
A Switching Approach to Avoid Breakdown in
Lanczos-type Algorithms

Muhammad Farooq∗ and Abdellah Salhi†

Abstract

Lanczos-type algorithms are well known for their inherent instabil-
ity. They typically breakdown when relevant orthogonal polynomials
do not exist. Current approaches to avoiding breakdown rely on jump-
ing over the non-existent polynomials to resume computation. This
jumping strategy may have to be used many times during the solu-
tion process. We suggest an alternative to jumping which consists in
switching between different algorithms that have been generated using
different recurrence relations between orthogonal polynomials. This
approach can be implemented as three different strategies: ST1, ST2,
and ST3. We shall briefly recall how Lanczos-type algorithms are de-
rived. Four of the most prominent such algorithms namely A4, A12,
A5/B10 and A5/B8 will be presented and then deployed in the switch-
ing framework. In this paper, only strategy ST2 will be investigated.
Numerical results will be presented.

2010 Mathematics Subject Classification: 65F10

Keywords: Lanczos algorithm; Systems of Linear Equations (SLE’s); For-
mal Orthogonal Polynomials (FOP’s); Switching; Restarting; Breakdown.

1 Introduction

Lanczos-type methods for solving SLE’s are based on the theory of FOP’s.
All such methods are implemented via some recurrence relationships be-
tween polynomials Pk(x) represented by Ai or between two adjacent families

∗Department of Mathematics, University of Peshawar, 25120, Khyber Pakhtunkhwa,
Pakistan. E-mail: mfarooq@upesh.edu.pk

†Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colch-
ester, CO4 3SQ, UK. E-mail: as@essex.ac.uk

1

of orthogonal polynomials Pk(x) and P
(1)
k (x) represented by Ai and Bj as

described in [1, 2, 3]. The coefficients of the various recurrence relation-
ships between orthogonal polynomials are given as ratios of scalar products.
When a scalar product in a denominator vanishes, then a breakdown occurs
in the algorithm and the process normally has to be stopped. Equivalently,
the breakdown is due to the non-existence of some orthogonal polynomial
or polynomials. So, an important issue is how to continue the solution pro-
cess in such a situation and arrive at a useable result. Several procedures
for that purpose appeared in the literature in the last few decades, see e.g
[4, 5, 6]. It has been shown, for instance, that it is possible to jump over
non-existing polynomials, [1, 7]; breakdown-free algorithms were thus ob-
tained. The first attempt in this regard was the look-ahead Lanczos algo-
rithm, [5]. Other procedures for avoiding breakdown are also proposed in
[1, 7, 9, 10, 11, 12, 15, 16, 17]. However, they all have their limitations in-
cluding the possibility of calling the procedure for remedying the breakdown,
more than once. In the following, we suggest an alternative to jumping over
missing polynomials by switching between different variants of the Lanczos
algorithm.

2 The Lanczos approach

We consider a linear system of equations,

Ax = b, (1)

where A ∈ Rn×n, b ∈ Rn and x ∈ Rn.
Let x0 and y be two arbitrary vectors in Rn such that y ̸= 0. The Lanczos

method, [18] consists in constructing a sequence of vectors xk ∈ Rn defined
as follows, [2, 19]

xk − x0 ∈ Kk(A, r0) = span(r0,Ar0, . . . ,A
k−1r0), (2)

rk = (b− Axk)⊥Kk(A
T ,y) = span(y,ATy, . . . ,ATk−1

y), (3)

where AT denotes the transpose of A.
Equation (2) leads to,

xk − x0 = −α1r0 − α2Ar0 − · · · − αkA
k−1r0. (4)

Multiplying both sides by A and adding and subtracting b on the left hand
side gives

rk = r0 + α1Ar0 + α2A
2r0 + · · ·+ αkA

kr0. (5)

2

From (3), the orthogonality condition gives

(AT i

y, rk) = 0, for i = 0, . . . , k − 1,
and, by (5), we obtain the following system of linear equations

α1(y,Ar0) + · · ·+ αk(y,A
kr0) = −(y, r0),

...

α1(A
Tk−1

y,Ar0) + · · ·+ αk(A
Tk−1

y,Akr0) = −(ATk−1

y, r0).

