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Abstract—Combining ideas from evolutionary algorithms, de-
composition approaches and Pareto local search, this paper sug-
gests a simple yet efficient memetic algorithm for combinatorial
multiobjective optimization problems: MoMad. It decomposes a
combinatorial multiobjective problem into a number of single
objective optimization problems using an aggregation method.
MoMad evolves three populations: population PL for recording
the current solution to each subproblem, population PP for
storing starting solutions for Pareto local search, and an external
population PE for maintaining all the nondominated solutions
found so far during the search. A problem-specific single objective
heuristic can be applied to these subproblems to initialize the
three populations. At each generation, a Pareto local search
method is first applied to search a neighborhood of each solution
in PP to update PL and PE . Then a single objective local search
is applied to each perturbed solution in PL for improving PL

and PE , and re-initializing PP . The procedure is repeated until
a stopping condition is met. MoMad provides a generic hybrid
algorithmic framework to use problem specific knowledge and
employ well developed single objective local search and heuristics,
and Pareto local search methods for dealing with combinatorial
multiobjective problems. It is a population based iteration method
and thus an anytime algorithm. Extensive experiments have been
conducted in this paper to study MoMad and compare it with
some other state of the art algorithms on the multiobjective
traveling salesman problem and the multiobjective knapsack
problem. The experimental results show that our proposed
algorithm outperforms or performs similarly to the best so far
heuristics on these two problems.

Index Terms—Multiobjective optimization, multiobjective trav-
eling salesman problem, multiobjective 0-1 knapsack problem,
decomposition, Pareto local search.

I. INTRODUCTION

A generic multiobjective optimization problem (MOP) can
be stated as follows:

maximize F (x) = (f1(x), . . . , fm(x)) (1)
subject to x ∈ Ω

where Ω is the decision space, F : Ω → Rm consists of m
real-valued objective functions. The attainable objective set is
{F (x)|x ∈ Ω}.
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Let u, v ∈ Rm, u is said to dominate v, denoted by u ≻ v,
if and only if ui ≥ vi for every i ∈ {1, . . . ,m} and uj > vj
for at least one index j ∈ {1, . . . ,m}1. Given a set S in
Rm, a point in it is called nondominated in S if no other
point in S can dominate it. A point x∗ ∈ Ω is Pareto-optimal
if it is nondominated in the attainable objective set. F (x∗) is
then called a Pareto-optimal (objective) vector. In other words,
any improvement in one objective of a Pareto optimal point
must lead to deterioration to at least another objective. The set
of all the Pareto-optimal points is called the Pareto set (PS)
and the set of all the Pareto-optimal objective vectors is the
Pareto front (PF) [1]. In many real life applications, the PF
is of great interest to decision makers for understanding the
tradeoff nature of different objectives and selecting their final
solutions.

If Ω is a finite set, then (1) is called a combinatorial MOP.
Finding the exact PF of a real world combinatorial MOP
is often NP-hard by nature even though its single objective
counterpart is not [2]. For this reason, heuristics, particularly,
hybrid heuristics, have been widely used and studied for
approximating the PFs of combinatorial MOPs. Elements and
ideas from many different single objective heuristics such as
variable neighborhood search [3], tabu search [4], iterative
local search [5], guided local search [6], simulated annealing
[7] and ant colony optimization [8] have been generalized
to combinatorial multiobjective optimization. In most hybrid
heuristics developed over the last two decades, the following
three highly related basic techniques are frequently employed:

• Pareto Local Search (PLS): It is a natural extension of s-
ingle objective local search methods [9]–[11]. PLS works
with a set of mutually nondominated solutions. It explores
some or all of the neighbors of these solutions to find new
solutions for updating this set at each iteration. Several
variants of PLS have been proposed and investigated on
various problems (e.g., [12], [13]).

• Aggregation: An MOP can be transformed into a single
objective optimization problem by linearly or nonlinearly
aggregating all the individual objectives f1, . . . , fM into
one single objective. Under mild conditions, an optimal
solution to this single objective problem is Pareto-optimal
to (1). Thus, a single objective optimization method can
be used for finding a set of Pareto optimal solutions
by solving a set of such single objective problems with
different weights [2].

1In the case of minimization, the inequality signs should be reversed.



• Multiobjective Evolutionary Algorithms (MOEA): A typ-
ical MOEA evolves a working population (i.e., on-line
population) of a prefixed size by using selection and
reproduction operators. An MOEA selection operator can
be based on Pareto dominance [14], aggregation [15] or
some performance indicators [16]. A second population
(i.e., archive), is often employed in MOEAs to store non-
dominated solutions generated during the evolutionary
process.

