
Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5
http://www.journalofcloudcomputing.com/content/3/1/5

RESEARCH Open Access

Self-service infrastructure container for data
intensive application
Ibrahim K Musa1*, Stuart D Walker1, Anne M Owen2 and Andrew P Harrison2

Abstract

Cloud based scientific data management - storage, transfer, analysis, and inference extraction - is attracting interest. In
this paper, we propose a next generation cloud deployment model suitable for data intensive applications. Our model
is a flexible and self-service container-based infrastructure that delivers - network, computing, and storage resources
together with the logic to dynamically manage the components in a holistic manner. We demonstrate the strength of
our model with a bioinformatics application. Dynamic algorithms for resource provisioning and job allocation suitable
for the chosen dataset are packaged and delivered in a privileged virtual machine as part of the container. We tested
the model on our private internal experimental cloud that is built on low-cost commodity hardware. We demonstrate
the capability of our model to create the required network and computing resources and allocate submitted jobs. The
results obtained shows the benefits of increased automation in terms of both a significant improvement in the time
to complete a data analysis and a reduction in the cost of analysis. The algorithms proposed reduced the cost of
performing analysis by 50% at 15 GB of data analysis. The total time between submitting a job and writing the results
after analysis also reduced by more than 1 hr at 15 GB of data analysis.

Keywords: Cloud computing; Microarray data analysis; Bioinformatics; Cells-As-A-Service

Introduction
Large scale data are increasingly generated from a wide
variety of sources such as scientific experiments and mon-
itoring devices. Consequently, there is a compelling need
to store, analyse, query, manage, understand, and respond
to such data for knowledge extraction and decision mak-
ing. The emergence of cloud computing presents a new
and promising paradigm to handle these challenges [1].
The model allows the use of configurable resources on a
pay-as-you-go basis, thereby eliminating upfront invest-
ments. Scientific clouds [2] deployed on large heteroge-
neous research projects have shown good performance in
handling burgeoning data volumes in an economic and
efficient manner [3].
As the interest in cloud adoption for scientific applica-

tions intensifies, it is necessary to cope with the challenges
of adhering to service level agreements, achieving high
service elasticity, and the complexity of managing large
scale cloud datacentre resources [4-6]. Another critical

*Correspondence: ikmusa@essex.ac.uk
1School of Computer Science and Electronic Engineering, University of Essex,
Wivenhoe Park, Colchester CO4 3SQ, Essex, UK
Full list of author information is available at the end of the article

research issue [1,7] in cloud computing is the notion
of enabling users to automatically consume cloud ser-
vices without necessarily understanding the complexities
associated with the new paradigm. To address these chal-
lenges, numerous techniques including effective provi-
sioning strategies [8,9] and flexible job allocation [9] have
been proposed.
This article presents a container-based model of cloud

computing where all resources (virtual machines, storage,
and interconnecting networks) and the logic to manage
these resources are packaged in a virtual container and
delivered to users. We refer to this model as Virtual Cells-
As-A-Service (vCAAS) and each container as a vCell.
The paper proposes a strategy similar to the research in
[10,11]. vCAAS is an IAAS/PAAS model enabled with
application specific resource management functionalities
such as provisioning, job allocation, and holistic optimiza-
tion [12]. The functionalities are created from platform as
a service (PAAS). The resources are then consumed as an
IAAS service similar to the Biolinux virtual instance.
Our proposal is a self-service container model inspired

by the concept of a biological cell [13] on the premise
that nature has successfully managed complexity. This

© 2014 Musa et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

http://creativecommons.org/licenses/by/2.0

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 2 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

new approach aims to address the challenges of using
cloud services for large scale data analysis. Our approach
assumes VMs interact and complement each other to per-
form tasks. In vCAAS, each vCell is isolated from other
tenants in the datacentre and the owner controls the
entire components of the service cell from a simple tem-
plate via a service console. The virtual container model
provides a portable infrastructure platform for deploying
self-contained and self-service IAAS.
This work demonstrates the strength of our model

with an analysis from the area of bioinformatics. The
GeneChips technology called GeneChips from the com-
pany Affymetrix is widely used by biologists and other life
scientists to perform experiments on tissue samples. We
use the microarray datasets from GeneChips in the anal-
ysis of RNA sequence to measure tissue samples. We use
the microarray datasets to determine whether significant
bias is encountered in this gene expression data. This bias
could be introduced by the technology of the GeneChips
rather than by the biology being tested. The work follows
on from that pursued by Shanahan and colleagues [14].
The rest of the paper is organized as follows. The

Section “Related works” presents related works in the
area, the Section “Container-based cloud framework”
describes our proposed framework, the Section
“Container-based cloud model for bioinformatics” des-
cribes the specific implementation of the framework for
bioinformatics experiment, the Section “Implementation
and results” presents the experiment set-up and the
result of experiment conducted, and finally the Section
‘Conclusion’ ends the paper and suggests ways in which
the research can be expanded.

Motivation
Despite numerous developments in the adoption of cloud
computing for scientific research, scientists employing
the capabilities of cloud computing to perform experi-
ments face the challenges of achieving efficient and cost
effective use of cloud resources. This is attributed to the
need to understand often complex cloud specific tech-
nologies (e.g. virtualization, job scheduling), to build and
submit the required work flow, to choose the right vir-
tual machine for the problem, to configure the purchased
resources for the chosen experiment, and to choose the
right number of resources for the given task [3,15].
Numerous projects, such as Biolinux [16,17], attempt to
solve some of these problems by allowing cloud users to
clone and use fully-packaged virtual machines containing
scientific data analysis tools. This approach unifies sci-
entific activities, reduces time to perform experiments,
and offers cost-effective infrastructure. However, the chal-
lenges of efficiently and effectively running a large number
of such packaged workstations still need to be addressed.
As a result, this work is motivated by the following issues:

• Most current cloud computing models applied to
solve problems in application areas (e.g. Biological
sciences, Physics) are yet to clearly address the
complete automation of domain specific resource
management tasks such as initial capacity and the
internal organization of resources as a holistic entity.
Such intelligent resource management is needed to
properly unlock the full advantage of cloud
computing.

• Cloud users from specific domain areas are forced to
understand and perform complex resource
management tasks, thereby making the application of
cloud computing in these areas more difficult.

• The need for cloud applications to explore the
economic benefit of a holistic and complimentary
interrelationship between set of purchased resources
deployed for the execution of a task.

• The need to achieve more transparent interaction
between a container management service and the
underlying physical infrastructure.

• The need to implement proactive job monitoring
services that apply historical pattern inference to
determine status of jobs. Most current cloud
platforms are yet to provide a full monitoring service
at the job level. This often leads to high cost as a
running VM with a failed job incurs unnecessary
expense until the problem is detected and the failed
job reassigned. This task is often left to the scientist
running the experiment.

The main aim of this article is to present a next
generation cloud computing model based on a holis-
tic organization of resources in a virtual infrastructure
container. The proposed framework optimises the pro-
visioning of resources, automates the coordination of
activities in a virtual service container, and efficiently allo-
cates task to the resources provisioned as part of the
container.

Related works
Enormous interest surrounds the application of cloud
computing to support large scale biological data analysis
[2,18-22]. A distributed system enabled by an intelligent
agent in [19], data and software sharing using a central
repository [18], and a publicly available packaged VM
such as Biolinux [16] are already proposed. At extremely
large scale, research projects such as CloudBurst [23],
CloudBlast [24], and Galaxy [25] provide standard envi-
ronments and algorithms for analyzing large data gen-
erated from scientific experiments. These development
paves the way for cloud-based data analysis for bioinfor-
matics. For instance, in [26] more than 1 billion short
sequence reads were proposed using a cloud base algo-
rithm available in [23].

