions of MIRs and are linked to their expression patterns (Figure 1 and Supplementary Figure S5A). We, therefore, conclude that RNAPII serve as the de facto polymerase corresponding to MIR transcription, implying that both MIRs and protein-coding genes share common mechanisms of transcriptional regulation.

We have further constructed a transcription-associated chromatin interaction network, which involves both MIRs and protein-coding genes. We observed that discrete gene loci, including MIRs and protein-coding genes, from distant regions, were organized into, and co-transcribed from, common spatial domains, referred to as chromatin communities (Figure 2C). We found that such spatially interacting genes showed correlated expression patterns (Figures 5A and 6 and Supplementary Figure S11). Moreover, the communities were enriched in essential cellular functions and include a wide range of MIRs. Further investigation based on Hi-C data (29) revealed that these chromatin communities were frequently related to the topological domain structure of the genome (Supplementary Figure S7), suggesting the potential link between topology-associated domains and transcriptional regulation in the human genome.
We found that while miRNA–target interactions were significantly enriched among function-related communities, the MIRs and target genes tend to avoid coming from the same spatial community (Figure 3B). We suspect that the community-derived genes (including both MIRs and protein-coding genes) may participate in different but functionally related pathways after their transcription. The pathways involved will be likely interrelated, with MIRs acting as the fine-tune regulators, which maintain the homeostasis of these processes. MIRs in one community may act to switch off expression of target genes from another community, as we observed that targets from certain communities were absolutely switched off (Supplementary Figure S9B). However, we also found that target genes showed even higher expression levels than nontargets within some communities. This observation could be explained by the widespread feedback of regulatory loops involving MIRs (79–81).
Our data highlight the important roles of MIRs in the systems-level coordination of function-related chromatin communities.

We find that genes for MIRs from the same disease category tend to be spatially linked together (Figure 5A and C). We suggest that, for at least some MIR-associated disorders, the 3D conformation of chromatin is reshaped through chromatin modifications, or mechanical perturbations, that result from changes in the cellular environment. This leads to certain MIR loci appearing or disappearing from transcription factories, resulting in the dysregulation of these MIRs.

In conclusion, RNAPII-associated ChIA-PET analysis enabled us to deduce a network of spatial interactions involving MIR loci, covering nearly one-third members of the whole miRNAome. The results presented here provide a novel insight into the 3D regulation of MIR and protein-coding genes, our results support a context-based transcription factory model in which a context created by the 3D folding of chromatin serves as a general means of coordinating transcription of both MIRs and protein-coding genes, highlighting the existence of ‘transcription factories’ in the cell-defined 3D chromatin space for co-transcribing these two types of genes (19). As more data are being generated, we expect that studying the links between spatial chromatin interactions and the miRNAome will enhance our understanding of the mechanisms of MIR transcriptional regulation. Our analysis shows that spatial interactions affecting the regulation of the human genome are an important mechanism involved in regulating MIR expression in developmental and cellular processes, both in health and disease. This may lead to the discovery of new disease-related MIR regulators, with the potential of clinical applications.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT
The authors thank Prof Andrew Sharrocks and the two anonymous referees for their helpful comments and suggestions.

FUNDING
Funding for open access charge: National Natural Science Foundation of China [30971743; 3105011021; 31371328; 31271406 and 31071659] (in part); Federal Office of Agriculture and Food [530-06.01-BiKo CHN to D.J.C., M.C. and C.K.]; Robert Bosch Stiftung [32,5.8003.0116.0 to D.J.C., M.C. and C.K.]; Henry Lester Trust [D.J.C., Z.Z., M.C., A.P.H. and H.P.S.]; Fundamental Research Funds for the Central Universities [M.C. and L.Y.F.].

Conflict of interest statement. None declared.

REFERENCES

Downloaded from http://nar.oxfordjournals.org/ by guest on November 12, 2014

