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Integrability of PT -symmetric dimers
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The coupled discrete linear and Kerr nonlinear Schrödinger equations with gain and loss describing transport
on dimers with parity-time (PT )-symmetric potentials are considered. The model is relevant among others
to experiments in optical couplers and proposals on Bose-Einstein condensates in PT -symmetric double-well
potentials. It is known that the models are integrable. Here, the integrability is exploited further to construct the
phase portraits of the system. A pendulum equation with a linear potential and a constant force for the phase
difference between the fields is obtained, which explains the presence of unbounded solutions above a critical
threshold parameter. The behavior of all solutions of the system, including changes in the topological structure
of the phase plane, is then discussed.
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I. INTRODUCTION

It is postulated in quantum physics that quantities we
observe are eigenvalues of operators representing the dynamics
of the quantities. Therefore, the energy spectra, i.e., the
eigenvalues, are required to be real and bounded from below so
that the system has a stable lowest-energy state. To satisfy such
requirements, it was conjectured that the operators must be
Hermitian. Non-Hermitian Hamiltonians have been commonly
associated with complex eigenvalues and therefore decay of
the quantities.

However, it turned out that Hermiticity is not necessarily
required by a Hamiltonian system to satisfy the postulate [1].
Particular examples have been systems exhibiting the so-called
parity-time (PT ) symmetry, suggested by Bender and co-
workers [2–4]. A necessary condition for a Hamiltonian to
be PT symmetric is that its potential V (x) should satisfy the
condition V (x) = V ∗(−x).

Optical analogs of such systems were proposed in
Refs. [5–7] using two coupled waveguides with gain and loss.
Note that such couplers were already studied in Refs. [8–10].
The following successful experiments [11,12] have stimulated
extensive studies on PT -symmetric dimers, which are a
finite-dimensional reduction of Schrödinger equations mod-
eling, e.g., Bose-Einstein condensates with PT -symmetric
double-well potentials [13–22]. Nontrivial characteristics of
the systems allow them to be exploited, e.g., for all-optical
switching in the nonlinear regime, lowering the switching
power and attaining sharper switching transition [8] as well as
a unidirectional optical valve [15]. PT -symmetric analogs in
coupled oscillators have also been proposed theoretically and
experimentally recently [23–26]. Note that coupled oscillators
with gain and loss have already been considered in Ref. [27].

In this paper, we consider the following equations of
motion [13,15,16]:

iu̇1 = −u2 − δ|u1|2u1 − iγ u1,
(1)

iu̇2 = −u1 − δ|u2|2u2 + iγ u2,
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where the dot represents differentiation with respect to the
evolution variable, which is the propagation direction z for
nonlinear optics or the physical time t for Bose-Einstein
condensates; δ is the nonlinearity coefficient; and γ > 0 is
the gain-loss parameter. Here, we consider two cases, i.e.,
when δ �= 0 and δ = 0. For the former case, one can scale
the coefficient such that δ = 1. It was shown numerically
in Ref. [16] that the nonlinearity suppresses periodic time
reversals of optical power exchanges between the sites, leading
to the symmetry breaking and a sharp beam switching to the
waveguide with gain.

When γ = 0, Eq. (1) has two conserved quantities,

P = |u1|2 + |u2|2, (2)

H = − δ

2
(|u1|4 + |u2|4) − P, (3)

which are commonly referred to as the power and the Hamilto-
nian or energy, respectively. Using the Liouville-Arnold theo-
rem (or Liouville-Mineur-Arnold theorem) [28,29], Eq. (1) is
integrable since the degree of freedom is equal to the number
of conserved quantities. By defining the site-occupation
probability difference

� = |u2|2 − |u1|2, (4)

Kenkre and Campbell [30] showed that � satisfies a φ4

equation, which explains the presence of Josephson tunneling
and self-trapped states, with the latter corresponding to �

being sign-definite, as well as the transition between them. It
was later shown [31,32] that � also satisfies the pendulum
equation.

When γ �= 0, Eq. (1) is still integrable [15]. System (1) is
actually a special case of a notably integrable dimer derived in
Refs. [9,10,33] (see also a brief review of integrable oligomers
in Ref. [34]). The conserved quantities in that case are

r = u1u
∗
2 + u∗

1u2, (5)

H = − δ

2
(|u1|4 + |u2|4) − P − iγ (u1u

∗
2 − u∗

1u2). (6)

It was reported that the general system could be reduced to a
first-order differential equation with polynomial nonlinearity
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and it possesses blow-up solutions that were observed numer-
ically [9,10].