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 3 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Various models of holistic infrastructure services for
cloud computing have been proposed [10,27-29]. Per-
haps the proposals in [27,29] and [28] are the closest
to the approach in this article. The proposals describe
PAAS/IAAS container-based next generation cloud archi-
tecture created as a subset of a typical datacentre. The
FP7 project 4Caast [29] described an enabling platform
for an advanced PAAS cloud capable of offering an opti-
mized programming interface for next generation internet
application. The strategy outlined in [27] envisions the
provision of compute, storage, and network services to a
large number of multi-tenants each with specific perfor-
mance criteria such as delay, security, and flexibility all
defined in an Extensible Mark-up Language (XML) tem-
plate. Each service user is assign a view isolated from other
services. Another study in [28] describes the integration
of both PAAS and IAAS in a VM set model. The proposal
in [28] uses a data repository to store the configuration
about available hardware and virtual resources which can
be accessed using service oriented infrastructure (SOI).
The attempt in [10] is to improve on the scalability of
cloud services with a holistic resource view across a multi
cloud environment.
Strategies for data transfer, cloud resource provisioning

and job allocation have been proposed in the literature. A
Stream-based data transfer strategy presented in [21] pro-
posed a data compression technique to reduce the data
transfer overhead associated with large data. In [30], var-
ious strategies for provisioning of virtual machines and
workflow scheduling are described. Another similar sur-
vey in [9] tested various on-demand execution and waiting
time provisioning policies.
vCAAS and other cloud computing models share many

functional and structural features of existing technolo-
gies such as service grid, utility, and cluster computing
(CCom). Cluster computing is a type of parallel and dis-
tributed system, which consists of a collection of inter-
connected stand-alone computers working together as
a single integrated computing resource [31]. Computer
clusters are often built around proprietary technologies
and applications needs to be re-architected to meet poli-
cies [32]. In cluster computing, a service model is virtually
absent and limited user requirement integration is offered
during the resource composition. vCAAS, on the other
hand, emphasizes user-driven service delivery of virtual
components with the aim of creating business value. Ser-
vice grids are, on the other hand, aimed as collaborative
ventures with no apparent business objectives.
The VPC adopts a logical view where a cloud infras-

tructure appears as though it is operated solely for an
organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises or
some combination of these options [33]. Current deploy-
ment models of VPC concentrate mainly on extending

an existing public cloud with secured virtual private net-
work(VPN) services. On the other hand, the original con-
cept of vCAAS, like similar previous proposals, envisions a
flexible [27], user-driven [28], and self-managed [29] cloud
service beyond the extension offered by laying VPN atop
a public cloud as proposed in the VPC [7]. vCAAS aim to
provide automated provisioning of resources, allocation of
task, and failure management.
The next section describes our proposed framework

for a virtual infrastructure container as well as the func-
tionalities and actors coordinated to realise the vCAAS
model.

Container-based cloud framework
The main component of our proposed framework
(Figure 1) are the Delivery layer, Service layer, Control and
Virtualization layer, and Physical fabric layer.

Delivery layer
This layer facilitates the submission of a vCell request and
provides the enabling environment for the vCell. Tech-
nical requirements such as bandwidth, load balancing,
priority, service discovery mechanisms, communication
protocols, delay, and response time are properly identified
and submitted using appropriate description language.
Business objectives such as deadline, cost, accounting, and
auditing are also submitted using this interface. Figure 1
shows a typical virtual infrastructure container frame-
work.
Additionally, as shown in Figure 1 each vCell is enabled

with the delivery layer which consist of four main subcom-
ponents that interact to realize vCell functionalities.

The service console
enables the functionalities to interact with users and
accept/update requests for vCell creation. The mod-
ule allows simple and complex workflow specifications.
VXDL [34] allows the complex request presentation
required in a holistic cloud delivery model [28]. Complex
parameters such as virtual timeline description, dynamic
resource configuration, and components’ behaviour dur-
ing the service life cycle can be modelled. Fundamental
features such as aggregate capacity and lease time of the
submitted request is, however, subject to approval by the
underlying service layer. This way the mediation function
of the service layer controls and secures the subsequent
activities of the vCell. For instance, a vCell manager can-
not create resources beyond the maximum capacity or
lease period.

Report interface
This provides monitoring capabilities to report (to the
vCell Manager) jobs and virtual resource status and activ-
ities in the vCell. The module maintains and updates the

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 4 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Figure 1 Framework and interaction of various components in the proposed virtual infrastructure container.

activities database of all components in the vCell. It main-
tains the record of finish times and provides time series
data to the cell manager for use in predicting future task
finish times. The functionalities provided by this interface
enable additional failure detection and management capa-
bilities. Each report is a tuple (S,T , F) of source, S, traffic
type T, and feature F. The traffic type can be update, com-
pletion time, processed data e.t.c. F is a 2 tuple (Z,U)with
size Z (e.g.in bytes or milliseconds) and unit U (e.g. s, MB,
GB, Gbps).

vCell manager
All dynamic behaviour of the vCell is organized and coor-
dinated by this module. This module is projected with

privileged functionalities to perform management func-
tions at cell level. This effectively reduces themanagement
spaces making them small and correct. All ingress and
egress traffic is controlled by this module. All the vCell
managers are configured to send and receive messages in
the cloud datacentre. However in receiving messages only
those targeted to the vCell are treated while all others are
discarded. This forms the initial basis for vCell isolation
where all other components in the vCell are not exposed
to receiving such messages - thereby isolating the com-
ponents from broadcast messages. Although the manager
receives these high communication signals, all other com-
ponents are shielded from unnecessary communication
overhead. The obvious problem is the performance of

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 5 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

the CM. This research envisions cell-based management
that eliminates high communication overload at the CM’s
interface.
Central to the functions provided by the module is

the template-base mechanism for organizing and control-
ling the activities of components in a vCell. Each vCell
is identified by a template which is used by the man-
ager to create components, allocate resources, reconfigure
existing components, and achieve all interactions with
the underlying infrastructure and with other vCells. The
request description received at the delivery layer is stored
as a template for organizing the activities of vCell.
The request for vCell creation is submitted to the mid-

dleware residing in the global service layer. The service
layer then creates the CM with basic service manage-
ment functions projected into it as a privileged virtual
machine. Subsequently, any additional component to be
created in the vCell is initiated by the CM which queries
available capacity and creates the required resources. The
virtual switch connecting the newly created component
(if computing or storage node) is added to the list v of
virtual switches controlled by the CM. Two basic com-
munications allowed in vCAAS are Intra and Inter vCell
communication. In the former, two or more components
interact to fulfil the submitted task. The vCell manager
(CM) is equipped with the necessary control functionali-
ties to configure network slice on the vSwitch. To isolate
each of the vCells, a FlowVisor [35] is installed between
the flows controller and cell manager. This way the CM
control flows in the slice allocated for the vCell. This also
provides to the vCell owner an illusion of unique isolated
network infrastructure.
Inter-vCell communication exists between multiple

vCells owned by one entity. This form of communication
is regulated by the two vCell Managers in the communi-
cating vCells. In the middle is the mediation layer which
provide additional regulation by identifying the commu-
nication request and applying drop or allow policy. An
example of the mediation layer is the SDN controller
and a vSwitch. The controller maintains a set of rules
each identified by the source and the destination of the
traffic. The rules are matched and the appropriate deci-
sion such as forward to specific port, drop traffic, or
add to certain queue is inserted into the forwarding table
of the distributed virtual switch. Next time the same
traffic appears, the vSwitch is equipped with the right
set of rules in its forwarding table for the inter-vCell
traffic.

Service layer
This enables the functionalities for container-based cloud
service creation. It performs the provisioning of resources
(e.g. CPU time, memory, storage, and network band-
width) to a vCell, interacts with the underlying layer, and

performs additional global scheduling. Interpretation of
a submitted vCell request, and virtual resource requests
are mediated by the layer. Privileged functionalities such
as resource provisioning and job allocation are projected
into each vCell during creation. The Template Engine
provides functionalities for parsing job requests submit-
ted by the owner (or function). The layer is capable of
parsing both XML and Virtual Infrastructure Description
Language (VXDL) file formats into canonical parameters.
Information about provider resources available for

vCells to purchase are published as set of service units
which can be acquired via the mediation layer. In Figure 2,
WS-Net and WS-IT provide information about available
network (e.g. bandwidth, links) and IT(computational and
storage resources) respectively. The privileged VM in a
vCell is capable of accessing the service units for scaling
or task execution.