(6)

If the determinant of the above system is different from zero then its solution
exists and allows to obtain xk and rk. Obviously, in practice, solving the
above system directly for the increasing value of k is not feasible. We shall
now see how to solve this system for increasing values of k recursively.
If we set

Pk(x) = 1 + α1x+ · · ·+ αkx
k, (7)

then we can write from (5)

rk = Pk(A)r0. (8)

The polynomials Pk are commonly known as the residual polynomials, [7].
Another interpretation of the Pk can be found in [20]. Moreover if we set

ci = (AT i

y, r0) = (y,Air0), i = 0, 1, . . . , and if we define the linear functional
c on the space of polynomials by

c(xi) = ci, i = 0, 1, . . . , (9)

c is completely determined by the sequence {ck} and ck is said to be the
moment of order k, [21]. Now, the system (6) can be written as

c(xiPk(x)) = 0 for i = 0, . . . , k − 1. (10)

These conditions show that Pk is the polynomial of degree at most k, nor-
malized by the condition Pk(0) = 1, belonging to a family of FOP’s with
respect to the linear functional c, [21, 23].

Since the constant term of Pk in (7) is 1, it can be written as

Pk(x) = 1 + xRk−1(x)

where Rk−1 = α1 + α2x + ... + αkx
k−1. Replacing x by A in the expression

of Pk and multiplying both sides by r0 and using (8), we get

rk = r0 + ARk−1(A)r0,

3

which can be written as

b− Axk = b− Ax0 + ARk−1(A)r0,

−Axk = −Ax0 + ARk−1(A)r0,

multiplying both sides by −A−1, we get

xk = x0 −Rk−1(A)r0,

which shows that xk can be computed from rk without inverting A.

3 Formal orthogonal polynomials

The orthogonal polynomials Pk defined in the previous section are given by
the determinantal formula, [7, 24]

Pk(x) =

∣∣∣∣∣∣∣∣∣
1 · · · xk

c0 · · · ck
...

...
ck−1 · · · c2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c1 · · · ck
...

...
ck · · · c2k−1

∣∣∣∣∣∣∣
, (11)

where the denominator of this polynomial is H
(1)
k , [7]. Obviously, Pk exists if

and only if the Hankel determinant H
(1)
k ̸= 0. Thus, Pk+1 exists if and only

if H
(1)
k+1 ̸= 0. We assume that ∀k, H(1)

k ̸= 0. If for some k, H
(1)
k = 0, then

Pk does not exist and breakdown occurs in the algorithm (in practice the

breakdown can occur even if H
(1)
k ≈ 0).

Let us now define a linear functional c(1), [2, 7], on the space of real poly-

nomials as c(1)(xi) = c(xi+1) = ci+1 and let P
(1)
k be a family of orthogonal

polynomials with respect to c(1). These polynomials are called monic poly-
nomials, [2, 7], because their highest degree coefficients are always 1, and are

4

given by the following formula

P
(1)
k (x) =

∣∣∣∣∣∣∣∣∣
c1 · · · ck+1
...

...
ck · · · c2k
1 · · · xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c1 · · · ck
...

...
ck · · · c2k−1

∣∣∣∣∣∣∣
. (12)

P
(1)
k (x) also exists if and only if the Hankel determinantH

(1)
k ̸= 0, [2, 4], which

is also a condition for the existence of Pk(x). There exist many recurrence

relations between the two adjacent families of polynomials Pk and P
(1)
k , [2,

7, 9, 24]. Some of these relations have been reviewed in [25] and studied in
details in [1, 13]. More of these relations have been studied in [3], leading to
new Lanczos-type algorithms.

A Lanczos-type algorithm consists in computing Pk recursively, then rk
and finally xk such that rk = b− Axk, without inverting A. In exact arith-
metic, this should give the solution to the system Ax = b in at most n steps
[9, 18], where n is the dimension of the system. For more details, see [7, 12].

4 Recalling some existing algorithms

In the following we will recall some of the most recent and efficient Lanczos-
type algorithms to be used in the switching framework. The reader should
consult the relevant literature for more details.

4.1 Algorithm A12

Algorithm A12 is based on relation A12, [3]. For details on the derivation of
the polynomial A12, its coefficients and the algorithm itself, please refer to
[3]. The pseudo-code of Algorithm A12 can be described as follows.