One of the most successful and simplest hybrid multiobjec-
tive heuristic frameworks is the two phase Pareto local search
(2PPLS) [11]. It combines PLS and aggregation. As its name
suggests, 2PPLS consists of two phases. Phase 1 generates an
approximation to the set of all the efficient supported solutions
(their definition will be given in Section II) by solving a
number of linear aggregation problems. Phase 2 applies a PLS
to every solution generated in Phase 1 to find non-supported
Pareto optimal solutions. Since it has only two phases, it is
necessary that the initial solutions provided by Phase 1 are of
high quality and as many as possible. Therefore, as pointed
out in [11], Phase 1 often incurs very heavy computational
overheads. For this reason, 2PPLS is not very suitable for
dealing with more than three objectives. Another disadvantage
is that it has no mechanism to escape from local optimal
solutions and it can stop even when there is still computational
time available. Arguably, a very natural way for overcoming
these disadvantages is to implement the 2PPLS idea in an
iterative framework.

Multiobjective optimization evolutionary (MOEA/D) [17] is
an MOEA using aggregation ideas. It decomposes an MOP
into a number of single objective subproblems by aggregation.
Solutions to these different subproblems are evolved and
improved in a collaborative way. Single objective optimization
methods can be easily employed in the MOEA/D framework.
Since MOEA/D is an iterative algorithm, any amount of
computational time can be, at least in principle, used to
improve the quality of its solutions. The MOEA/D algorithmic
framework has been adopted in a number of MOEAs (e.g. [18],
[19]).

This paper combines the ideas from 2PPLS and MOEA/D
and proposes a Multiobjective Memetic algorithm based on
decomposition (MoMad). Liangjun ask: Do we need some
words on: Memetic algorithm is ... It is simple yet efficient
and makes use of all the three basic techniques mentioned
earlier in this section. MoMad maintains three populations:
Each solution in the first population (denoted by PL in this
paper) is associated with a weighted sum aggregation subprob-
lem. The second population (denoted by PP ) stores some very
promising solutions selected from PL. The third population
PE is an achieve for recording all the nondominated solutions
found so far. A problem-specific single objective heuristic
can be applied to these subproblems to initialize the three
populations. At each generation, a Pareto local search method
is first applied to search a neighborhood of each solution in
PP to update PL and PE . Then a single objective local search
applied to each perturbed solution in PL for improving PL and
PE , and re- initializing PP . The procedure is repeated until
a stopping condition is met. Extensive experiments have been

conducted in this paper to study MoMad and compares it with
some other state of the art algorithms on the multiobjective
traveling salesman problem and the multiobjective knapsack
problem. The experimental results show that our proposed
algorithm outperforms or performs similarly to the best so
far heuristics on these two problems.

The rest of the paper is organized as follows. Section II
presents all the details of our proposed MoMad. Section III
gives an implementation of MoMad and compare it with the
two phase Pareto local search method suggested in [9]–[11]
on the biobjective travelling salesman problems. Experimental
studies on the effects of some control parameters on the
performance of MoMad are also conducted in this section.
Section IV implements MoMad for the multiobjective knap-
sack problem and compare it with three other algorithms.
Section V concludes this paper and outlines some avenues
for future research.

II. MAIN TECHNIQUES

This section introduces the major ideas and techniques used
in our proposed algorithm.

A. Decomposition and algorithmic framework

A widely used multiobjective optimization methodology in
traditional mathematical programming community is to cast
an MOP into a single objective optimization problem by (lin-
early or nonlinearly) aggregating all the individual objective
f1, . . . , fm with a weight coefficient vector. To obtain an
approximation to the PF, one can solve a set of such single
objective problems with carefully selected weight coefficient
vectors. This idea has been successfully used in some MOEAs
such as MOGLS [20] and MOEA/D [17].

There are a number of aggregation approaches for decom-
posing an MOP into a number of single objective optimization
subproblems. For simplicity, this paper uses the weighted
sum approach. It considers the following single objective
optimization problem:

maximize gws(x|λ) =
∑m

i=1 λifi(x)
subject to x ∈ Ω

(2)

where λ = (λ1, . . . , λm) is a weight vector with
∑m

i=1 λi = 1
and λi ≥ 0 for all i = 1, . . . ,m.

For any nonnegative weight vector, (2) has an optimal
solution which is Pareto optimal to (1). In the case of positive
weight vectors, any optimal solutions to (2) are Pareto optimal
to (1) [2]. An Pareto optimal solution is called supported
efficient if it is an optimal solution to (2) with a particular
weight vector. Let Xse and PFse be the set of all the supported
efficient solutions and the set of their corresponding Pareto
optimal objective vectors, respectively, it is well-known that
PFse = PF when PF is concave. In the case of nonconcave
PFs, although PFse ̸= PF as illustrated in Fig. 1, a basic
assumption in this paper is that, in an appropriately defined
neighborhood of a locally or globally optimal solution to (2),
more Pareto optimal solutions can be found with a reasonable
amount of computational effort. This assumption, illustrated
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Fig. 1. The demo of the assumption. In this figure, PF is {A,B,C,D,E}, while PFse is {A,C,E}. Although the starting point O is better than D with
respect to the objective of subproblem with weight λ, it is more likely to yield D from O.

is Fig. 2, has been used in several successful metaheuristics
[9] including MOGLS and 2PPLS [11].