Virtualization and control layer
In the vCAAS model, an adaptive virtual interface (VIF)
is created for each virtual node (VM). The VIF connects
a VM to a distributed virtual switch (vSwitch) forming
a virtual link. Combinations of these virtual links and
connected virtual nodes (Figure 2) constitute the defini-
tion of a virtual network topology (VNT). This article
employs an adaptive vSwitch-based traffic shaping strat-
egy for vCAAS. Each VM in a vCell is assigned a virtual
switch (vSwitch) port with initial bandwidth, based on
request, and allowed to expand capacity relative to the
unused bandwidth in the vCell. This way, the VMs adapt
dynamically to various traffic conditions under the con-
trol of a distributed vSwitch (DVS) enabled with openflow
protocol. To protect the service level agreement (SLA) of
each container, traffic isolation mechanisms are applied
at DVS level to control VM activity and one vCell does
not have an adverse effect on the performance of other
VMs in different vCells. The DVS maintains a database
of entries for the policies in the network. Functionalities
enabled by this module are under the control of a virtual
infrastructure provider.
In the isolation strategy for vCAAS, each VM interacts

with the vCell manager and other VMs, in hub and spoke
arrangement, to complete work flow tasks. A VM experi-
encing high traffic (such as a storage VM) consumes high
vCell’s bandwidth. Other VMs require less bandwidth. At
the time of creating a vCell, a variable super port with the
equivalent capacity of bandwidth requested by a vCell is
assigned. This super port can be viewed as an aggregation
of fixed capacity ports. The bandwidth available for any
VM is computed as:

Ai,k = Bi,k +
∑

Uj,k (1)

i, j, k = 1, 2, . . .N , i �= j

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 6 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Figure 2 Service and delivery layers of the proposed framework (Resource view).

where Bi;k is the allocated bandwidth for VM i in
virtual container k, Uj;k is the available bandwidth
of VM j in virtual container k. The summation on
the right of equation 1 is the unused bandwidth
in vCell which can be utilized by a transmitting
VM. Thus all bandwidth request βi from VM i are
accepted as long as Ai,k ≥ βi. This is demonstrated in
Figure 3.

Physical fabric layer
This layer comprises heterogeneous physical IT inter-
connected with electrical and optical network in a
hierarchical topology to enable cloud service. Network
management services (NMS) are installed by the and
access allowed to create a virtual resource.

Container-based cloudmodel for bioinformatics
This section presents the real world application of our
virtual service cell. The concept of packaging applica-
tion logic and resource management logic as a holistic
resource container is implemented to perform large bio-
logical microarray data analysis. Virtual machines and the
interconnecting network are created from a subset of the
cloud datacentre and are configured to coexist and oper-
ate in concert during the execution of the data analysis
tasks. Furthermore, the fundamental logic for job specific
resource provisioning, jobs allocations, and optimization
strategies [12] are packaged in a privileged virtual machine
and delivered as part of the container. The framework
for the cloud based container is shown in Figure 4. The
section also presents the models adopted for the vCell
automation.

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 7 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Listing 1 Request for a vCell

<vxdl:vCell>
<vxdl:storageLocation>.6.1/NFSServer/GSE</vxdl:storageLocation>
<vxdl:vm>

<vxdl:PE>2</vxdl:PE>
<vxdl:MinMemory>2048</vxdl:MinMemory>
<vxdl:NIC>1</vxdl:NIC>
<vxdl:vNet>

<vxdl:Duration>Read</vxdl:Duration>
<vxdl:networkName>R</vxdl:networkName>

</vxdl:vNet>
<vxdl:vNet>

<vxdl:Duration>Write</vxdl:Duration>
<vxdl:networkName>W</vxdl:networkName>

</vxdl:vNet>
<vxdl:vNet>

<vxdl:Duration>Computation</vxdl:Duration>
<vxdl:networkName>C</vxdl:networkName>

</vxdl:vNet>
<vxdl:hdSize>

<vxdl:min>20</vxdl:min>
<vxdl:unit>GB</vxdl:unit>

</vxdl:hdSize>
</vxdl:vm>
<vxdl:network>

<vxdl:name>R</vxdl:name>
<vxdl:Number>1</vxdl:Number>
<vxdl:BW>

<vxdl:min>2</vxdl:min>
<vxdl:unit>GB</vxdl:unit>

</vxdl:BW>
<vxdl:dedicated>true</vxdl:dedicated>
<vxdl:timeline>T1</vxdl:timeline>

</vxdl:network>
</vxdl:vCell>

Various roles
In the proposed model, clear separation of actors ensures
flexibility of vCell creation and isolation. Various actors
(Figure 5) interact to achieve the proposed vCAAS. Phys-
ical resources owned by vCAAS physical Infrastructure
Providers (vCAAS-PIP) are accessed and virtualized by
vCAAS Virtual Infrastructure Provider (vCAAS-VIP).
vCell service starts with the submission of requests from
the scientist performing the experiment - who also acts as
the vCell owner (IAAS or PAAS user). The vCell owner
submits a request for specific composition of network and
computation to the Broker/vCAAS-VIP. Where a Broker
exists, the actor then queries all vCAAS-VIPs and selects
one. To meet the requirements of the vCell owner, the
Broker evaluates the existing resource pool and consults
vCAAS-VIP to appraise available resources suitable for
the submitted request. vCAAS-VIP then virtualizes and
offers the vCell to satisfy the initial request (Figure 5).
The proposed framework combined the functionalities of
the actors and is realised as an IAAS/PAAS model. The
sequence of operation for the interaction between the var-
ious actors during the creation of a vCell are shown in
Figure 6.

vCAAS automation
To properly operate as a self-service infrastructure for
data intensive applications, each vCell is capable of the
following key features:

1. Automatically compute the initial and dynamic
capacity requirements of the container. There should
be mechanisms for estimating the initial VMs and
the configuration requirements of the data analysis to
be performed by the vCell.

2. Optimally allocating the submitted jobs to VMs
using the estimated current and future states of
virtual machines in the vCell.

3. Adapt to the changing capacity availability in the
virtual container in a holistic manner.

Enabling these features in vCell requires a dynamic
model with the mechanism for continuous learning and
update. This way, properties of the vCell and the resources
contained can be properly characterized and managed
without user intervention.
A Markov Chain offers a type of automation model

that uses a stochastic process to determine or estimate
the states of a system in a tractable manner. The Markov
process uses observable and hidden features of the com-
ponents to estimate future states. The latter feature is
enabled by a kind of a hiddenMarkovModel (HMM) [36].
Within a vCell, component’s status, such as the total

workload, consists of both observable (e.g. average
throughput) and hidden features (e.g. operating system’s
background processes). Using HMM in vCAAS enables
automation features by estimating the future status of
resources in vCell and reconfiguring components to adapt
without user intervention. HMMs have been success-
fully applied in many problem domains including speech
recognition, bioinformatics, and artificial intelligence. A
basic HMM consists of set of states�, a set of initial states
π = P[q1 = �m] such that 1 ≤ m ≤ N , a transition prob-
abilities distribution A = {ai,j} for transition from states
�i to �j, and a set of observations distribution O = bj(k)
where

bn(k) = P[vk at t | qt = �n] (2)

for 1 ≤ n ≤ N , 1 ≤ k ≤ M. The set of states is defined by

� = �1,�2, . . . ,�N (3)

In the proposed vCell, the HMM states can be character-
ized as high, medium, and small workloads. These states
may vary at various task execution phases such as reading
data, performing computation, and writing results.
The next section demonstrates the application of HMM

to achieve dynamic resource provisioning and allocation.
We define provisioning as the task of creating and config-
uring the cloud resources for job execution. The task of
allocation involves scheduling and submitting jobs to the
created resources for execution.

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 8 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Figure 3 Architecture of the proposed isolation in a virtual infrastructure container using distributed virtual switch (DVS).