5

Algorithm 1 Algorithm A12

1: Choose x0 and y such that y ̸= 0,
2: Choose ϵ small and positive, as a tolerance,
3: Set r0 = b− Ax0, y0 = y, p = Ar0, p1 = Ap, c0 = (y, r0),
4: c1 = (y, p), c2 = (y, p1), c3 = (y, Ap1), δ = c1c3 − c22,

5: α = c0c3−c1c2
δ

, β =
c0c2−c21

δ
, r1 = r0 − c0

c1
p, x1 = x0 +

c0
c1
r0,

6: r2 = r0 − αp+ βp1, x2 = x0 + αr0 − βp,
7: y1 = ATy0, y2 = ATy1, y3 = ATy2.
8: for k = 3, 4,. . . , n do
9: yk+1 = ATyk, q1 = Ark−1, q2 = Aq1, q3 = Ark−2,
10: a11 = (yk−2, rk−2), a13 = (yk−3, rk−3), a21 = (yk−1, rk−2), a22 = a11,
11: a23 = (yk−2, rk−3), a31 = (yk, rk−2),a32 = a21, a33 = (yk−1, rk−3),
12: s = (yk+1, rk−2), t = (yk, rk−3),Fk = −a11

a13
,

13: b1 = −a21 − a23Fk, b2 = −a31 − a33Fk, b3 = −s− tFk,
14: ∆k = a11(a22a33 − a32a23) + a13(a21a32 − a31a22),

15: Bk =
b1(a22a33−a32a23)+a13(b2a32−b3a22)

∆k
,

16: Gk =
b1−a11Bk

a13
, Ck =

b2−a21Bk−a23Gk

a22
, Ak =

1
Ck+Gk

,

17: rk = Ak{q2 +Bkq1 + Ckrk−2 + Fkq3 +Gkrk−3},
18: xk = Ak{Ckxk−2 +Gkxk−3 − (q1 +Bkrk−2 + Fkrk−3)},
19: if ||rk|| ≤ ϵ, then
20: x = xk, Stop.
21: end if
22: end for

4.2 Algorithm A4

Algorithm A4 is based on relation A4. Its pseudo-code is as follows. For more
details see [1, 2].

6

Algorithm 2 Algorithm A4

1: Choose x0 and y such that y ̸= 0,
2: Choose ϵ small and positive as a tolerance,
3: Set r0 = b− Ax0, y0 = y,
4: for k = 0, 1,. . . , n do
5: Ek+1 = − (yk,rk)

(yk−1,rk−1)
, for k ≥ 1, and E1 = 0,

6: Bk+1 = − (yk,Ark)−Ek+1(yk,rk−1)

(yk,rk)
,

7: Ak+1 =
1

Bk+1+Ek+1
,

8: xk+1 = Ak+1{Bk+1xk + Ek+1xk−1 − rk},
9: rk+1 = Ak+1{Ark +Bk+1rk + Ek+1rk−1}.
10: if ||rk+1|| ≤ ϵ, then
11: yk+1 = ATyk,
12: end if
13: end for

4.3 Algorithm A5/B10

Algorithm A5/B10 is based on relations A5 and B10, first investigated in [1, 2].
Its pseudo-code is as follows.

Algorithm 3 Algorithm A5/B10

1: Choose x0, y and tolerance ϵ ≥ 0;
2: Set r0 = b− Ax0, p0 = r0, y0 = y,
3: A1 = − (y0,r0)

(y0,Ar0)
, C1

0 = 1,
4: r1 = r0 + A1Ar0, x1 = x0 − A1r0.
5: for k = 1,2,3,. . . ,n do
6: yk = ATyk−1,
7: Dk+1 = − (yk,rk)

C1
k−1(yk,pk−1)

,

8: pk = rk +Dk−1C
1
k−1pk−1

9: Ak+1 = − (yk,rk)
(yk,Apk)

,
10: rk+1 = rk + Ak+1Apk,
11: xk+1 = xk − Ak+1pk.
12: if ||rk+1|| ̸= ϵ and Ak ̸= ϵ, then

13: C1
k =

C1
k−1

Ak
.

14: end if
15: end for

7

4.4 Algorithm A8/B10

The pseudo-code of A8/B10, [1, 2], is as follows.

Algorithm 4 Algorithm A8/B10

1: Choose x0 and y such that y ̸= 0.
2: Set r0 = b− Ax0,
3: z0 = r0,
4: y0 = y,
5: for k = 0, 1, 2, . . . ,n do
6: Ak+1 = − (yk,rk)

(yk,Azk)
,

7: rk+1 = rk + Ak+1Azk,
8: xk+1 = xk − Ak+1zk.
9: if ||rk+1|| ̸= ϵ, then
10: yk+1 = ATyk,
11: C1

k+1 =
1

Ak+1
,

12: B1
k+1 = −C1

k+1(yk+1,rk+1)