Mutiobjective Memetic Algorithm based on Decomposition
(MoMad), the algorithm proposed in this paper, adopts the
MOEA/D framework. More specifically, MoMad first selects
N weight vectors λ1, . . . , λN and forms N single objective
optimization subproblems. Subproblem k is defined by (2)
with λ = λk. At each generation, MoMad maintains three
populations:

• PL = {x1, . . . , xN}: xk is the current candidate solution
to subproblem k. The solutions in this population will be
undergone perturbation and single objective local search
operators.

• PP : the solutions in this section will be undergone PLS.
• PE : it is an external population for storing nondominated

solutions found so far.
The MoMad works as follows:

Step 0: Initialization:
0.1 Initialization of PL: For each k =

1, . . . , N , apply a single objective heuristic
on subproblem k to generate solution xk.
All these solutions form PL.

0.2 Initialization of PP and PE: Find all the
nondominated solutions in PL and let them
constitute PP . Initialize PE := PP .

Step 1 : If a preset stopping condition is met, stop and return
PE . Otherwise, go to Step 2.

Step 2 :Pareto Local Search: Conduct Pareto local search
on PP to update PL and PE . Then set PP =: ∅ (The
details of PLS can be found in Subsection II-B).

Step 3 : For each k = 1, . . . , N

3.1 Perturbation: apply a perturbation operator
on xk in PL to generate x̃k.

3.2 Local Search: apply a single objective local
search for subproblem k on x̃k to generate
a new solution yk.

3.3 Updating PL: PL = Update1(x′, PL).
3.4 Updating PE: PE = Update2(x′, PE).
3.5 Updating PP : If x′ has been added to PE

in 3.4, PP = Update2(x′, PP ).
End of for

Go to Step 1.

Algorithm 1: PL = Update1(x′, PL)

input : PL = {x1, . . . , xN}, x′.
output: PL = {x1, . . . , xN}.

1 Replacement = false,
2 Pα := PL.
3 while (Pα ̸= ∅)&(Replacement = false) do
4 Randomly select a solution xk from Pα.
5 Pα := Pα \ {xk}.
6 if gws(xk|λk) < gws(x′|λk) then
7 xk := x′, Replacement := true.
8 end
9 end

Algorithm 2: P = Update2(x′, P )

input : P , x′.
output: P .

1 if There is no solution in P which can dominate x′ then
2 Remove all the solutions in P which are dominated

by x′

3 Add x′ to P .
4 end

In Step 0, the three populations are initialized. Since solu-
tion xk in PL is for single objective subproblem k, it can use
well-developed single objective heuristics to obtain initial xk.
Then, based on Pareto dominance, it compares the solutions



in PL to find all the nondominated solutions in PL which are
then used for initializing PE and PP .

Step 2 conducts PLS to explore the neighborhoods of the
solutions in PP to update PL and PE . After this step, PP

will be set to be an empty set. The purpose of this step
is to find those Pareto optimal solutions that may not be
found by Perturbation and Local Search in Step 3. A major
computational overhead of MoMad comes from this step.

Step 3.1 is to drive the search into a new region. The
perturbation should be big enough such that the generated
solution x̃k is out of the attractive basin of current xk. Too
big perturbation, however, may take x̃k to an unpromising
search area. yk, generated in Step 3.2 by a single objective
local search on x̃k, could be a better solution to subproblem
k or other subproblems. Steps 3.3−3.5 use yk to update PL,
PE and PP . PP contains all the new nondominated solutions
generated in Step 3, and it is a subset of PL.

In Update1(x′, PL) (Algorithm 1), its inputs are x′ and PL.
As mentioned earlier, each solution xk in PL is the current
solution to subproblem k. Update1(x′, PL) compares x′ and
solutions in PL in a random order based on their aggregated
objective function values. Due to the use of flag variable
Replacement, x′ is allowed to replace only one solution in
PL, which is useful for maintaining the diversity of PL.

In Update2(x′, P ) (Algorithm 2), x′ is compared with
every solution in P , it will be added to P if there is no solution
in P which can dominate it. All the solutions in P which are
dominated by x′ will be removed from P .

We would like to make the following comments on the
above algorithmic framework:

• Since each solution xi in PL is for single objective
subproblem i, single objective optimization techniques
can be used in Step 0.1 and Step 3.2. A lot of effective
approaches have been developed and studied in single ob-
jective combinatorial optimization for utilizing problem-
special knowledge [21]. Thus, this framework provides
a natural way for using these working experiences in
combinatorial multiobjective optimization.

• In the existing two phase local search methods such as
2PPLS [11] and PD-PLS [9], each subproblem undergoes
a single objective local search only once for generating
one supported efficient solution. In contract, MoMad
adopts an iterative fashion and applies a local search
precedure to every subproblem many times with different
starting solutions during the search. Therefore, with Pare-
to local search, MoMad can explore the neighborhoods
of different locally optimal solutions to each subproblem.
The motivation behind the use of iteration in MoMad is
supported by the assumption illustrated in Fig. 1.