Finish time
Our model relies on the finish times (predicted by the
vCell manager) of jobs on a virtual machine to optimize
the provisioning of virtual resources and allocation of
jobs. The finish time Ft

j of job j at any t is computed as:

Ft
j =

Sj + β

Cv
+ Sj

Lc
(4)

Sj is the size of job j, Cv is the processing capacity of virtual
machine v that the job j is submitted to, Lc is the available
link capacity, and β is VM processing policy such that β =
0 if the policy is single processor allocation policy and β

is a value that denotes other workloads at time t and is
defined as:

β =
{
0 if single worker processor
� otherwise

(5)

� is the predicted size of jobs concurrent on machine i at
time t. For central storage servers (e.g. network file servers

or NFS), � is the workload exerted by virtual machines
accessing the data stored on the server. Estimating � is par-
ticularly challenging due to a number of factors. Firstly,
the notion of virtualization means that a large number of
VMs sprawl on physical servers. This makes the observ-
able workload values incomplete due to background pro-
cesses and resource contention. Secondly, task execution
exerts a time varying workload on the virtual machine. A
task in execution has different workload patterns at vari-
ous stages of the execution. For instance, the data loading
process takes a considerable amount of time in data-
intensive allocation after which the execution is a memory
intensive process and exerts less demand for IO. Consider
a simple model where the task execution overhead is given
as:

�i(t) = �j∈J
(
Ri,j +Ni,j − Ei,j

) ∗ Xi,j(t) (6)

where Xi,j = {0, 1} is a binary variable indicating whether
virtual machine i is executing job j at time t,Ri,j is the com-
putation overhead of job j onmachine i,Ni,j is the network
overhead incurred during data access, and finally Ei,j is the
total time spent on the execution of job j at time t.

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 9 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Figure 4 Architecture of resource interactions in Intra Cloud Datacenter (DCN) suitable for large scale data analysis.

To predict � we adopt an inference mechanism based
on the posterior distribution of a parameter for any given
observation traces, X. Specifically, we adopt the Naive
Bayes Classifier (NBC) and Markov Chain states model to
predict the jobs concurrent on i at a given time t. NBC is
a supervised learning classifier used in data mining [37].
Using the notation X1:t−1 to mean all the observations
X1,X2, . . . ,Xt−1, we seek to estimate the state �t at any
time t using all the previous observations X1:t−1. From
Bayesian rule we have the posterior probability for any A,
B, and C as:

P(A/BC) = P(B/C)P(B/A)C
P(B/C)

(7)

Applying bayesian recursive property to equation 6 we
obtain:

P(�t | X1:t−1) = ��t−1P(�t | �t−1)P(�t−1 | X1:t−1)
(8)

Equation 8 depends only on the previous state and the
observations at time t-1. For i ∈ V machines and given

transitional states as the workload � , the probability of a
VM i having workload �i(t) = P(�t |X1:t−1) is thus given
by equation 8 irrespective of the observation at t.

Initial VM
We formulate a technique to determine the capacity of
VMs for a job submitted. This work uses joint VM pro-
visioning in a container based model. We propose the
cost model f (Mh , Pt ,B) to estimate the initial capacity C.
Given a budget of B units, the cost model estimates the
initial capacity C of VMs using time series [8] of similar
tasks. We compute the capacity C for each container as a
function of the user defined budget B, standard machine
hour Mh cost, and the processing time Ft

j obtained from
equation 4. The capacity of VMs required is computed as:

C = B(S, ϕ)

Mh ∗∑
j∈S F

j
t

(9)

ϕ is the concession, per unit cost invested, that the cell
owner is willing to allow and is inversely related to the
budget. S is the job size submitted for analysis.

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 10 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Figure 5 Interaction between various actors in a data intensive vCAAS.

Understanding themicroarray data
For several years, biologists and life scientists have been
using GeneChip technology to analyze gene expression in
cells. Affymetrix supplies small glass slide arrays on which
many probes of 25 bases of DNA or RNA sequence data
are established. The probes are designed so that sets of
probes on the GeneChip will test for the expression of
particular genes. The data read from one array is stored
in one CEL file, which has a standard format but can be
either binary or character text which results in a variation
in the size of the CEL files. Researchers tend to use several
arrays to test different conditions so that one set of experi-
ments which have a connection with each other are stored
in related CEL files in a folder called a GSE (GEO Series
Experiment).
The microarray data from many experiments are

uploaded to public databases such as GEO (Gene Expres-
sion Omnibus) [38], for other scientists to use in their
research. In this work, some of the experiments which
use the Human GeneChip called HG-U133A were down-
loaded and analyzed. The analysis, carried out using the
R statistical language, was to determine whether runs of
guanine in the probe sequences (runs of 4 or more ‘G’s)
were producing a significant bias in the gene expression
data [14,39].
The microarray data from many experiments are often

uploaded to public databases [40] such as GEO and Array-
Express, for other scientists to use in their research. The
microarray data studied in this work has the following
characteristics:

• All jobs are submitted at the initial phase of the
experiment.

• All CEL files in a GSE folder must be processed to
complete a successful analysis.

• Each GSE folder contains between 10 and 700 CEL
files each between 4MB and 32MB in size.

• To process each folder, depending on the size,
requires memory capacity in the range 1 GB to
16 GB.

• All data to be processed must be loaded in the main
memory.

• Time to process data depends on the number of CEL
files and total GSE folder size.

• Data access time varies considerably depending on
the size of CEL files in the GSE folder.

Implementing the data analysis container
Our work considers self-service and dynamic algorithms
for initial VM size, VM provisioning, and job allocation.
The proposed algorithms are implemented in 4 steps. To
perform analysis of this type of data, the following steps
are required:

Step 1: Read job configuration settings.
Step 2: Estimate the number of VMs for the given data

to analyse and provision the required VMs. For
the chosen microarray data analysis, this step
requires the classification of the data into sub
group and the types of virtual machines with

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 11 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Figure 6 Sequence diagram for the creation and use of a vCell.

required memory for each group created. The
dynamic classification provides automation and
eliminates the need to manually assign the jobs
thereby reducing the delay and, subsequently,
the cost associated with manual resource
creation and release. This works well for data
intensive tasks. However, for other application
types with different requirements other than
memory, a different scheme is required. In both
cases, knowledge of the domain and the
historical output trace of previously executed
related jobs are valuable inputs to the inference
mechanism to determine the relationship
between the task requirements and capacity
(e.g. bandwidth, memory, CPU) of the
VMs.

Step 3: Creation of virtual network (VIF) for the created
VM. This stage takes into consideration both
the task stage requirement.

Step 4: Configuring the created VMs with required
software packages and network address to
enable interaction using the VIF.

Step 5: Allocate submitted jobs to the VMs.
Step 6: Release the VMs and scale-down the vCell

resources if there are no more jobs to process.

The major challenges for scientists using cloud com-
puting to effectively and efficiently analyse this type of
data are steps 2–5. For instance, the time between cre-
ating a resource and then submitting the job adds to the
total idle time of the VM. This incurs additional cost as a
result. Similarly, VMs not released after job execution fur-
ther incur additional cost as most public clouds charge per
hour [41]. The next subsection proposes dynamic mech-
anisms to achieve these steps without user intervention.
Novel provisioning, job allocation, and adaptive cluster-
ing algorithms [42] are presented to enable the self-service
data analysis.

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 12 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Virtual machines provisioning
The provisioning problem for any given set of fold-
ers J each of size Si and set of virtual machines M
each VMj ∈ M of capacity Cj. The problem is to find
the 1-to-1 mapping Ji −→ Mj such that Si ∈ Mj at any
time t.
In a similar way to a biological cell, the strict require-

ment for all initial functional VMs (control, report, failure,
and service console) to be created is enforced; otherwise
the vCell request is rejected. All the algorithms con-
sidered in this work make use of the holistic view and
complement each other to execute the submitted task
cohesively.
To estimate the initial VMs’ capacity we use equation 9

with N = 3 number of states (�) to predict the finish
time (equation 4). For the data described, we identify the
states in terms of workload size as high (�3), medium
(�2), and low (�1). Each VM processes a submitted job
through all or part of the states. Each state varies depend-
ing on the current process.We identify three such distinct
observed current processes as read (xR), write (xW), and
computation (xC). It is evident as shown in Figure 7,
that the average time spent on data access constitutes
less than 30% of the total job finish times. This signifies
that job processing is read intensive (xR) at the beginning
of microarray data analysis and then compute intensive
(xP) afterwards. Notice that the data access time depend
on the number of VMs concurrently accessing the data
stored at the NFS server. The higher the number of VMs
accessing the NFS server concurrently, the more work-
load at the NFS server and hence slower data access time
may be experienced by the VMs. In the Figure 7, jobs
9 and 10 seems to be accessing the NFS server at the

same time and hence the large data access time. The
job allocation strategy proposed in this research is to
vary the data access period of the VMs to reduce con-
current access and consequently reduce the data access
times.
We choose the initial state in � based on the hidden

state probabilities distribution φ = φi for 1 ≤ i ≤ N .
Tables 1, 2, and 3 shows the initial state probabilities dis-
tribution, observation distribution, and transition proba-
bilities respectively for each VM in the vCell. Although
the φ is chosen based on observable job processing cycle,
it has been shown in [36] that the selection and update
process in Markov Chain modelling eliminates the initial
error over long iteration of equation 8.