(yk,Azk)
,

13: zk+1 = B1
k+1zk + C1

k+1rk+1.
14: end if
15: end for

5 Switching between algorithms to avoid break-

down

When a Lanczos-type algorithm fails, this is due to the non-existence of
some coefficients of the recurrence relations on which the algorithm is based.
The iterate which causes these coefficients not to exist does not cause and
should not necessarily cause any problems when used in another Lanczos-type
algorithm, based on different recurrence relations. It is therefore obvious that
one may consider switching to this other algorithm, when breakdown occurs.
This allows the algorithm to work in a Krylov space with a different basis.
It is therefore also possible to remedy breakdown by switching. Note that
restarting the same algorithm after a pre-set number of iterations works well
too, [3, 14]

8

5.1 Switching strategies

Different strategies can be adopted for switching between two or more algo-
rithms. These are as follows.

1. ST1: Switching after breakdown: Start a particular Lanczos algo-
rithm until a breakdown occurs, then switch to another Lanczos algo-
rithm, initializing the latter with the last iterate of the failed algorithm.
We call this strategy ST1.

2. ST2: Pre-emptive switching: Run a Lanczos-type algorithm for a
fixed number of iterations, halt it and then switch to another Lanczos-
type algorithm, initializing it with the last iterate of the first algorithm.
Note that there is no way to guarantee that breakdown would not occur
before the end of the interval. This strategy is called ST2.

3. ST3: Breakdown monitoring: Provided monotonicity of reduction
in the absolute value of the denominators in the coefficients of the poly-
nomials involved can be established, breakdown can be monitored as
follows. Evaluate regularly those coefficients with denominators that
are likely to become zero. Switch to another algorithm when the ab-
solute value of any of these denominators drops below a certain level.
This is strategy ST3.

5.2 A generic switching algorithm

Suppose we have a set of Lanczos-type algorithms and we want to switch
from one algorithm to another using one of the above mentioned strategies
ST1, ST2 or ST3.

9

Algorithm 5 Generic switching algorithm

1: Start the most stable algorithm, if known.
2: Choose a switching strategy from {ST1, ST2, ST3}.
3: if ST1 then
4: Continue with current algorithm until it halts;
5: if solution is obtained then
6: Stop.
7: else
8: switch to another algorithm;
9: initialize it with current iterate;

10: Go to 4.
11: end if
12: else if ST2 then
13: Continue with current algorithm for a fixed number of itera-

tions until it stops;
14: if solution is obtained then
15: Stop.
16: else
17: switch to another algorithm,
18: initialize it with the current iterate,
19: Go to 13.
20: end if
21: else
22: Continue with current algorithm and monitor certain param-

eters for breakdown, until it halts;
23: if solution is obtained then
24: Stop.
25: else
26: switch to another algorithm,
27: initialize it with the current iterate,
28: Go to 22.
29: end if
30: end if

However, it is important to mention that we have considered only ST2 in this
paper. The convergence tolerance in all of the tests performed is ϵ = 1.0e−013

and the number of iterations per cycle is fixed to 20.

10

5.2.1 Switching between algorithms A4 and A12

In the following, we start with either A4 or A12, run it for a fixed number
of iterations (cycle) chosen arbitrarily, before switching to the other. The
results of this switching algorithm, are compared to those obtained with
algorithms A4 and A12 run individually. We are not changing any of the
parameters involved in both algorithms. Details of A4 can be found in [1].

Algorithm 6 Switching between A4 and A12

1: Choose x0 and y such that y ̸= 0,
2: set r0 = b− Ax0, y0 = y,
3: start either algorithm,
4: run current algorithm for a fixed number of iterations (a cycle) or until

it halts;
5: if solution is obtained then
6: stop;
7: else
8: switch to the algorithm not yet run;
9: initialize it with the current iterate;
10: go to 4;
11: end if

Remark: Since restarting can be just as effective as switching, it is easier
to implement a random choice between A4 and A12 at the end of every cycle.
Let heads be A4 and tails be A12. At the toss of a coin, if it shows heads
and the algorithm running in the last cycle was A4, then the switch is a
restart. If the coin shows tails then the switch is a “proper” switch, and A12

is called upon. In the numerical results presented below, this is what has
been implemented. For more details about restarting see, [3, 14].

5.2.2 Switching between A4 and A5/B10 algorithm

Start with A5/B10, (details of A5/B10 can be found in [1, 2]) do a few itera-
tions and then switch to either A4 or A5/B10. The procedure is as Algorithm
given below.