• In some other MOEA/D variants (e.g., [22]–[24]), a
neighborhood relationship among all the subproblems
is defined based on the distances among their weight
vectors. Correspondingly, a neighborhood relationship
among all the current solutions can be established. These
MOEA/D variants update a current solution mainly by
offspring of its neighboring solutions. This is based on
the assumption that two neighboring subproblems have
similar optimal solutions. Although this assumption is

often true in combinatorial multiobjective optimization,
some exceptions can be observed (e.g. [18]). For this
reason, MoMAD does not employ the neighborhood
concept, a new solution has a chance to replace any other
current solutions in PL.

• A major computational overhead of MoMad is incurred
by PLS. To avoid unbearable computational costs, PP is
set to be empty at the end of Step 2. A solution is added
to PP in Step 3 only if it has entered into PE . As a
result, PP contains all the new nondominated solutions
generated in Step 3 and it is a subset of PL. Therefore, the
size of PP cannot exceed N and neither can the number
of PLS Liangjun: calls ??? at each generation.

B. Pareto Local Search

MoMad conducts PLS in Step 2. Several different versions
of PLS have been developed and studied during the last several
years. The PLS algorithm used in our experimental studies is
a modified version of Pareto local search proposed in [11]. Its
detail is given in Algorithm 3.

Algorithm 3: Pareto Local Search
input : PP , PL, PE ,Max.
output: PL, PE .

1 j := 0.
2 while (PP ̸= ∅)&(j ++ < Max) do
3 Pα := ∅.
4 for each x ∈ PP do
5 for each x′ ∈ N(x) do
6 update1(x′, PL)
7 if F (x) ≺ F (x′) then
8 update2(x′, PE)
9 if x′ has been added to PE in Line 8 then

10 update2(x′, Pα)
11 end
12 end
13 end
14 end
15 PP := Pα

16 end

In this PLS algorithm, Max is the maximal number of
passes in the while loop (Line 2 to 16). It is used to bound the
computational overheads. In line 1, j, the index of the current
loop pass, is initialized to be 0. Pα, which is initialized to
be empty in Line 3, is to reset PP at the end of each while
pass in Line 15. For each x′ in the neighborhood of every
x in PL, Update1(x′, PL) is executed in Line 6 to update
PL. If x′ dominates x, update2(x′, PE) is executed to update
PE in Line 8. If x′ has entered PE , then Line 10 executes
update1(x′, Pα) to update Pα. The two if conditions in Lines
7 and 8 only allow very promising solutions to update PE

and PL. In such a way, the computational overheads can be
significantly reduced.



III. COMPARISON OF MOMAD WITH 2PPLS ON
MULTIOBJECTIVE TRAVELING SALESMAN PROBLEM

A. Problem

Given n cities with edges connecting any two cities.
Suppose that edge e has m distance metrics de,1, . . . , de,m.
Each feasible solution is an edge subset which can form a
Hamiltonian cycle. The i-th objective function to minimize is:

fi(x) =
∑
e∈x

de,i (3)

In our experiments, we use biobjective test instances col-
lected by T. Lust2, which have been used to test 2PPLS.

2PPLS [11] is the best-so-far heuristic algorithm for the
biobjective TSP instances used in our experimental studies.
It consists of two phases. Its first phase generates a good
approximation of the supported efficient solutions. The sec-
ond phase uses the Pareto local search for generating non-
supported solutions. The experimental results of 2PPLS used
in our comparison are from the author’s web.

B. Implementation of MoMad

1) Initialization of PL (Step 0.1): each subproblem k in the
mTSP is a single objective TSP with the following objective:

∑
e∈x

(
m∑
i=1

λk
i de,i) (4)

We use the chained Lin-Kernighan heuristic [25] on subprob-
lem k to generate xk in our experiments.

2) Candidate List: Our implementation of PLS (Step 2)
and LS (Step 3.2) requires a candidate edge (CE) list. The CE
list consists of all the edges of the solutions in the current PP .
It will be updated once PP has been updated.

3) N(x) in Pareto local search (Step 2) and local search
(Step 3.2) : Given a feasible solution x, y is a neighbor of x
if y is feasible and can be obtained from x in the following
way:

1) remove two nonadjacent edges from x, and
2) add two new edges to x to form a cycle, where at least

one added edge is from the candidate list.

N(x) is then the set of all the neighbors of x.
4) Perturbation (Step 3.1): Let xk in PL be the current

solution to subproblem k, we apply a random double bridge
move (i.e., 4-interchange) on xk to generate x̃k. A double
bridge move is illustrated in Fig. 2.

5) Local Search (Step 3.2): To do local search on x̃k

for subproblem k, we find the solution z from N(x̃k) (the
neighourhood definition is the same as in PLS) with the highest
aggregated objective function fws(x|λk) value. If z is better
than x̃k in terms of fws(x|λk), then we replace x̃k by z and
repeat this procedure, otherwise, we stop and output x̃k as yk.