LJF-KQ algorithm
To provision the required VMs, we proposed a variation
of [30] as Largest Job First on the K Queues (LJF-KQ)
strategy. In this scheme (Algorithm 1), we implement a
K-queue on-demand provisioning policy that leases VM
instances based on K job categories (classified based on
size). If we denote Q1,Q2, . . . ,QK as the queues of large,
medium, and small jobs; then the algorithm proceeds as
follows. Initially, one VM for each queue type is created
on the first fit host starting with Q1 and then Q2. Sub-
sequently, one VM per each QK job is created until the
maximum allowable number of VMs are reached. Idle
VMs are assigned new jobs from the job category they
are created for. Once all jobs from a particular category
Qn are completed successfully, the resource allocated to
the VMs for Qn is reclaimed and re-allocated to create
virtual machine(s) for other job categories in the global
queue.

Figure 7 Variation in data access time and total finish time for various jobs running on a virtual machine.

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 13 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Algorithm 1 LJF-KQ (K Queue Largest Job first)
Input: J – job list, trace- previous job completion time, MH

– standard cost of machine hour, C – container capacity
requested in terms of bandwidth RAM and MIPS, minC –
minimum capacity, K - job queue types, Type – distinct job
categories , Ci – capacity of virtual machine i, B - Budget

Output: V – list of VMs created
1: Set B
2: T← trace(Size(J)) {estimate time required to complete job}

3: C← B/(MH ∗ T)

4: Type = KMeans(J,K)
5: SORT Type in descending {sort the job categories}
6: count=0
7: for t = size(Type) to 1 do
8: count=0
9: Create virtual machine Vcount for Type(t) {one VM from

each category except last category }
10: C← C − Ccount {update available capacity}
11: V ← V

⋃
Vcount

12: count= count+1
13: end for
14: while C > 0 do
15: Create virtual machine Vcount for Type(t) {one VM from

each category except last category }
16: C← C − Ccount {update available capacity}
17: V ← V

⋃
Vcount

18: count= count+1
19: end while
20: Return V

Algorithm 2 below shows the pseudo code for the clas-
sification using K-Means. The initial cluster K is deter-
mined by the available classes of VMs. Amazon AWS,
for instance, offers many instance types (small, medium,
large) based on capacity (memory, storage, bandwidth)
and target optimization.

Algorithm 2 K-Means
Input: Training Data - J, job clusters - K,
Output: Classified jobs - Type
1: n=length(J)
2: Initialize K clusters centroids μ = μ1,μ2, . . . ,

μk ∈ Rn
3: repeat
4: for i=1 to n do
5: c(i) = index(1 : K) ∈ μ Closest to J(i)
6: Type(J(i))← c(i)
7: end for
8:
 = 0
9: for k=1 to K do

10: mu′k = μk
11: μk = average mean of points assigned to cluster k
12:
 =
+
(μ

′ ,μ)

13: end for
14: until
 = 0
15: Return Type

Table 1 Sample initial state probabilities distribution

�1 �2 �3

0.5 0.3 0.2

LJF-KQ-L algorithm
The Largest Job First on K Queues with Lookup (LJF-
KQ-L) algorithm is a variation of LJF-KQ with lookup
for finish times. The finish times F is obtained from
pilot data. Just like LJF-KQ, a large VM is created for
Qn jobs initially. However, in creating VMs for the next
job categories one VM per job is created from Qn−1
while the estimated finish time of the jobs is less than
the finish time of Qn. This continues until n= 1. Then
the process begins with Qn again. This continues until
the maximum VMs size is reached or vCell capac-
ity is reached. The algorithm can be summarized as
follows:

• Classify the submitted jobs based
on size and files count using K-Means
clustering

• Select a job from the job classes and create
the VM for the chosen job size.

• SORT in descending order
• N= 0
• SELECT job category LN
• Set current large job as LN
• CREATE one VM for LN with capacity

C(LN)

1. Create VMs from next large job LN−1 with
capacity C(LN−1) until capacity allocated for LN is
reached

2. Set N = N + 1
3. Repeat 1–3 until maximum capacity is

reached

Algorithm 3 gives the detail steps in the proposed
algorithm

Table 2 Sample discrete observations probabilities

State| Operations xR xW xC

�1 0.1 0.6 0.3

�2 0.2 0.4 0.4

�3 0.3 0.3 0.4

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 14 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Algorithm 3 LJF-3Q-L (K Queue Largest Job first)
Input: J – job list, trace- previous job completion time,

MH – standard cost of machine hour, C – container
capacity requested in terms of bandwidth RAM and
MIPS, minC – minimum capacity, K - job queue
types, Type – distinct job categories , Ci – capacity of
virtual machine i, B - Budget

Output: V – all VMs created
Ensure: C > 0
1: Set B
2: T ← trace(Size(J)) {estimate time required to com-

plete job}
3: C← B/(MH ∗ T)

4: Type = KMeans(J,K)
5: SORT Type in descending {the job categories}
6: N=length(Type)
7: count=0 , n=N
8: while n > 0 do
9: count=0

10: Create virtual machine Vcount for Type(n) {one VM
from each category except last category }

11: C← C − Ccount {update available capacity}
12: V ← V

⋃
Vcount

13: cummB← Vcount
14: count= count+1, sum=0, η=n-1
15: while η > 0 do
16: while C > 0 AND sum < CcumB do
17: Create virtual machine Vcount for Type(η) {one

VM from this category }
18: sum = sum+ Ccount
19: C← C − Ccount {update available capacity}
20: V ← V

⋃
Vcount

21: count= count+1
22: end while
23: η=η-1
24: end while
25: end while
26: Return V

Job allocation algorithm
Next we present the algorithms for job allocation consid-
ered in this work. The use of container based resource
provisioning enables the sharing of statistics between the
vCell manager and other resources in the vCell. This
interaction is computationally and network transfer wise

Table 3 Sample state transition probabilities

States �1 �2 �3

�1 0.1 0.4 0.5

�2 0.4 0.4 0.2

�3 0.2 0.4 0.4

expensive if implemented for the whole datacentre. At the
boot, all VMs register with the resource database in the
cell manager module. The virtual machines are allocated
bandwidth to satisfy the current job requirement (com-
puted from time series). At the end of the data access time,
the bandwidth allocated is reconfigured to allow other
VMs to utilize the container’s overall capacity.

SJF-KQ
The shortest job first algorithm on K queues (SJF-KQ) is
a variation of Shortest Job First (SJF). In this approach,
jobs are ordered in decreasing order of size and submit-
ted to the suitable category, K , of VMs created during the
provisioning stage. This algorithm executes the submit-
ted jobs based on the resource queues implemented in the
provisioning phase.

SJF-KQ-L
The shortest job first algorithm on K queues with
Lookup (SJF-KQ-L) is a variation of SJF-KQ. However, the
expected finish time of each job is utilized to vary the data
access period of the jobs. If the data access time of the job
i is Ti, then the input/output overhead at storage server
contributed by i at each point in Fi- Ti is zero. This vari-
ation on data access is exploited to reduce the overheads
associated with data access by the virtual machines during
jobs execution. The algorithm carefully schedules the job
execution of VMs to ensure that the number of concur-
rent VMs accessing the NFS server is reduced. This way,
the makespan is consequently reduced.

FCFS-KQ-L
The First Come First Serve algorithm on K queues with
Lookup(FCFS-KQ-L) is a variation of SJF-KQ-L that is
based on the widely used First Come First Serve (FCFS)
discipline instead of the SJF.