In this paper, we consider Eq. (1) and show that it can
be reduced to a pendulum equation with a linear potential
and a constant drive. The same equation has been obtained
recently, parallel to and independently from this work, by
Kevrekidis, Pelinovsky, and Tyugin [35] and by Barashenkov,
Jackson, and Flach [36] through a different formalism. The
linear potential and constant drive explain the presence of
unbounded solutions. We exploit the strong relation between
the problem and the geometry of circles. We also discuss the
qualitative pictures of all solutions of the governing equations.

In Sec. II, we rewrite the governing equations (1) in terms
of power, population imbalance, and phase difference between
the wave fields in the channels. In the section, we also derive a
constant of motion. In Sec. III, we analyze the characteristics
of the fixed points, which are the time-independent solutions
of the system. In Sec. IV, we reduce our system in Sec. II
further into one equation. Here, we show that the problem
is described by a pendulum equation with a linear potential
and a constant drive. In the section, we analyze the pendulum
equation qualitatively through its phase portrait. In Sec. VI,
we discuss the phase portrait of the system that is composed
of trajectories with the same value of a constant of motion.
The constant corresponds to power, which is a conserved
quantity when γ = 0. The case of linear systems is discussed
in Sec. VII. Finally, we conclude our work in Sec. VIII.

II. GOVERNING EQUATIONS IN POLAR FORMS

Writing u1 and u2 in polar form,

uj = |uj |eiφj , j = 1,2, (7)

and defining the variable of phase difference between u1 and
u2,

θ = φ2 − φ1, (8)

the equations of motion (1) can then be expressed in terms of
Eqs. (2), (4), and (8) as (see the Appendix)

Ṗ = 2γ�, (9)

�̇ = 2γP + 2
√

P 2 − �2 sin θ, (10)

θ̇ = �

(
1 − 2 cos θ√

P 2 − �2

)
. (11)

We can limit the phase difference to be in the interval
−π � θ < π . Note that the argument angle φj (and hence θ )
is undefined when |uj | = 0 (or |u1||u2| = 0).

Taking γ �= 0, the conditions for equilibrium points are

� = 0, sin θ + γ = 0. (12)

This shows that no equilibrium points can exist with � �= 0,
therefore demonstrating the nonexistence of the self-trapped
state that is observed for the case when γ = 0. When γ > 1
it follows that no equilibrium points exist. This is a threshold
of total PT symmetry breaking where no periodic solutions
can exist. However, unbounded trajectories will be shown to
always exist for any γ > 0.

After some manipulations (see the Appendix for the de-
tails), it is possible to find a constant of motion of Eqs. (9)– (11)
that is given by

1
2

√
P 2 − �2

(
1
2

√
P 2 − �2 − 2 cos θ

) = c2 − 1, (13)

where c is a constant. We can impose the constant to be non-
negative with no loss of generality. It is important to note
that one can draw similarities of Eq. (13) to the cosine rule
for triangles with three edge lengths: 1, c, and 1

2

√
P 2 − �2

(see Fig. 1).
By varying θ , trajectories of Eq. (13) form circles with

radius c centered on a point a unit distance from the origin.
Three different sketches corresponding to different values of
c are given in Fig. 1.

Equation (13) can also be rearranged to give√
P 2 − �2 = 2 cos θ ± 2

√
c2 − sin2 θ, (14)

from which a few things can be said about the constant c

and how this affects what values θ can take. First c must be
real to give a real solution. If c = 0 then θ = 0. If 0 < c < 1
then θ is bounded such that − arcsin c < θ < arcsin c. The
“−” solution in Eqs. (14) and (15) can exist only for c within
this range. Only when c = 1, P 2 can equal �2, in which case
−π/2 < θ < π/2. If c > 1 then θ is unbounded.

III. THE EQUILIBRIUM POINTS

It is always natural to first analyze the behavior of the
time-independent solutions. Using the conditions for the
equilibrium points, Eq. (12) alongside Eq. (14), we can find
the value of the power, P , at equilibrium points for different
values of c, i.e.,

Pl = 2
√

1 − γ 2 ± 2
√

c2 − γ 2. (15)

Applying the inequality P �
√

P 2 − �2 to Eqs. (14) and (15)
is also the minimum power that a (generally time-dependent)
solution can attain.