2http://sites.google.com/site/thibautlust/research/multiobjective-tsp

C. Performance Metrics

• Hypervolume indicator (IH ) [26]: Let y∗ =
(y∗1 , . . . , y

∗
m) be a point in the objective space which is

dominated by any Pareto optimal objective vectors. Let S
be the obtained approximation to the PF in the objective
space. Then the IH value of S (with regard to y∗) is
the volume of the region which is dominated by S and
dominates y∗. The higher the hypervolume, the better the
approximation.

• Set Coverage (C-metric) [26]: Let A and B be two
approximations to the PF of an MOP, C(A,B) is defined
as the percentage of the solutions in B that are dominated
by at least one solution in A, i.e.,

C(A,B) =
|{u ∈ B|∃v ∈ A : v dominates u}|

|B|
C(A,B) is not necessarily equal to 1 − C(B,A).
C(A,B) = 1 means that all solutions in B are dominated
by some solutions in A, while C(A,B) = 0 implies that
no solution in B is dominated by a solution in A.

D. Experimental Parameter Setup

1) The Size of PL (N ) and Weight Vectors (λ) in MoMad:
Too large N will result in very high computational costs at
each generation, while too small N may make the search miss
some parts of the PF. Based on these considerations, N is set
as follows:

• N = n when n = 200, 300, 400, 500, where n is the
number of cities.

• N = 600 when n = 750, 1000.
λk (k = 1, . . . , N ) is set as:

λk =

(
k − 1

N − 1
,
N − k

N − 1

)
(5)

2) Max in PLS: Max is set to be 10 in our experiments.
3) The Stopping Condition: The algorithm stops after 500

generations.
4) The number of Independent Runs: The algorithm has

been run 20 times on each test instance.

E. Results

The final solution sets of 20 independent runs of 2PPLS
reported in its author’s web are used for comparison. On each
test instance, each final nondominated solution set obtained by
our algorithm is compared with every solution set by 2PPLS.
To compute the hypervolumes of two algorithms on each
instance , y∗i (i = 1, . . . ,m) is set to be the largest value of
the i-th objective among all the final solutions generated by
both 2PPLS and MoMad. The hypervolume values of the final
solution sets produced by the two algorithms are plotted in
Fig. 3. We compute the mean C-metric values of all the 20×20
comparisons on each instance and report them in Table I. The
average running times consumed by the two algorithms are
given in Table II.

From these results, we can make the following remarks:
• In terms of the coverage metric, MoMad outperforms 2P-

PLS on all the test instances. For example, on Kroab1000,
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Fig. 2. (a) the solution to be perturbed. (b) the resultant solution. In this figure, a random double bridge move first assigns a direction to the circle formed
by xk , randomly remove four nonadjacent edges from the circle, and then add four new edges to form a new circle without changing the direction.

the instance with 1,000 cities, a solution set produced by
MoMad can on average dominate 60.4% of a solution set
by 2PPLS, and 38.2% vice versa.

• On 16 out of 18 test instances, the hypervolume metric
values shown in Fig. 3 are consistent with the coverage
metric values, which further confirms the competitiveness
of MoMad. On rdAB300 and rdAB500, the two exception
instances, we have tested MoMad with larger population
sizes and found that MOEAD can perform better with
regards to the hypervolume metric as shown in Fig. 4.

• Regarding the running time, two algorithms were tested
on different but similar computing environments. The
statistics in Table II indicate that two algorithms have
consumed about the same amount of running time on
each test instance. We also want to emphasize that unlike
2PPLS, MoMad is an anytime algorithm. As shown in the
next section, MoMad can find better solutions if more
computational resources are allocated to it.

F. More Discussions

MoMad has two control parameters: N and Max. We
have experimentally investigate the effects of the two control
parameters on the algorithm performance. We have taken
Kroab200 as a test instance in our experimental studies and
each parameter configuration has been tested on 20 indepen-
dent runs.

1) The Influence of The Number of Subproblems N :
N is also the size of PL, which thus decides how many
times perturbation and single objective local search operators
are conducted at Steps 3.1 and 3.2 in each generation. We
have tested MoMad with N = 100, 200, 300, and 1, 700, the
running time is set to be 600 seconds and all the other settings
are the same as in the previous section. The hypervolume of
the initial PE and the running time used for different values
of N are reported in Table III and the hypervolume of the

final PE obtained with the different running time are given in
Table IV. From the experimental results, it is evident that:

• As expected, N is a crucial factor in determining the
computational overhead and performance of the initial-
ization step in MoMad. As shown in Table III, when
N = 50, the running time consumed by the initialization
step is 38 seconds, and the hypervolume of initial PE is
8.85177 × 1010. In the case of N = 1700, the running
time increases to 582 seconds and the hypervolume
to 8.87253 × 1010. These results are not supervising.
The larger N value is, the more times the chain Lin-
Kernigham heuristic will be conducted and the more
solutions will be generated in Initialization. Therefore,
more running time and better PE can be expected.