Implementation and results
This section demonstrates the implementation stages of
adopting a holistic view to resource management and job
allocation in performing large data analysis. The approach
taken is to implement well-known ordering disciplines -
FCFC and SJF - in provisioning of cloud resources and
then apply the container-based model to measure the
benefits of our approach. Java code and R script are imple-
mented to provide the features of the perceived vCAAS
for the analysis of a large data intensive application.

Infrastructure setup
A room is dedicated to the cloud facility that served as
a testbed cloud within the School of Computer Science
and Electronic Engineering at the University of Essex.
The following are the hardware infrastructure (Figure 8)
deployed for the experiment consisted of:

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 15 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Figure 8 Architecture of the testbed deployed for data analysis experiment.

1. Ten homogeneous 64 bit Dell OptiPlex systems with
4 GB RAM, core 2 Duo processor running at
3.33GHz, and 300 GB hard disk storage capacity.
Each computer has 4 virtual cores per processor. The
internal prototype experiment cloud is therefore
created on the 40 virtual cores of total processing
capacity and 80 GB of total RAM. We deploy XEN
Cloud Platform (XCP) [43] on all the 10 servers for
hosting virtual machines. Deploying XCP enable us
to combine all the capacities into one large pool of
memory and processing capacity.

2. One 64 bit Dell OptiPlex system with 8 GB Ram and
core 2 Duo processor running at 3.33GHz is set aside
for the NFS server (NFSS). The computer has a total
usable storage capacity of 20TB comprising the
internal hard disk and the external storage array
directly attached to the server.

3. One 64 bit Dell OptiPlex system with 8 GB RAM,
core 2 Duo processor running at 3.33GHz and 4
virtual cores, and a hard disk storage capacity of
300 GB is set aside for the management server (MS)
which also serves as the Middleware server.

4. One 64 bit Dell OptiPlex system with 8 GB Ram,
core 2 Duo processor running at 3.33GHz is set aside
for storing results of gene expression in a MySQL
database server (DBS). The DBS has a capacity of
300 GB hard disk and 4 virtual cores per processor.

The experiment set-up to demonstrate the data analy-
sis is depicted in Figure 8. In the experiment set-up the
following features are employed:

• Cheap commodity network and IT hardware are
deployed for the experiment.

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 16 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

• Physical hosts are connected in 3-layered hierarchical
network topology (Figure 8) comprising aggregation,
edge, and access layers.

• Basic modules presented in Section ‘Container-based
cloud framework’ are created and packaged in a
privileged virtual machine.

• The privileged VM is created and configured with
functionalities for resource provisioning and dynamic
job allocation. This packaged virtual machine is
created in the requested container.

• Each virtual service cell is equipped with basic service
functionalities suitable for the microarray data
analysis.

• Experiment data stored in various storage media are
made available via a standard network file system.

• The functionalities available in the vCell estimate
finish time based on previous time series statistics of
finished job and dynamically adjust the operations of
various components.

• Provisioning and job allocation algorithms are tested
using the value K= 3 for the job queues.

The classes to enable themain datacentre functionalities
(Figure 9) are written in java and installed in the MS. The
classes to implement the storage service are also written in
Java and installed in the NFSS as set of Java objects. And
finally a stand-alone MySQL Server 5.1. is installed at the
DBS to save the results of the microarray data analysis.

vCell implementation
The code to realize the proposed virtual infrastructure
container is divided into five sets ofmodules. Eachmodule
is created to perform interdependent task. The mod-
ules are for vCell creation, vCell request creation, stor-
age access, gene expression identification, and the result
writer. vCell creation is performed by the datacentre main
classes. The datacentre mainmodule provides all the func-
tionalities for parsing submitted vCell request in VXDL
format, create and initializes the privilege VM (pVM) to
enable the function of vCell Manager. The functions of
provisioning, allocation, and report writing are projected
into the pVM. The provisioning is invoked by the pVM
which starts the operation of the provisioner.
The vCell resources (VM, VIF) creation modules reside

in pVM enabled with a subset of the service layer.
Resource provisioning, task classification and allocation,
resource release and update, and inference learning are
all performed by this module. The class diagram for this
module is shown in Figure 9. The provisioning process
starts with an estimation of the required initial VMs. Ini-
tial VMs capacity for the vCell is computed from the
implementation of equation 9. The capacity is then used
as input to XEN API libraries to create the required VMs.
The Provisioner classifies the submitted GSE data into

groups using an implementation of dynamic K-Means
strategy shown in algorithm 2. After the classification,
the function getSuitableHost() is called to invoke the host
service wrapper class (HostServiceWrapper). The Host-
ServiceWrapper replies with the set of available physical
hosts and their available capacities. pVM then chooses the
most suitable as guided by the SLA parameters in vCell’s
submitted request.
After the selection of suitable host, the required Xen

Api (XEN) VM class is invoked to create all the required
initial VMs. The VIF class instance is then invoked to
create a network of links and virtual interfaces. One vir-
tual interface is created for each network definition in the
VXDL request file. Using the initial task inference from
the dynamic Markov chain model, an initial virtual inter-
face is selected as the default for communication. The
allocated bandwidth to a VM is constantly updated by the
pVM to reflect the various phases of job execution at the
VM. This process ensures that available bandwidth in the
vCell are properly budgeted.
Each created VM is started via the implementation of

a call to the VM.start method. The VMs are configured
with a standard socket to listen, on a specific port, for any
incoming job submitted by pVM. The class RScript starts
the R script, if it is not running, and set the current work-
ing directory of the R workspace to the directory where
the data to be analysed is saved. At the end of computa-
tion the results are written back to the VM class which
subsequently write the final result to the MySQL database
server.
We implement virtual file service (VFS) functionalities

in combination with allocation and control to provide an
effective and flexible storage server. Figures 8 and 9 show
the realization of the storage accessmodule. Our approach
attempts to minimize the IO overhead overtime caused
by VM sprawl. Each VM is enabled with a microarray
data analysis algorithm and accesses the required files in a
“just in time” policy. This approach allows ease in reloca-
tion of jobs since only the required data is copied and the
relocation to any idle resource is easily achieved.
The pVM periodically checks all running instances and

decides, based on the status information (failed, running,
idle, halt) obtained, whether to reassign the job. The func-
tionalities provided include: initiate termination of a VM,
report reclaim resources to resident vCell manager, and
initiate creation of new virtual resource. This way, the
job status can be determined and, where necessary, relo-
cation of the job to a new instance initiated. The set-up
determines job status by computing completion time as a
function of GSE folder size, available memory in allocated
VM, and data transfer delay. After the expected finished
time, VM is marked inaccessible and the job running in
the VM marked as failed. If status is failed, the module
notifies the provisioning module which then destroys the

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 17 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Figure 9 vCAAS classes and functions for data analysis.

inaccessible VM, assigns the destroyed VM’s resources to
create new VM, and finally reassigns the failed job to the
newly created VM.

Experiment results
In this section we present the results of our data inten-
sive experiment on a private cloud. Our work investigates

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 18 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

the impact of adopting cohesive operational behaviours
among the VMs to exploit the differences in data access
times and implement effective resource provisioning and
job scheduling. Each virtual machine requests bandwidth
of a certain size to satisfy the job submitted. After the
duration of data access, the virtual machines bandwidth
is reduced to the basic bandwidth. This is achieved
by inserting new action table entry in the software-
defined enabled virtual switch introduced in Section
‘Container-based cloud framework’. The residual band-
width from the reconfiguration is made available for other
VMs.
Our first experiment investigates the performance of

our proposed provisioning algorithms. The algorithm that
utilizes the predicted finished time lookup during pro-
visioning is compared using three well-known [30] on-
demand algorithms for virtual machines provisioning.
Figure 10 show that our proposed algorithms reduced
the thrashing rate - frequency of creation and destruc-
tion of virtual machines. High thrashing rate increases the
workload on a provisioner and the instability of the data
analysis process as resources are created and released.
Since cloud services are normally charged per hour, the
creation and release of virtual machines incur additional
overhead cost. Hence, a small value for the thrashing rate
is required to maintain a stable and, consequently, cost
effective job execution. We use First Come First Serve