The value c = 0 is particular as explicit solutions can be
found. In this case |u1| = Ae−γ t , |u2| = 1

A
eγ t , and θ = 0,

where A is a constant determined by the initial conditions.
This gives one example of where PT symmetry is broken
for any nonzero γ . If c ∈ (0,γ ), no equilibrium points can
exist as the power (15) is complex valued. Hence, all solutions
are unbounded. When c = γ , an equilibrium point lies on the
boundary of θ with θ = − arcsin γ .

For trajectories with c ∈ (γ,1), there are two equilibrium
points at θ = − arcsin γ . This is shown in Fig. 1 as the
intersections of the circles and the dashed lines given by
Eq. (12). The first of these is a center and the second is a
saddle node with the corresponding power Pcenter and Psaddle,
respectively. Exploiting the geometry of the triangles and
circles in Fig. 1, one can obtain that

1
2Pcenter =

√
1 − γ 2 −

√
c2 − γ 2, (16)

1
2Psaddle =

√
1 − γ 2 +

√
c2 − γ 2. (17)

For the case of c = 1, the trivial equilibrium point at
Pcenter = 0 is found to represent a center for these trajectories.
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FIG. 1. Geometrical interpretation of Eq. (13) [cf. Eq. (A13)] as
a triangle. Sketches of the circles of radius c are also shown for the
cases of (a) γ < c < 1, (b) γ < c = 1, and (c) γ < 1 < c, obtained
from Eq. (13) by varying θ . The dashed lines show the angles, such
that intersections with the circles would indicate the positions of the
equilibrium points.

There is also an equilibrium point located at θ = − arcsin γ

and Psaddle = 4
√

1 − γ 2 that can be straightforwardly shown
to be a saddle node.

Solutions with c > 1 also have two equilibrium points
located at θ = − arcsin γ and θ = −π + arcsin γ . The for-
mer represents a saddle node with Psaddle = 2

√
1 − γ 2 +

2
√

c2 − γ 2 and the latter is a center with Pcenter =
2
√

c2 − γ 2 − 2
√

1 − γ 2.
From the results above, we obtain that generally speaking

the larger c is, the larger the power of stable solutions can be.

IV. FURTHER REDUCTION OF THE
EQUATIONS OF MOTION

In order to analyze the general solutions of the governing
equations (1), it is useful to define a new variable ψ , i.e., the
arc angle, that parametrizes the circles as indicated in Fig. 1.
The variable can be expressed by

c sin ψ = 1
2

√
P 2 − �2 sin θ, (18)

c cos ψ = 1
2

√
P 2 − �2 cos θ − 1, (19)

where 0 < c and 0 � ψ < 2π . These equations can be
rearranged to yield

√
P 2 − �2 = 2

√
1 + c2 + 2c cos ψ, (20)

tan θ = c sin ψ

c cos ψ + 1
. (21)

The relationships are plotted in Fig. 2. Using the remark
following Eq. (15), note that Eq. (20) is a lower bound
to the power of solutions. After carrying out some re-
arranging and differentiation (see the Appendix), we find

(a)

(b)

FIG. 2. (Color online) Sketches of (a) θ against ψ , and (b)√
P 2 − �2 against ψ for three different values of c.
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that

� = ψ̇, (22)

P = 2γψ + 2k, (23)

where k is, technically, a constant of motion. We use the
word “technically” because care must be taken in how ψ is
defined. Because we are choosing to define 0 � ψ < 2π we
must remember that, as a trajectory crosses this boundary, the
value of k changes by an amount 2πγ to ensure that the power,
P , remains continuous. If ψ should be defined unbounded then
k would indeed remain constant for all time. It so happens that
for γ �= 0, k has similarities to P with γ = 0, where it is well
known that the power remains constant for all trajectories.

The true value of defining the variable ψ and the constant
c is made apparent when we substitute ψ̇ = � with Eqs. (18)
and (23) into Eq. (10). The equations of motion then reduce to
a second-order differential equation

1
4 ψ̈ = γ (γψ + k) + c sin ψ. (24)

This is a main result of this paper. When γ = 0, we indeed
obtain the equation for a pendulum similarly to [31,32] that
was derived through a different approach. The presence of
γ �= 0 introduces a linear potential and a constant drive into
the pendulum equation. It may be possible to solve Eq. (24) in
terms of Jacobi elliptic functions. Asymptotic solutions of the
equation were derived in Ref. [35]. However, instead we study
the qualitative behaviors of the solutions in the (ψ ,ψ̇)-phase
plane.