11

Algorithm 7 Switching between A4 and A5/B10

1: Choose x0 and y such that y ̸= 0;
2: set r0 = b− Ax0, y0 = y, p0 = r0;
3: start with either A4 or A5/B10;
4: run it for a fixed number of iterations (cycles) or until it halts
5: if solution is obtained then
6: stop;
7: else
8: switch to either A4 or A5/B10; initialize it with the last iterate of the

algorithm running in the last cycle;
9: go to 4;
10: end if

5.2.3 Switching between A4 and A8/B10

Start with either A8/B10 (details of A8/B10 can be found in [1, 2]) or A4; do
a few iterations and then switch to either of them chosen randomly. If the
chosen algorithm happens to be the same as the one running in the last cycle,
then it is a case of restarting. Otherwise, it is switching. The algorithm is
as follows.

Algorithm 8 Switching between A4 and A8/B10

1: Choose x0 and y such that y ̸= 0;
2: set r0 = b− Ax0, y0 = y, p0 = r0;
3: start either A4 or A8/B10;
4: run it for a fixed number of iterations (cycle), or until it halts;
5: if solution is obtained then
6: stop;
7: else
8: switch to either A4 or A8/B10;
9: initialize it with the iterate of the algorithm run in the last cycle;
10: go to 4.
11: end if

5.2.4 Switching between A5/B10 and A8/B10

Here again, switching and restarting are combined in a random way. Start
with either A8/B10 or A5/B10. After a pre-set number of iterations (cycle),
switch to either A5/B10 or A8/B10, randomly chosen. If the chosen algorithm
to switch to is the same as the one running in the last cycle then we a have
a case of restarting; else it is switching. The algorithm is as follows.

12

Algorithm 9 Switching between A5/B10 and A8/B10

1: Choose x0 and y such that y ̸= 0;
2: set r0 = b− Ax0, y0 = y, z0 = r0;
3: start either A8/B10 or A5/B10;
4: run it for a fixed number of iterations;
5: if solution is not found then
6: halt current algorithm;
7: switch to either A5/B10 or A8/B10;
8: initialize it with the last iterate of the algorithm running in the last

cycle;
9: go to 4;
10: else
11: solution found; stop;
12: end if

5.2.5 Numerical results

Algorithms 1, 2, 3, 4, [1, 2, 3] and Algorithms 6, 7, 8 and 9, [3] have been
implemented in Matlab and applied to a number of small to medium size
problems. The test problems we have used arise in the 5-point discretisation
of the operator − ∂2

∂x2 − ∂2

∂y2
+γ ∂

∂x
on a rectangular region [1, 2]. Comparative

results are obtained on instances of the problem Ax = b with A and b as
below, and with dimensions of A and b ranging from n = 10 to n = 100.

A =

B −I · · · · · · 0

−I B −I
...

...
.

...
... −I B −I
0 · · · · · · −I B

 ,

with

B =

4 α · · · · · · 0

β 4 α
...

...
.

...
... β 4 α
0 · · · β 4

 ,

and α = −1 + δ, β = −1 − δ. The parameter δ takes the values 0.0, 0.2,
5 and 8 respectively. The right hand side b is taken to be b = AX, where
X = (1, 1, . . . , 1)T , is the solution of the system. The dimension of B is 10.
When δ = 0, the coefficient matrix A is symmetric and the problem is easy
to solve because the region is a regular mesh, [22]. For all other values of δ,

13

the matrix A is non-symmetric and the problem is comparatively harder to
solve as the region is not a regular mesh.

5.2.6 Numerical results

Results obtained with Algorithms 1, 2, 3, 4, and Algorithms 6, 7, 8 and 9 on
Baheux-type problems of different dimensions, for different values of δ are
presented in tables 1, 2, 3 and 4, below. Algorithms 1, 2, 3, 4, executed in-
dividually, could only solve problems of dimensions 40 or below. In contrast,
the switching algorithms, Algorithms 6, 7, 8 and 9, solved all problems of
dimensions up to 4000. These results show that the switching algorithms are
far superior to any one of the algorithms considered individually. These echo
those obtained by restarting the same algorithm after a predefined number
of iterations, [3, 14].