• For all the different settings of N , the iteration steps after
initialization can improve the quality of PE effectively.
For example, in the case of N = 200, the hypervolume of
PE has been increased from 8.86107×1010 to 8.88140×
1010. These results should be due to two reasons. The first
one is that the initial PE are generated by the chain Lin-
Kernigham heuristic, thus some of its solutions may not
be globally Pareto optimal and the size of the initial PE

is also limited. As a result, there is room for improving
the the initial PE . The second reason is that perturbation
and local search in Step 3.1 and Step 3.2 can explore new
search areas and produce better solutions.

• The best value of N depends on the available running
time. For example, if the available running time is 100
seconds, the best value of N is 200. However, if the
running time is 600, the best value is N = 300.

2) The Influence of Parameter Max: This parameter is a
key parameter determining the overall computational overhead
of the PLS procedure. To study its effect on the algorithm
performance, we have conducted experiments with its four
values Max = 5, 10, 20, and 40, all the other settings are the



TABLE I
THE COVERAGE VALUES BETWEEN MOMAD AND 2PPLS FOR MTSP.

Instance C(A,B) C(B,A)
name n

kroab200 200 30.4 14.6
kroab300 300 42.4 24.9
kroab400 400 53.4 28.0
kroab500 500 53.7 38.1
kroab750 750 63.7 35.2
kroab1000 1000 60.4 38.2
euclAB100 100 37.6 4.0
euclAB300 300 46.2 22.5
euclAB500 500 56.4 34.0

ClusterAB100 100 43.2 2.6
ClusterAB300 300 70.5 15.2
ClusterAB500 500 61.1 25.1

rdAB100 100 32.9 23.8
rdAB300 300 49.5 43.4
rdAB500 500 57.5 40.4

mixedAB100 100 36.3 11.9
mixedAB300 300 48.2 28.5
mixedAB500 500 53.0 40.7

Algorithm A corresponds to MoMad
Algorithm B corresponds to the compared algorithm

TABLE II
THE RUNNING TIME (IN SECONDS) OF 2PPLS AND MOMAD.

Instance 2PPLS MoMad
name n

kroab200 200 115 94
kroab300 300 232 213
kroab400 400 434 475
kroab500 500 731 823
kroab750 750 2301 1849

kroab1000 1000 7206 3303
euclAB100 100 26 22
euclAB300 300 259 275
euclAB500 500 693 711

ClusterAB100 100 50 46
ClusterAB300 300 366 347
ClusterAB500 500 1518 849

rdAB100 100 25 20
rdAB300 300 305 274
rdAB500 500 816 1211

mixedAB100 100 26 21
mixedAB300 300 238 309
mixedAB500 500 866 1104

2PPLS is tested on a PC with 3.0GHz CPU
MoMad is tested on a PC with 2.4GHz CPU

TABLE III
THE HYPERVOLUME (×1010)OF THE INITIAL PE AND THE RUNNING TIME USED WITH DIFFERENT VALUES OF N

N time hyperpervolume
100 38 8.85177
200 73 8.86107
300 105 8.86444
1700 582 8.87253
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Fig. 3. The hypervolume values obtained by MoMad and 2PPLS on the instances. In each subplot, the left corresponds to the results of MoMad.
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Fig. 4. Larger N is tested for rdAB300 and rdAB500 where N = 400 and 600 is used for solving them respectively.

TABLE IV
THE HYPERVOLUME (1010) OF THE FINAL E OBTAINED WITH THE DIFFERENT RUNNING TIME (t).

N t = 50 t = 100 t = 150 t = 300 t = 600
100 8.86657 8.88108 8.88115 8.88120 8.88124
200 - 8.88129 8.88135 8.88138 8.88140
300 - - 8.87294 8.88142 8.88151
1700 - - - - 8.88139

’-’ means that the initialization procedure is still uncomplete

TABLE V
THE INFLUENCE OF Max ON HYPERVOLUME (1010) WHEN DIFFERENT RUNNING TIME (t) IS USED.

N t = 100 t = 150 t = 300 t = 600
5 8.88113 8.88130 8.88133 8.88138
10 8.88129 8.88135 8.88138 8.88140
20 8.88129 8.88132 8.88135 8.88140
40 8.88129 8.88132 8.88135 8.88140

same as in Section III.D. The experimental results are reported
in Table V, we can make the following comments:

• As for the hypervolumes of the final solution sets ob-
tained after 600 seconds, Max = 5 performs a bit
poorer than the three other settings, and there is no big
difference among Max = 10, 20, 40. Thus, we can claim
that MoMad is not very sensitive to the setting of Max
and it is better to use a large Max value if the available
running time allows one to do so.

• In terms of the performance over the whole search
period, Max = 20, 40 have about the same performance,
Max = 10 shows a small edge over other values at
time points t = 150 and 300. It may be worthwhile
investigating a dynamic way for adjusting Max in an
online manner.