V. GENERAL SOLUTIONS

The first integral of Eq. (24) can be obtained by using
Eq. (20), i.e.,

1
4 ψ̇2 = (γψ + k)2 − 2c cos ψ − c2 − 1. (25)

The phase portrait can then be plotted rather easily and is
demonstrated in Fig. 3 for c ∈ (γ,1). The phase plane can
have two topologically different structures, one with and one
without a stable region.

Figure 4 shows how this phase plane, combined with
Fig. 2(a) [cf. Eq. (21)] can be plotted in a three-dimensional
graph. This then gives an idea of how solutions appear in the
(θ,�)-phase plane.

When c ∈ (0,1) there are boundaries on θ which correspond
to ψ = π ± arccos c. These are represented by vertical dashed
lines in Fig. 3. Trajectories that cross these boundaries will
behave differently, in the (θ,�) plane, from those trajectories
which do not. This results in a more diverse set of solutions
when c ∈ (0,1) than for otherwise. One can note that when
c = 1 these vertical dashed lines merge at ψ = π to corre-
spond to the point where θ is in fact undefined.

It is useful to know the value of the constant k for the
trajectories that touch the boundary at ψ = π ± arccos c. Such
values are found by using Eqs. (23) and (20) to be

k± = −γπ +
√

1 − c2 ∓ γ arccos c. (26)

How a trajectory behaves depends on how its k value
compares to the four main values of k, namely ksaddle, kcenter,

(a)

(b)

FIG. 3. (Color online) Sketches of the trajectories in the (ψ,

ψ̇ = �)-phase plane for c ∈ (0,1). See the text for the details.

k+, and k−, where

kcenter = 1
2Pcenter − γψcenter, (27)

ksaddle = 1
2Psaddle − γψsaddle, (28)

(a)

(b)

FIG. 4. Plots of trajectories in the (ψ ,�,θ )-phase space for
γ = 0.4 and (a) c = 0.7, (b) c = 3.
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(a) (b)

(c) (d)

FIG. 5. (Color online) Sketches of trajectories in the (θ ,�)-phase plane for (a) c = 1 and (b) c > 1. The case c ∈ (γ,1) has (c) periodic
and (d) unbounded solutions that are sketched in different panels for clarity. The (purple) solid trajectories in (c) and (d) cannot coexist for the
same values of c, as explained in the text.

with ψcenter and ψsaddle being the values of ψ at the equilibrium
points, i.e.,

ψcenter = π +
∣∣∣∣ arccos γ − arccos

γ

c

∣∣∣∣, (29)

ψsaddle = π + arccos γ + arccos
γ

c
, (30)

which can be obtained using Eqs. (20) and (21) (or similarly
exploiting the geometric pictures in Fig. 1). By plotting out
these values of k against c for a fixed γ one sees that
there is a point where ksaddle and k− cross. Three types
of solution exist for all c ∈ (0,1). The first of these is a
stable trajectory that never touches a boundary for θ . This
corresponds to k ∈ (kcenter,k+). Second are trajectories with
k ∈ (k+, min(k−,ksaddle)). These cross one boundary of θ . The
final type is an unstable trajectory with k > max(k−,ksaddle).

In addition to the trajectories above, there are two types
of solutions that cannot coexist for the same c value. This is
because one solution exists when k− < ksaddle and the other
when k− > ksaddle, which is obvious because both conditions
cannot be met at the same time. When k− < ksaddle, there is
additionally another type of stable trajectory that crosses both
boundaries of θ . This is demonstrated in Fig. 3(a). However,
if k− > ksaddle then instead there is another type of unstable
trajectory, as shown in Fig. 3(b). All of the different types of
trajectory are sketched in Fig. 5.

VI. TRAJECTORIES WITH THE SAME “POWER”

In the conservative case γ = 0, the power P is independent
of time; see Eq. (2). In that case, plots in Figs. 4 and 5
correspond to varying power, i.e., each trajectory has different
value of P , and a fixed “energy,” i.e., the same value of
first integral (25). However, it is not the common practice as
usually one plots trajectories corresponding to the same value
of power.

In the general case when γ �= 0, P is no longer constant.
It is therefore not possible to compose a similar phase
portrait consisting of trajectories with constant P . However,
we find that one could instead plot phase portraits with the
same value of k, which interestingly runs parallel with the
different solutions observed at the same values of P for γ = 0;
see Eq. (23).

When comparing periodic trajectories that all have the same
value of “power” k, it is useful to study the (ψ ,P )-phase plane,
which qualitatively can be obtained by plotting and analyzing
Eq. (20) [see Fig. 2(b)] and Eq. (23). By doing this, we find
that different values of k can give different results in the (θ ,�)-
phase plane.