(FCFS), Largest Job First (LJF), and Shortest Job First
(SJF) to demonstrate (Figure 10) that predicting the finish
time and taking the prediction into consideration dur-
ing the classification of jobs into groups during resource
provisioning phase reduces the thrashing rate.
In all the experiment, we set the value of K = 3 for the

algorithms presented in Section ‘Container-based cloud
model for bioinformatics’. For example example, LJF-KQL
becomes LJF-3QL. The result in Figure 10 shows that the
algorithms (‘Thrash overhead 3QL’) implemented with
a lookup outperformed those without lookup (‘Thrash
overhead 3Q’). In the experiment, a maximum of ten
virtual machines and one privilege VM instances are
instantiated per vCell. The budget size for the chosen
experiment is set to $100. The experiment involved the
analysis of 30 GB of microarray data. The values on the
y-axis in Figure 10 shows the number of times a VM
is released and new one created to accommodate new
analysis job.
In the Figure 10, all our three algorithms that enhanced

common provisioning disciplines (FCFS, SJF, and LJF)
with a group classification and finished time lookup out-
performed those without such enhancement. This is pos-
sible as each VM in the vCell operate alongside members
of the vCell as a complementary component. Note that
achieving such enhanced provisioning is made possible
due to the small size of vCell. Implementing the same

Figure 10 Result comparing thrashing rate between our proposed algorithms using commonprovisioning algorithms.

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 19 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

Figure 11 Result comparing the jobmakespan between our proposed job allocation algorithm and other algorithms.

finished time lookup and grouping of jobs to complement
each other at the whole datacentre level will amount to
large computation in the domain of NP-hard problem.
We continue with a comparison between our modified

versions of SJF task allocation algorithms as SJF-3Q and
SJF-3Q-L respectively. Figure 11 shows the result obtained
from analyzing up to 30 GB of microarray data. We first
defined the makespan as the time difference between the
start and finish of the data analysis and include time to
read the required data, performs compuation to identify
gene expression, and write the output result to the DBS.
In the figure, SJF-3Q-L outperformed the other two algo-
rithms with shorter makespan at various job sizes. We
attribute this higher performance to the ability of our vCell
manager to assign jobs based on expected finished times.
We then investigate the impact of using our proposed

holistic view of cloud resources on the cost of data anal-
ysis. As demonstrated in Figure 12, the cost of analysing

the data is lower for algorithm utilizing the finish times
of jobs on virtual machines.We attribute the performance
strength of SJF-3Q-L on two features:

• the small size of VM thrashing reduces the cost of
resource usage since VMs are only created gradually
as resources are released by the large number of small
VMs.

• by carefully utilizing the jobs statistics from the
report interface module, we can allocate jobs in a way
that reduces concurrent data access and improves the
performance.

In summary, the combined results in Figures 10, 11, and
12 highlights that holistic view of resources improved the
performance of well-known algorithms for resource pro-
visioning and job allocation. Quantitatively, the cost of
performing analysis is reduced by 50% at 15 GB of data

Figure 12 Cost comparison among various job allocation algorithms.

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 20 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

analysis. The makespan also reduces by more than 1 hr at
15 GB of data analysis.

Conclusion
There is a general perception [44,45] that the next wave of
cloud services to be dominated by PAAS value added ser-
vices. The virtual container described in this work is a step
toward this advancement. In our case, the value added
service is created by the bioinformatician and packaged
as a virtual machine. The scientist performing the exper-
iment request this virtual machine and other required
resources as a self-service and dynamic container. Our
work demonstrates the strength of this next generation
cloud framework in performing cost effective analysis
of microarray data on commodity hardware. Flexibility,
dynamic configuration, and elasticity were enabled by cre-
ating a self-service infrastructure container which allows
the scientist performing the experiment to submit an
abstract description of requirements. Furthermore, the
cloud framework proposed in this work allows VMs to
operate in concert with each other and with the enabling
logic. The dynamic feature of the model reduces the need
to understand technical cloud computing concepts.
The virtual container presented in this work is enabled

with Markov Chain learning and prediction that allows
the container to manage itself using previous observa-
tions from job execution traces. We use the automation
capability to estimate initial VMs’ capacity without the
intervention of a user.
This article demonstrates the concept in a prototype

experiment cloud built on commodity hardware. The
cloud environment is created using XEN Cloud Plat-
form (XCP). The proposed privileged virtual machine is
equipped with necessary XAPI compliant java modules.
A significant difference between the strategy described

in this work and existing clouds is the holistic view of
the resource. Also in the proposed framework, use of
an observed pattern of data analysis is applied to auto-
mate the whole data analysis process. Using the variation
in instant virtual machine bandwidth requirements, our
proposed algorithms improved the performance and led
to considerable reduction in cost at a performance that
guarantees the same experience as commercial cloud ser-
vices. Although this work focused on a data intensive
cloud application, the same logic can easily be extended
to other cloud applications. In the future, our work aims
to implement the same container model for parallel and
distributed cloud applications.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
IKM developed the algorithms to dynamically provision virtual resources and
allocate submitted jobs in vCAAS. IKM built the cloud environment to test the
proposed cloud model. AMO and APH provided the domain specific expertise

of the chosen biological data and helped develop the algorithm for the data
analysis. SW verifies the applicability of the model in the chosen application
area and supervised the development and testing of the models proposed. All
authors read and approved the final manuscript.

Acknowledgement
IKM wish to thank Abubakar Tafawa Balewa University Bauchi Nigeria for
awarding him the scholarship to study in the UK. The authors would like to
express their thanks to Hugh P. Shanahan and Farhat N. Memon for the original
data analysis algorithm [14], and to Graham J.G. Upton who contributed to it.

Author details
1School of Computer Science and Electronic Engineering, University of Essex,
Wivenhoe Park, Colchester CO4 3SQ, Essex, UK. 2Department of Mathematical
Sciences and Biological Sciences, University of Essex, Wivenhoe Park,
Colchester CO4 3SQ, Essex, UK.

Received: 5 November 2013 Accepted: 14 April 2014
Published: 22 May 2014

References
1. Michael A, Armando F, Rean G, Joseph AD, Katz RH, Andrew K, Gunho L,

David AP, Ariel R, Matei Z (2009) A view of cloud computing. Commun
ACM 53(4):50–58

2. Srirama S, Batrashev O, Vainikko E (2010) Scicloud: scientific computing
on the cloud. In: Proceedings of the 2010 10th IEEE/ACM international
conference on cluster, cloud and grid computing. IEEE Computer Society,
pp 579–580

3. Hines MR, Deshpande U, Gopalan K (2009) Post-copy live migration of
virtual machines. ACM SIGOPS Oper Syst Rev 43(3):14–26

4. Al-fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A (2010)
Hedera: dynamic flow scheduling for data center networks. In: NSDI,
pp 19–19

5. Benson T, Akella A, Maltz DA (2010) Network traffic characteristics of data
centers in the wild. In: Proceedings of the 10th Annual Conference on
Internet Measurement. IMC ‘10. ACM, New York, pp 267–280

6. Wang G, Andersen DG, Kaminsky M, Kozuch M, Ng TSE, Papagiannaki K,
Glick M, Mummert L (2009) Your data center is a router: the case for
reconfigurable optical circuit switched paths. Comput Sci Dep:62

7. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art
and research challenges. J Internet Serv Appl 1(1):7–18

8. Meng X, Isci C, Kephart J, Zhang L, Bouillet E, Pendarakis D (2010) Efficient
resource provisioning in compute clouds via vm multiplexing. In:
Proceedings of the 7th international conference on autonomic
computing. ACM, pp 11–20

9. Vinothina V, Shridaran DR, Ganpathi DP (2012) A survey on resource
allocation strategies in cloud computing. Int J Adv Comput Sci Appl
3(6):97–104

10. Ferrer AJ, Hernández F, Tordsson J, Elmroth E, Ali-Eldin A, Zsigri C, Sirvent
R, Guitart J, Badia RM, Djemame K (2012) Optimis: a holistic approach to
cloud service provisioning. Future Generat Comput Syst 28(1):66–77

11. Banerjee P, Friedrich R, Bash C, Goldsack P, Huberman BA, Manley J, Patel
C, Ranganathan P, Veitch A (2011) Everything as a service: Powering the
new information economy. Computer 44(3):36–43