IV. EXPERIMENTAL STUDIES ON THE MULTIOBJECTIVE
0-1 KNAPSACK PROBLEM

In the above section, the test instances are the MTSP
with two objectives. Taking the Multiobjective 0-1 Knapsack
Problem (MOKP) as a test bed, this section compares Mo-
Mad with some other state-of-the-art algorithms, particularly

with respect to their ability for dealing with more than two
objectives.

A. Multiobjective 0-1 Knapsack Problem (MOKP)

Given a set of n items and a knapsack. Each item j has
m weight indexes wi,j ≥ 0 and m profit indexes pi,j ≥ 0
(i = 1, . . . ,m). The capacity of the knapsack for weight index
i is ci. A feasible solution x is an item subset which meets
the following m constraints:∑

j∈x

wi,j ≤ ci, i = 1, . . . ,m (6)

The i-th objective to maximize is:

fi(x) =
∑
j∈x

pi,j , i = 1, . . . ,m (7)

This problem is also known as the multidimensional multiob-
jective knapsack problem [27]. The MOKP is NP-hard [2] and
can model a variety of applications in resource allocation. It
has also been widely used in testing multiobjective heuristic-
s [28]. A set of nine test instances proposed in [26] are used
in our experimental studies.



B. Implementation of MoMad

1) Initialization of PL (Step 0.1): xk to subproblem k is
constructed as follows. A utility value of each item j is first
defined and computed:

σk
j =

∑m
i=1 λ

k
i pi,j∑m

i=1 wi,j
(8)

where
∑m

i=1 wi,j is the overall weight of item k, and∑m
i=1 λ

k
i pi,j is its weighted profit, i.e., the coefficient of xi in

the objective function of subproblem k defined by (2) in the
MOKP case.

We first initialize xk = ∅, and then add items one by one to
xk until there is no item can be added to xk without invaliding
any constraints. Each item added to xk should have the largest
σk
j among all the items which can be added to xk without

invaliding any constraints.
2) N(x) in Pareto Local Search (Step 2): If the neighbor-

hood in PLS (Algorithm 3) is too large, the computational
overheads of PLS can be very high. Our neighborhood defi-
nition is inspired by [11]. To define N(x), we first define a
domination relationship among all the items. An item u is said
to dominate another item v if and only if

pi,u∑m
k=1 wk,u

≥ pi,v∑m
i=k wk,v

for all i = 1, . . . ,m, and
pi,u∑m

k=1 wk,u
>

pi,v∑m
i=k wk,v

for at least one index j ∈ {1, . . . ,m}. Then we divide all
the items into different subsets such that F1 contains all
the nondominated items in {1, . . . , n}, F2 contains all the
nondominated items in {1, . . . , n} \ F1, and so on. The rank
of the items in Fr is set to be r. The lower the rank of an
item is, the better it is.

Let U = {1, . . . , n} \x and θ ∈ (0, 1] We select the θ× |x|
best ranked items from set x. If there is any tie in selection,
we randomly select one. Let x̄ be the set of all these selected
items. We also select θ×|U | worst items from U and let them
constitute Ū . Roughly speaking, x̄ are the worst items in x and
Ū are the best items in U .

Then we define N(x) as the set of all the feasible solutions
which can be obtained from x by removing one item in x̄ and
add one item from Ū to x. Obviously, θ determines the size
of N(x).

3) Perturbation (Step 3.1): Let xk in PL be the current
solution to subproblem k. The output of perturbation x̃k is
generated as follows: Let S be the number of items in xk.
To perturb xk, we first remove ⌊α× |xk|⌋ randomly-selected
items from xk to form initial x̃k, where α ∈ (0, 1) is a control
parameter. Then as in Initialization of xk in Step 0.1, add items
to x̃k in a greedy way until any item addition will violate some
constraints.

4) Local Search (Step 3.2): y is a neighbor of x if y is
feasible and can be obtained from x by removing one item
from it and adding a new item to it. To do local search on x̃k

for subproblem k, we first find its neighboring solution z with
the highest aggregated objective function fws(x|λk) value. If

z is better than x̃k in terms of fws(x|λk), then we replace x̃k

by z and repeat the neighborhood search, otherwise, we stop
and deliver x̃k as yk.

C. Experimental Parameter Setup

1) The Size of PL (N ) and Weight Vectors (λ) in MoMad:
Their settings are determined by a parameter H . More pre-
cisely, λ1, . . . , λN constitute all the weight vectors in which
each individual weight component takes a value from{

0

H
,
1

H
, . . . ,

H

H

}
.

Therefore, the size of PL (i.e., the number of weight vectors)
is:

N = Cm−1
H+m−1,

where m is the number of objectives. Following the practice
in [17] N is set as shown in Table VI.

TABLE VI
THE SETTINGS OF THE NUMBER OF N IN MOMAD FOR THE MOKP.