Table 1: Numerical results for δ = 0

Dim of Prob Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9

n ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s)

20 5.5067e−014 0.0012 3.8545e−014 0.0010 7.4781e−014 0.0040 8.0533e−014 0.0018
40 7.5417e−014 0.0041 4.5076e−014 0.0053 8.9208e−014 0.0057 7.2481e−014 0.0040
60 9.6638e−014 0.0057 2.5330e−014 0.0057 7.5107e−014 0.0085 5.8162e−014 0.0067
80 9.9082e−014 0.0075 6.0185e−014 0.0071 7.0866e−014 0.0088 5.7266e−014 0.0101
100 2.1487e−014 0.0095 2.5839e−014 0.0078 8.0262e−014 0.0098 8.1373e−014 0.0100
200 7.4236e−014 0.0723 9.9667e−014 0.0159 7.9045e−014 0.0337 9.1830e−014 0.0352
400 7.7419e−014 0.0661 8.5151e−014 0.2156 9.7418e−014 0.2243 9.4697e−014 0.2315
600 9.0290e−014 0.0794 7.9373e−014 0.4735 9.9269e−014 1.9625 9.4307e−014 0.7457
800 9.2116e−014 0.5660 9.5227e−014 0.9395 7.7294e−014 3.0326 7.7356e−014 1.4319
1000 8.8463e−014 0.8509 8.6238e−014 2.0539 9.9181e−14 4.3479 9.4512e−014 2.8984
2000 9.7242e−014 4.8079 9.1973e−014 8.6364 8.1319e−014 12.8696 9.1193e−014 12.8696
3000 9.6993e−014 9.8130 7.7507e−014 16.5795 9.7827e−014 22.3386 8.2725e−014 22.3386
4000 9.2641e−014 17.4673 8.9681e−014 23.7658 9.8438e−014 44.4430 9.7911e−014 44.4567

Table 2: Numerical results for δ = 0.2

Dim of Prob Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9

n ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s)

20 6.0041e−014 0.0044 1.5104e−014 0.0029 1.8618e−014 0.0056 8.0533e−014 0.0044
40 1.9868e−014 0.0064 4.6814e−014 0.0068 3.4094e−014 0.0089 7.3581e−014 0.0100
60 6.0788e−014 0.0134 6.3548e−014 0.0104 2.9827e−014 0.0113 9.6583e−014 0.0262
80 8.8550e−014 0.0159 9.5483e−014 0.0108 8.4187e−014 0.0120 7.0744e−014 0.0269
100 5.8020e−014 0.0144 6.6962e−014 0.0151 7.3889e−014 0.0126 7.5236e−014 0.0273
200 9.0970e−014 0.0213 9.8054e−014 0.0353 8.6331e−014 0.0313 8.1282e−014 0.0352
400 6.5593e−014 0.0748 9.3591e−014 0.1054 6.6660e−014 0.1875 8.4316e−014 0.2315
600 9.6153e−014 0.1802 8.8169e−014 0.6066 6.8135e−014 0.6751 5.9937e−014 0.7457
800 9.8605e−014 0.5922 8.8399e−014 0.9088 8.2550e−014 1.1436 7.0295e−014 1.4319
1000 9.7823e−014 0.8222 7.7898e−014 1.3020 7.4540e−014 2.1302 7.7204e−014 2.8984
2000 7.9753e−014 4.3416 9.4241e−014 4.7668 9.5282e−014 10.5976 9.1570e−014 8.5787
3000 8.7448e−014 10.0287 9.6831e−014 12.1561 9.9608e−014 25.1173 9.2806e−014 21.7380
4000 5.8412e−014 12.9390 9.7580e−014 23.3993 9.9270e−014 38.9051 9.7911e−014 39.0164

14

Table 3: Numerical results for δ = 5

Dim of Prob Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9

n ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s)

20 2.5092e−014 0.0079 9.1438e−014 0.0060 3.5839e−014 0.0067 8.0533e−014 0.0038
40 7.4721e−014 0.0202 1.9575e−014 0.0171 8.9026e−014 0.0079 2.9089e−014 0.0078
60 9.1477e−014 0.0232 5.4122e−014 0.0218 3.2486e−014 0.0207 5.6811e−014 0.0103
80 2.5165e−014 0.0275 7.9597e−014 0.0277 7.7553e−014 0.0255 5.7266e−014 0.0101
100 8.9244e−014 0.0315 8.4269e−014 0.0295 3.2898e−014 0.0308 8.1373e−014 0.0100
200 8.5274e−014 0.0410 8.3743e−014 0.0402 4.5501e−014 0.0499 9.1830e−014 0.0352
400 9.5005e−014 0.0965 3.3013e−014 0.2662 4.3032e−014 0.1856 9.4697e−014 0.2315
600 9.3474e−014 0.2318 2.7456e−014 0.7717 8.1621e−014 0.6303 9.4307e−014 0.7457
800 7.2197e−014 0.6875 9.3718e−014 0.8720 9.2023e−014 1.0426 7.7356e−014 1.4319
1000 9.4690e−014 1.7006 8.2225e−014 2.4118 6.7618e−014 2.6779 9.4512e−014 4.2678
2000 7.0752e−014 9.2566 8.8127e−014 6.9938 4.6266e−014 11.2416 9.1193e−014 11.0604
3000 8.0276e−014 15.5897 8.8194e−014 18.8125 4.3762e−014 25.3675 8.2725e−014 24.6007
4000 9.7667e−014 29.7400 8.9260e−014 30.4619 8.5908e−014 42.5710 9.7911e−014 41.5276