12. Musa IK, Stuart W (2014) Multi objective optimization strategy suitable for
virtual cells as a service. In: Innovations in bio-inspired computing and
applications. Springer, pp 49–59

13. Zorov DB, Kobrinsky E, Juhaszova M, Sollott SJ (2004) Examining
intracellular organelle function using fluorescent probes from
animalcules to quantum dots. Circ Res 95(3):239–252

14. Shanahan HP, Memon FN, Upton GJG, Harrison AP (2012) Normalized
affymetrix expression data are biased by G-quadruplex formation. Nucleic
Acids Res 40(8):3307–3315

15. Schatz MC, Langmead B, Salzberg SL (2010) Cloud computing and the
dna data race. Nat Biotechnol 28(7):691

16. Field D, Tiwari B, Booth T, Houten S, Swan D, Bertrand N, Thurston M
(2006) Open software for biologists: from famine to feast. Nat Biotechnol
24(7):801–804

17. Krampis K, Booth T, Chapman B, Tiwari B, Bicak M, Field D, Nelson KE
(2012) Cloud biolinux: pre-configured and on-demand bioinformatics
computing for the genomics community. BMC Bioinformatics 13(1):42

Musa et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:5 Page 21 of 21
http://www.journalofcloudcomputing.com/content/3/1/5

18. Dudley JT, Butte AJ (2010) In silico research in the era of cloud
computing. Nat Biotechnol 28(11):1181–1185

19. Bajo J, Zato C, de la Prieta F, de Luis A, Tapia D (2010) Cloud computing in
bioinformatics. In: Distributed Computing and Artificial Intelligence.
Springer, pp 147–155

20. Autosomes Chromosome X (2012) An integrated map of genetic
variation from 1,092 human genomes. Nature 491:1

21. Kienzler R, Bruggmann R, Ranganathan A, Tatbul N (2012) Incremental
dna sequence analysis in the cloud. In: Scientific and statistical database
management. Springer, pp 640–645

22. Stein LD (2010) The case for cloud computing in genome informatics.
Genome Biol 11(5):207

23. Schatz MC (2009) Cloudburst: highly sensitive read mapping with
mapreduce. Bioinformatics 25(11):1363–1369

24. Matsunaga A, Tsugawa M, Fortes J (2008) Cloudblast: Combining
mapreduce and virtualization on distributed resources for bioinformatics
applications. In: eScience 2008, eScience’08. IEEE fourth international
conference on. IEEE, pp 222–229

25. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 11(8):R86

26. Langmead B, Hansen KD, Leek JT (2010) Cloud-scale rna-sequencing
differential expression analysis with myrna. Genome Biol 11(8):R83

27. Banerjee P, Friedrich R, Bash C, Goldsack P, Huberman BA, Manley J,
Patel C, Ranganathan P, Veitch A (2011) Everything as a service: powering
the new information economy. Computer 44(3):36–43

28. Jarzab M, Kosiński J, Zieliński K, Zieliński S (2012) User-oriented
provisioning of secure virtualized infrastructure. In: Building a national
distributed e-infrastructure–PL-Grid. Springer, pp 73–88

29. Díaz FEO, Gómez SG (2012) 4caast technical value proposition. 4CaaSt
consortium. http://4caast.morfeo-project.org/wp-content/uploads/
2011/02/ValueProposition_Whitepaper.pdf, Accessed: 2013-09-30

30. Genaud S, Gossa J (2011) Cost-wait trade-offs in client-side resource
provisioning with elastic clouds. In: Cloud computing (CLOUD), 2011 IEEE
international conference on. IEEE, pp 1–8

31. Adam C, Stadler R (2005) Adaptable server clusters with qos objectives. In:
Integrated network management, 2005. IM 2005. 2005 9th IFIP/IEEE
international symposium on. IEEE, pp 149–162

32. Buyya R (1999) High performance cluster computing. Prentice Hall PTR,
Upper Saddle River. 99017906 edited by Rajkumar Buyya. ill. ; 25 cm.
Includes bibliographical references and indexes. v. l. Architectures and
systems – v. 2. Programming and applications.

33. Wood T, Gerber A, Ramakrishnan KK, Shenoy P, Van der Merwe J (2009)
The case for enterprise-ready virtual private clouds. Usenix HotCloud
https://www.usenix.org/legacy/events/hotcloud09/tech/full_papers/
wood.pdf, Accessed: 2011-01-3

34. Koslovski GP, Primet PV-B, Charão AS (2009) VXDL: virtual resources and
interconnection networks description language. In: Networks for grid
applications. Springer, pp 138–154

35. Sherwood R, Gibb G, Yap K-K, Appenzeller G, Casado M, McKeown N,
Parulkar G (2009) Flowvisor: a network virtualization layer. OpenFlow
Switch Consortium, Tech. Rep

36. Rabiner LR (1989) A tutorial on hidden markov models and selected
applications in speech recognition. Proc. IEEE 77(2):257–286

37. Webb GI, Boughton JR, Wang Z (2005) Not so naive bayes: aggregating
one-dependence estimators. Mach Learn 58(1):5–24

38. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF,
Soboleva A, Tomashevsky M, Edgar R (2006) NCBI GEO: mining tens of
millions of expression profiles–database and tools update. Nucleic Acids
Res 35(Database issue):760–765

39. Memon FN, Owen AM, Sanchez-Graillet O, Upton GJG, Harrison AP (2010)
Identifying the impact of G-quadruplexes on Affymetrix 3’ arrays using
cloud computing. J Integr Bioinform 7(2):111

40. Ball CA, Brazma A, Causton H, Chervitz S, Edgar R, Hingamp P, Matese JC,
Parkinson H, Quackenbush J, Ringwald M (2004) Submission of microarray
data to public repositories. PLoS Biol 2(9):317

41. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G,
Patterson DA, Rabkin A, Stoica I, Zaharia M (2009) Above the clouds: a
berkeley view of cloud computing. Technical Report No. UCB
EECS-2009-28, 2009–200928

42. Chinrungrueng C, Sequin CH (1995) Optimal adaptive k-means algorithm
with dynamic adjustment of learning rate. IEEE Trans Neural Network
6(1):157–169

43. Williams DE (2007) Virtualization with Xen (tm): including XenEnterprise,
XenServer, and XenExpress. Syngress

44. Garcia-Gomez S, Jimenez-Ganan M, Taher Y, Momm C, Junker F, Biro J,
Menychtas A, Andrikopoulos V, Strauch S (2012) Challenges for the
comprehensive management of cloud services in a paas framework.
Scalable Comput: Pract Exp 13(3)

45. Natis YV, Lheureux BJ, Pezzini M, Cearly DW, Knipp E, Plummer DC (2011)
Paas road map: a continent emerging. Gartner Res. Gartner (Inc)

doi:10.1186/2192-113X-3-5
Cite this article as:Musa et al.: Self-service infrastructure container for data
intensive application. Journal of Cloud Computing: Advances, Systems and
Applications 2014 3:5.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://4caast.morfeo-project.org/wp-content/uploads/2011/02/ValueProposition_Whitepaper.pdf
http://4caast.morfeo-project.org/wp-content/uploads/2011/02/ValueProposition_Whitepaper.pdf
https://www.usenix.org/legacy/events/hotcloud09/tech/full_papers/wood.pdf
https://www.usenix.org/legacy/events/hotcloud09/tech/full_papers/wood.pdf

	Abstract
	Keywords

	Introduction
	Motivation
	Related works
	Container-based cloud framework
	Delivery layer
	The service console
	Report interface
	vCell manager

	Service layer
	Virtualization and control layer
	Physical fabric layer

	Container-based cloud model for bioinformatics
	Various roles
	vCAAS automation
	Finish time
	Initial VM

	Understanding the microarray data
	Implementing the data analysis container
	Virtual machines provisioning
	LJF-KQ algorithm
	LJF-KQ-L algorithm

	Job allocation algorithm
	SJF-KQ
	SJF-KQ-L
	FCFS-KQ-L

	Implementation and results
	Infrastructure setup
	vCell implementation
	Experiment results

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgement
	Author details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