There are three important k values to consider. The first
is the minimum value k can take. The second is the point
where the equilibrium point at θ = − arcsin γ bifurcates from
a center to a saddle node. This is found from substituting
c = γ into Eq. (28). The third important value of k is when the
separatrix passing through the saddle point has a c value of 1,

063840-5



J. PICKTON AND H. SUSANTO PHYSICAL REVIEW A 88, 063840 (2013)

found from substituting c = 1 into Eq. (28). These values of k

are given respectively by

k0 = −πγ, (31)

kγ = −πγ − γ arccos γ +
√

1 − γ 2, (32)

k1 = −πγ − 2γ arccos γ + 2
√

1 − γ 2. (33)

Substituting γ = 0 into the above expressions gives the
important values of k as 0, 1, and 2. Realizing that here
P = 2k makes clear that these are generalizations of the
critical values found for P when γ = 0, where P = 0,2,4
correspond respectively to the presence of only trivial solution,
the emergence of a pair of fixed points � �= 0, and the
emergence of rotational (or running) states [37]. When γ = 1
all three of these values are equal, which is the threshold of total
PT symmetry breaking; i.e., there are no periodic, bounded
solutions for γ > 1. Note that for any |γ | < 1, there are two
equilibrium points. The c values of the equilibria give the upper
and lower bounds the periodic paths can have for a certain k.

In Fig. 6, we sketch the possible phase portraits of the
system for γ �= 0 within three different intervals determined by
the critical values of k above. Note that the figures are actually
composed of trajectories taken from the phase portraits with
different values of c sketched in Fig. 5. They can also be
seen as the dynamical regimes for arbitrary initial conditions,
showing the regions of periodic and unbounded solutions, that
we refer to here as stability and instability regions. Similar
figures obtained using comprehensive numerical computations
were presented in Ref. [16].

In Fig. 6(a), all the solutions are periodic. As k increases,
there will be a critical value (32) above which the only
equilibrium point becomes unstable. When γ = 0, this is
where a pair of fixed points with nonzero � emerges. For
γ �= 0, instead we have unbounded solutions. The instability
region is nevertheless contained within the region of stable,
periodic solutions. When k is increased further passing (33),
the stability region that contains the instability region vanishes
completely.

Sukhorukov, Xu, and Kivshar [16] also presented the
dependence of the minimal input intensity on the gain-loss
coefficient and the corresponding phase difference required
for nonlinear switching, i.e., the minimum intensity above
which the solutions would be unbounded. According to the
analytical results presented herein, those would correspond to
the separatrices of Eq. (25) (see Fig. 3). Analytical expressions
should be derivable, which we leave for the interested reader.

VII. LINEAR EQUATIONS

After analyzing the nonlinear dimer (1) with δ �= 0, finally
we discuss the linear equations described by Eq. (1) with δ = 0.
This is particularly interesting because the system has been
realized experimentally in Refs. [11,12].

Transforming the equations into the polar forms by sim-
ilarly defining P , �, and θ , we obtain the same equations
except for Eq. (11), which is now given by

θ̇ = �

(
− 2 cos θ√

P 2 − �2

)
. (34)

(a)

(b)

(c)

FIG. 6. (Color online) Sketches of the (θ ,�)-phase plane when
k is constant. (a) All solutions are bounded, with k ∈ (k0,kγ ).
(b) Unbounded solutions exist, with k ∈ (kγ ,k1). (c) Unbounded
solutions exist for some c > 1, with k > k1.

Following the similar reduction, we obtain that instead of
Eq. (14) the constant of motion is given by√

P 2 − �2 cos θ = 2c. (35)

This, instead of circles, is an equation for a straight line passing
a distance c from the origin. By parametrizing the line with
the new variable ψ defined by

ψ = −c tan θ, (36)

we find that [cf. Eqs. (A15) and (23)]

ψ̇ = �, P = 2γψ + 2k, (37)

where k is also a constant of integration. Using the above
equations combined with the identity

√
P 2 − �2 sin θ = −ψ

[obtained from Eqs. (35) and (36)] in Eq. (10) gives

1
4 ψ̈ + (1 − γ 2)ψ = kγ. (38)
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This is a forced, simple harmonic equation and therefore can
be solved explicitly to give ψ in terms of t . Due to the
second equation in Eq. (37), we therefore can conclude that the
oscillating power reported in, e.g., [6,7] has internal frequency
ω = 2

√
1 − γ 2.