Table 4: Numerical results for δ = 8

Dim of Prob Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9

n ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s)

20 8.1056e−014 0.0069 8.7622e−017 0.0049 3.1380e−014 0.0075 8.0533e−014 0.0048
40 9.1880e−014 0.0243 8.1258e−014 0.0061 8.2974e−014 0.0216 2.9089e−014 0.0078
60 7.0558e−014 0.0299 8.3090e−014 0.0220 9.9891e−014 0.0284 5.6811e−014 0.0103
80 9.8855e−014 0.0346 8.5600e−014 0.0287 9.7330e−014 0.0282 5.7266e−014 0.0120
100 8.7391e−014 0.0382 8.7752e−014 0.0303 8.5960e−014 0.0363 8.1373e−014 0.0137
200 9.5793e−014 0.0700 4.3407e−014 0.0457 9.8381e−014 0.0708 9.1830e−014 0.0352
400 6.0799e−014 0.1292 9.6421e−014 0.2399 9.6706e−014 0.3125 9.4697e−014 0.2315
600 9.6186e−014 0.3432 8.5386e−014 0.5535 8.9805e−014 0.9279 9.4307e−014 0.7457
800 8.8932e−014 0.6942 3.1458e−014 1.3329 7.5301e−014 1.0612 7.7356e−014 1.4319
1000 9.7821e−014 1.7060 4.9703e−014 2.7150 9.6384e−014 2.1978 9.4512e−014 2.8984
2000 7.3843e−014 11.2436 8.1578e−014 13.0654 8.2557e−014 10.7977 9.1193e−014 13.2915
3000 9.5905e−014 20.0131 7.1928e−014 20.9822 5.3725e−014 25.3714 8.2725e−014 28.4232
4000 2.1552e−014 31.2356 9.4300e−014 40.2119 9.3869e−014 40.1782 9.7911e−014 45.1523

6 Conclusion

We have implemented A4, A12, A5/B10 and A8/B10 to solve a number of
problems of the type described in Section 5.2.5 with dimensions ranging from
20 to 4000. The results are compared against those obtained by the switching
algorithms, Algorithms 6, 7, 8 and 9 on the same problems. These results
show that A4, A12, A5/B10 and A8/B10 are not as robust as the switching
algorithms. In fact, individual algorithms solved only problems of dimension
n ≤ 40 and that with a poor accuracy. The switching algorithms, however,
solved them all with a higher precision. The numerical evidence is strongly
in favour of switching.

Based on the above results, it is clear that switching is an effective way
to deal with the breakdown in Lanczos-type algorithms. It is also clear that

15

the switching algorithms are more efficient particularly for large dimension
problems.

The cost of switching, in terms of CPU time, in ST2 at least, is not
substantial, compared to that of the individual algorithms. It is also quite
easy to see that it would not be substantial in ST1 since the cost would be
similar to that of ST2. Even in the case of monitoring the coefficients that
can vanish, i.e. ST3, the cost should only be that of a test of the form:
if |denominator value| ≤ tolerance then stop.
We have not measured its impact on the overall computing time, but it
should not be excessive. This means that switching strategies are worthwhile
considering to enhance the efficiency of Lanczos-type algorithms and not just
their robustness.

Having said that, further research and experimentation are necessary,
particularly on the very large scale instances of SLE’s, to establish the su-
periority of switching algorithms against the state-of-the-art Lanczos-type
algorithms with in-built precautions to avoid breakdown such as MRZ and
BSMRZ, [1, 9, 12, 26]. Note that these algorithms are attractive for other
reasons too, namely their simplicity and easy implementation. This is the
subject of on-going research work.

References

[1] C. Baheux. Algorithmes d’implementation de la méthode de Lanczos. PhD

thesis, University of Lille 1, France, (1994).