Instance N
n m

250 2 150
500 2 200
750 2 250
250 3 351
500 3 351
750 3 351
250 4 455
500 4 455
750 4 455

where n is the number of items and m is the number of objectives.

2) Max in PLS: Max is set to be 1 in our experiments.
3) θ in N(x): it is set to be 0.02.
4) α in Perturbation: it is set to be 0.05.
5) The Stopping Condition: The algorithm stops after 1,500

generations in the case of two objectives, and 100 generations
in other test instances.

6) The number of Independent Runs: The algorithm has
been run 20 times on each test instance.

D. Algorithm in Comparison

• MOTGA [29]: : This algorithm divides the whole PF into
a few small parts, each of them is approximated by an
independent stage. Each stage consists of a number of
consecutive genetic processes, each of which is guided
by a different Tchebycheff aggregation function. The
experimental results of MOTGA used in our comparison
are from its authors’ web.

• MEMOTS [30]: It is a memetic algorithm. A dynamic
hypergrid in the objective space is used to guide selection.
Tabu search is applied to improve offspring. The experi-
mental results of MEMOTS used in our comparison are
from its authors’ web.

• 2PPLS [27]: The experimental results of 2PPLS used in
our comparison are from the author’s web. As pointed out



in [27], 2PPLS could involve very heavy computational
overhead if the number of objectives is larger than two,
there is no experimental results available on instances
with three or more objectives.

E. Comparison Results

The hypervolume values of the final solution sets produced
by all the algorithms are plotted in Fig.5 7. In computing the
hypervolme, y∗i (i = 1, . . . ,m) is set to be 0. The mean C-
metric values between MoMad and the other algorithms on
each instance are given in Table VII. The average running
times used by these algorithms are given in Table VIII. We
have the following observations:

• In terms of both the hypervolume and C-metric values,
MoMad is much better than MOTGA and MEMOTS. For
example, on the 500-3 instance, a solution set obtained by
MoMad can on average dominate 73.2% of a solution set
by MOTGA, and 0.9% vice versa; MOMEAD dominates
MEMOTS by 72.9%, and 2.6% vice versa. On the same
instance, as shown in Fig. 5, MoMad has produced much
larger hypervolume values than MOTGA and MEMOTS,
which confirms the advantages of MoMad.

• On the three biobjective instances with experimental
results of 2PPLS , MoMad performs slightly better than
or about the same as 2PPLS with respect to both the
hypervolume and C-metric values .

• The running time consumed by MoMad is at the same
magnitude as that by the other algorithms with experi-
mental results.

V. CONCLUSION AND FUTURE RESEARCH ISSUES

Evolutionary algorithms, decomposition approaches and
Pareto local search methods are often used as basic elements in
designing hybrid heuristics for combinatorial MOPs. However,
very little, if any, effort has made to study how to combine
these three elements together before. This paper has suggest-
ed a simple yet efficient multiobjective memtic algorithm,
called MoMad. It hybridizes all these three elements in one
algorithmic framework. MoMad decomposes an MOP into a
number of single objective subproblems by using an aggre-
gation method. It works with three populations: population
PL for recording the current solution to each subproblem,
population PP for storing starting solutions for Pareto local
search, and an external population PE for maintaining all
the nondominated solutions found so far during the search.
A problem-specific single objective heuristic can be applied
to these subproblems to initialize the three populations. At
each generation, a Pareto local search method is first applied
to search a neighborhood of each solution in PP to update
PL and PE . Then a single objective local search applied to
each perturbed solution in PL for improving PL and PE , and
re-initializing PP . The procedure is repeated until a stopping
condition is met. MoMad provides a generic hybrid algorith-
mic framework to use problem specific knowledge and employ
well developed single objective local search and heuristics, and
Pareto local search methods for dealing with combinatorial
multiobjective problems. It is a population based iteration

method and thus an anytime algorithm. Extensive experiments
have been conducted in this paper to study MoMad and
compare it with some other state of the art algorithms on the
multiobjective knapsack problem and the biobjective traveling
salesman problem and the multiobjective knapsack problem.
The experimental results show that our proposed algorithm
outperforms or performs similarly to the best so far heuristics
on these two problems.

The future research avenues include:
• studies of MoMad on other hard or real-world multiobjec-

tive problems. Such studies will be useful and necessary
for understanding MoMad and establishing some working
principles for designing hybrid multiobjective algorithms.

• studies of combination of MoMad with the DM’s prefer-
ence information. It is very interesting how to use such
information to guide problem decompostion and Pareto
local search in the MoMad framework.

• investigation of on-line dynamic allocation of compu-
tational resources to different PF parts in the MoMad
framework. It should be an effective way for improving
the performance of MoMad.

• combinations of MoMad with machine learning tech-
niques. It is worthwhile study how to using machine
learning techniques to model the MOP landscape and use
it in the MoMad framework.

The C++ source code of MoMad can be downloaded from
Qingfu Zhang’s homepage:
http://dces.essex.ac.uk/staff/zhang/.
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