VIII. CONCLUSION

We have studied analytically linear and nonlinear PT -
symmetric dimers, where we described the whole dynam-
ics of the system. The effect of nonlinearity that induces
PT symmetry breaking for gain or loss parameters below that
of the linear system, which in a previous work was referred
to as nonlinear suppression of time reversals [16], has been
analyzed as well. Our analytical study may offer a new insight
into the global dynamics of directional waveguide couplers
with balanced gain and loss or Bose-Einstein condensates in a
double-well potential with a balanced sink and source of atoms.
In addition to our qualitative analysis, one could extend the
study here to the analytical expression of the solutions of the
nonlinear PT -symmetric dimer (25), which may be expressed
in terms of Jacobi elliptic functions. In that case, the oscillation
frequency of the power in the nonlinear system would be ob-
tained. Here, we only derive the frequency of the linear system.

APPENDIX: DETAILED CALCULATION

Differentiating expression (7) gives

u̇j =
(

d

dt
|uj | + i|uj |dφj

dt

)
eiφj , (A1)

which by substituting into the governing equations (1) yields

d

dt
|u1| = −|u2| sin θ − γ |u1|, (A2)

d

dt
|u2| = |u1| sin θ + γ |u2|, (A3)

from the real parts and

|u1|dφ1

dt
= |u2| cos θ + |u1|3, (A4)

|u2|dφ2

dt
= |u1| cos θ + |u2|3, (A5)

from the imaginary parts.

Using the equations above, we can then write

dθ

dt
= (|u1|2 − |u2|2)

(
cos θ

|u1||u2| − 1

)
. (A6)

Using the product rule for differentiation we can also obtain
the following four equations:

d

dt
(|u1|2) = −2|u1||u2| sin θ − 2γ |u1|2, (A7)

d

dt
(|u2|2) = 2|u1||u2| sin θ + 2γ |u2|2, (A8)

d

dt
(|u1||u2|) = (|u1|2 − |u2|2) sin θ, (A9)

d

dt
(|u1||u2| cos θ ) = |u1||u2|(|u1|2 − |u2|2) sin θ. (A10)

Using the above equations and noting that√
P 2 − �2 = 2|u1||u2|, (A11)

Eqs. (9)–(11) can be immediately obtained.
Next, one can compare Eqs. (A9) and (A10) to obtain

that

d

dt
(|u1|2|u2|2) = 2

d

dt
(|u1||u2| cos θ ). (A12)

Therefore, we can define a constant c such that

c2 = 1 + |u1|2|u2|2 − 2|u1||u2| cos θ, (A13)

which is nothing else but Eq. (13).
After parametrization of the constant of motion by ψ , i.e.,

Eqs. (18) and (19), one can differentiate Eq. (19) to obtain
that

−cψ̇ sin ψ = |u1||u2|(|u1|2 − |u2|2) sin θ. (A14)

Now combining it with Eq. (18) yields

ψ̇ = |u2|2 − |u1|2 = �. (A15)

Using Eq. (9), we see that

Ṗ = 2γ ψ̇, (A16)

which can be integrated to give Eq. (23).

[1] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge
University Press, Cambridge, 2011).

[2] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998).

[3] C. M. Bender, S. Boettcher, and P. N. Meisinger, J. Math. Phys.
40, 2201 (1999).

[4] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[5] A. Ruschhaupt, F. Delgado, and J. G. Muga, J. Phys. A 38, L171

(2005).
[6] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H.

Musslimani, Opt. Lett. 32, 2632 (2007).
[7] S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett. 101,

080402 (2008).

[8] Y. J. Chen, A. W. Snyder, and D. N. Payne, IEEE J. Quantum
Electron. 28, 239 (1992).

[9] M. F. Jørgensen, P. L. Christiansen, and I. Abou-Hayt,
Physica D 68, 180 (1993).

[10] M. J. Jørgensen and P. L. Christiansen, Chaos, Solitons &
Fractals 4, 217 (1994).

[11] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009).

[12] C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).

[13] K. Li and P. G. Kevrekidis, Phys. Rev. E 83, 066608
(2011).