[2] C. Baheux. New Implementations of Lanczos Method. Journal of Computa-

tional and Applied Mathematics, 57:3-15, (1995).

[3] M. Farooq. New Lanczos-type Algorithms and their Imple-

mentation. PhD thesis, University of Essex, UK, (2011).

http://serlib0.essex.ac.uk/record=b1754556.

[4] M. H. Gutknecht. A completed theory of the unsymmetric Lanczos process

and related algorithms, Part II. SIAM SIAM J. Matrix Anal. Appl., 15:15-58,

(1994).

[5] G.H. Golub and D.P. O’Leaxy. Some history of the conjugate and Lanczos

algorithms, SIAM Rev. 31:50-102, (1989)

[6] M.R. Hestenes. Conjugate Direction Methods in Optimization, Springer-

Verlag, Berlin, (1980).

16

[7] C. Brezinski and H. Sadok. Lanczos-type algorithms for solving systems of

linear equations. Applied Numerical Mathematics, 11, 443-473, (1993).

[8] B. N. Parlett, D. R. Taylor and Z. A. Liu. A Look-Ahead Lanczos Algorithm

for Unsymmetric Matrices. Mathematics of Computation, 44:105-124, (1985).

[9] C. Brezinski, M. R. Zaglia and H. Sadok. Avoiding breakdown and near break-

down in Lanczos type algorithms. Numerical Algorithms, 1:261-284, (1991).

[10] M. H. Gutknecht. A completed theory of the unsymmetric Lanczos process

and related algorithms, Part I. SIAM J. Matrix Anal. Appl., 13:594-639,

(1992).

[11] C. Brezinski, M. R. Zaglia and H. Sadok. Addendum to Avoiding break-

down and near-breakdown in Lanczos type algorithms. Numerical Algorithms,

2:133-136, (1992).

[12] C. Brezinski, M. R. Zaglia and H. Sadok. New look-ahead Lanczos-type al-

gorithms for linear systems. Numerische Mathematik, 83:53-85, (1999).

[13] C. Brezinski and M. R. Zaglia. Breakdowns in the implementation of Lanczos

method for solving linear systems. Comput. Math. Appl., 33:31-44, (1997).

[14] M. Farooq and A. Salhi. A Preemptive Restarting Approach to Beating

the Inherent Instability of Lanczos-type Algorithms. To appear in IJST

Transactions-A, Science (2013).

[15] P. R. Graves-Morris. A “Look-around Lanczos” algorithm for solving a system

of linear equations. Numerical Algorithms, 15, 3-4:247-274, (1980)

[16] R. W. Freund, M. H. Gutknecht and N. M. Nachtigal. An Implementation

of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices. SIAM J.

Sci. Comput., 14:137-158, (1993).

[17] B. N. Parlett and D.S. Scott. The Lanczos Algorithm With Selective Orthog-

onaliztion, Mathematics of Computation, 33:217-238, (1979).

[18] C. Lanczos. Solution of systems of linear equations by minimized iteration.

Journal of the National Bureau of Standards, 49:33-53, (1952).

[19] C. Brezinski, M. R. Zaglia and H. Sadok. A review of formal orthogonality in

Lanczos-based methods. Journal of Computational and Applied Mathematics,

140:81-98, (2002)

17

[20] G. Cybenko. An explicit formula for Lanczos polynomials, Linear Algebra

Appl., 88:99-115, (1987).

[21] C. Brezinski. Padé-Type Approximation and General Orthogonal Polynomi-

als. Internat. Ser. Nuner. Math. 50. Birkhäuser, Basel, (1980).

[22] G. Meurant. The Lanczos and conjugate gradient algorithms, From Theory

to Finite Precision Computations. SIAM, Philadelphia, (2006).

[23] C. Brezinski, M. R. Zaglia and H. Sadok. A Breakdown-free Lanczos type al-

gorithm for solving linear systems. Numerische Mathematik, 63:29-38, (1992).

[24] C. Brezinski and M. R. Zaglia. Breakdowns in the implementation of Lanczos

method for solving linear systems. Comput. Math. Appl., 33:31-44, (1997).

[25] C. Brezinski and M. R. Zaglia. Treatment of near-breakdown in the CGS

algorithm. Numerical Algorithms, 7(1):33-73, (1994).

[26] C. Brezinski, M. R. Zaglia and H. Sadok. numeralgo/na1,
http://www.netlib.org/cgi-bin/search.pl, (1991).

18