063840-7

http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0305-4470/38/9/L03
http://dx.doi.org/10.1088/0305-4470/38/9/L03
http://dx.doi.org/10.1088/0305-4470/38/9/L03
http://dx.doi.org/10.1088/0305-4470/38/9/L03
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1016/0167-2789(93)90044-2
http://dx.doi.org/10.1016/0167-2789(93)90044-2
http://dx.doi.org/10.1016/0167-2789(93)90044-2
http://dx.doi.org/10.1016/0167-2789(93)90044-2
http://dx.doi.org/10.1016/0960-0779(94)90146-5
http://dx.doi.org/10.1016/0960-0779(94)90146-5
http://dx.doi.org/10.1016/0960-0779(94)90146-5
http://dx.doi.org/10.1016/0960-0779(94)90146-5
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1103/PhysRevE.83.066608
http://dx.doi.org/10.1103/PhysRevE.83.066608
http://dx.doi.org/10.1103/PhysRevE.83.066608
http://dx.doi.org/10.1103/PhysRevE.83.066608


J. PICKTON AND H. SUSANTO PHYSICAL REVIEW A 88, 063840 (2013)

[14] M. Duanmu, K. Li, R. L. Horne, P. G. Kevrekidis, and N.
Whitaker, Philos. Trans. R. Soc. A 371, 20120171 (2013).

[15] H. Ramezani, T. Kottos, R. El-Ganainy, and D. N.
Christodoulides, Phys. Rev. A 82, 043803 (2010).

[16] A. A. Sukhorukov, Z. Xu, and Yu. S. Kivshar, Phys. Rev. A 82,
043818 (2010).

[17] A. E. Miroshnichenko, B. A. Malomed, and Yu. S. Kivshar,
Phys. Rev. A 84, 012123 (2011).

[18] H. Cartarius and G. Wunner, Phys. Rev. A 86, 013612
(2012).

[19] E. M. Graefe, J. Phys. A: Math. Theor. 45, 444015 (2012).
[20] W. D. Heiss, H. Cartarius, G. Wunner, and J. Main, J. Phys. A:

Math. Theor. 46, 275307 (2013).
[21] A. S. Rodrigues, K. Li, V. Achilleos, P. G. Kevrekidis, D. J.

Frantzeskakis, and C. M. Bender, Rom. Rep. Phys. 65, 5 (2013).
[22] D. Dast, D. Haag, H. Cartarius, G. Wunner, R. Eichler, and

J. Main, Fortschr. Phys. 61, 124 (2013).
[23] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos,

Phys. Rev. A 84, 040101(R) (2011).
[24] H. Ramezani, J. Schindler, F. M. Ellis, U. Günther, and T. Kottos,

Phys. Rev. A 85, 062122 (2012).
[25] Z. Lin, J. Schindler, F. M. Ellis, and T. Kottos, Phys. Rev. A 85,

050101(R) (2012).

[26] J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and
T. Kottos, J. Phys. A: Math. Theor. 45, 444029 (2012).

[27] P. J. Holmes and J. E. Marsden, Commun. Math. Phys. 82, 523
(1982).

[28] Dynamical Systems III, edited by V. I. Arnold (Springer, Berlin,
1988).

[29] P. Libermann and C. M. Marle, Symplectic Geometry and
Analytical Mechanics (Reidel, Dordrecht, 1987).

[30] V. M. Kenkre and D. K. Campbell, Phys. Rev. B 34, 4959 (1986).
[31] J. H. Jensen, P. L. Christiansen, J. N. Elgin, J. D. Gibbon, and

O. Skovgaard, Phys. Lett. A 110, 429 (1985).
[32] L. Cruzeiro-Hansson, P. L. Christiansen, and J. N. Elgin,

Phys. Rev. B 37, 7896 (1988).
[33] M. F. Jørgensen and P. L. Christiansen, J. Phys. A: Math. Gen.

31, 969 (1998).
[34] H. Susanto, in Discrete Nonlinear Schrodinger Equations, edited

by P. G. Kevrekidis (Springer, Heidelberg, 2009), pp. 249–257.
[35] P. G. Kevrekidis, D. E. Pelinovsky, and D. Y. Tyugin, J. Phys.

A: Math. Theor. 46, 365201 (2013).
[36] I. V. Barashenkov, G. S. Jackson, and S. Flach, Phys. Rev. A 88,

053817 (2013).
[37] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy,

Phys. Rev. A 59, 620 (1999).

063840-8

http://dx.doi.org/10.1098/rsta.2012.0171
http://dx.doi.org/10.1098/rsta.2012.0171
http://dx.doi.org/10.1098/rsta.2012.0171
http://dx.doi.org/10.1098/rsta.2012.0171
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevA.82.043818
http://dx.doi.org/10.1103/PhysRevA.82.043818
http://dx.doi.org/10.1103/PhysRevA.82.043818
http://dx.doi.org/10.1103/PhysRevA.82.043818
http://dx.doi.org/10.1103/PhysRevA.84.012123
http://dx.doi.org/10.1103/PhysRevA.84.012123
http://dx.doi.org/10.1103/PhysRevA.84.012123
http://dx.doi.org/10.1103/PhysRevA.84.012123
http://dx.doi.org/10.1103/PhysRevA.86.013612
http://dx.doi.org/10.1103/PhysRevA.86.013612
http://dx.doi.org/10.1103/PhysRevA.86.013612
http://dx.doi.org/10.1103/PhysRevA.86.013612
http://dx.doi.org/10.1088/1751-8113/45/44/444015
http://dx.doi.org/10.1088/1751-8113/45/44/444015
http://dx.doi.org/10.1088/1751-8113/45/44/444015
http://dx.doi.org/10.1088/1751-8113/45/44/444015
http://dx.doi.org/10.1088/1751-8113/46/27/275307
http://dx.doi.org/10.1088/1751-8113/46/27/275307
http://dx.doi.org/10.1088/1751-8113/46/27/275307
http://dx.doi.org/10.1088/1751-8113/46/27/275307
http://dx.doi.org/10.1002/prop.201200080
http://dx.doi.org/10.1002/prop.201200080
http://dx.doi.org/10.1002/prop.201200080
http://dx.doi.org/10.1002/prop.201200080
http://dx.doi.org/10.1103/PhysRevA.84.040101
http://dx.doi.org/10.1103/PhysRevA.84.040101
http://dx.doi.org/10.1103/PhysRevA.84.040101
http://dx.doi.org/10.1103/PhysRevA.84.040101
http://dx.doi.org/10.1103/PhysRevA.85.062122
http://dx.doi.org/10.1103/PhysRevA.85.062122
http://dx.doi.org/10.1103/PhysRevA.85.062122
http://dx.doi.org/10.1103/PhysRevA.85.062122
http://dx.doi.org/10.1103/PhysRevA.85.050101
http://dx.doi.org/10.1103/PhysRevA.85.050101
http://dx.doi.org/10.1103/PhysRevA.85.050101
http://dx.doi.org/10.1103/PhysRevA.85.050101
http://dx.doi.org/10.1088/1751-8113/45/44/444029
http://dx.doi.org/10.1088/1751-8113/45/44/444029
http://dx.doi.org/10.1088/1751-8113/45/44/444029
http://dx.doi.org/10.1088/1751-8113/45/44/444029
http://dx.doi.org/10.1007/BF01961239
http://dx.doi.org/10.1007/BF01961239
http://dx.doi.org/10.1007/BF01961239
http://dx.doi.org/10.1007/BF01961239
http://dx.doi.org/10.1103/PhysRevB.34.4959
http://dx.doi.org/10.1103/PhysRevB.34.4959
http://dx.doi.org/10.1103/PhysRevB.34.4959
http://dx.doi.org/10.1103/PhysRevB.34.4959
http://dx.doi.org/10.1016/0375-9601(85)90073-8
http://dx.doi.org/10.1016/0375-9601(85)90073-8
http://dx.doi.org/10.1016/0375-9601(85)90073-8
http://dx.doi.org/10.1016/0375-9601(85)90073-8
http://dx.doi.org/10.1103/PhysRevB.37.7896
http://dx.doi.org/10.1103/PhysRevB.37.7896
http://dx.doi.org/10.1103/PhysRevB.37.7896
http://dx.doi.org/10.1103/PhysRevB.37.7896
http://dx.doi.org/10.1088/0305-4470/31/3/010
http://dx.doi.org/10.1088/0305-4470/31/3/010
http://dx.doi.org/10.1088/0305-4470/31/3/010
http://dx.doi.org/10.1088/0305-4470/31/3/010
http://dx.doi.org/10.1088/1751-8113/46/36/365201
http://dx.doi.org/10.1088/1751-8113/46/36/365201
http://dx.doi.org/10.1088/1751-8113/46/36/365201
http://dx.doi.org/10.1088/1751-8113/46/36/365201
http://dx.doi.org/10.1103/PhysRevA.88.053817
http://dx.doi.org/10.1103/PhysRevA.88.053817
http://dx.doi.org/10.1103/PhysRevA.88.053817
http://dx.doi.org/10.1103/PhysRevA.88.053817
http://dx.doi.org/10.1103/PhysRevA.59.620 
http://dx.doi.org/10.1103/PhysRevA.59.620 
http://dx.doi.org/10.1103/PhysRevA.59.620 
http://dx.doi.org/10.1103/PhysRevA.59.620 



