
Energy and Throughput aware Fuzzy Logic based Reconfiguration

for MPSoCs

Muhammad Yasir Qadri, Klaus D. McDonald Maier∗

School of Computer Science and Electronic Engineering
University of Essex, CO4 3SQ, Colchester, United Kingdom

Nadia N. Qadri†

Department of Electrical Engineering,
COMSATS Institute of Information Technology, Wah Cantt. Pakistan

Abstract

Multicore architectures offer amount of parallelism that is often underutilized, as a result these un-
derutilized resources became a liability instead of advantage. Inefficient resource sharing on the chip
can have a negative impact on the performance of an application and may result in greater energy con-
sumption. A large body of research now focuses on reconfigurable multicore architectures in order to
support algorithms to find optimal solutions for improved energy and throughput balance. An ideal sys-
tem would be able to optimize such reconfigurable system to a level that optimum resources are allocated
to a particular workload and all the other underutilized remain inactive for greater energy savings. This
paper presents a fuzzy logic based reconfiguration engine targeted to optimize a multicore architecture
according to the workload requirements for optimum balance between power and performance of the sys-
tem. The proposed fuzzy logic reconfiguration engine is designed around a 16-core SCMP architecture
comprising of reconfigurable cache memories, power gated cores and adaptive on-chip network routers
for minimizing leakage energy effects for inactive components. A coarse grained architecture was selected
for being able to reconfigure faster, thus making it feasible to be used for runtime adaptation schemes.
The presented architecture is analyzed over a set of OpenMP based parallel benchmarks and results show
significant energy savings in all cases.

1 Introduction

Multicore architectures are rapidly emerging as an important design paradigm for both high performance and
embedded processors. These architectures have often been investigated and designed in order to achieve a
greater throughput combined with minimum energy consumption. However several issues related to resource
sharing on the chip can have a negative impact on the performance of an application and therefore result
in decreased performance. A large body of research now focuses on reconfigurable multicore architectures
in order to support algorithms to find optimal solutions for improved energy and throughput balance. As
a result of on-going research several online and offline techniques and algorithms have been proposed for
hardware adaptation. This paper presents a novel fuzzy logic reconfiguration scheme called Essex Fuzzy
Logic Reconfiguration Engine (E-FLORE) [1, 2] for coarse-grained MPSoC reconfiguration to find an opti-
mum balance between power and performance. The fuzzy logic system is designed to support the dynamic
reconfiguration of a multicore platform as per work load requirements. Fuzzy logic is an expert system based
reasoning technique that provides a framework to transform imprecise information into a meaningful output

∗Electronic address: yasirqadri@acm.org, kdm@essex.ac.uk
†Electronic address: drnadia@ciitwah.edu.pk

1



[3]. Generally a model’s complexity increases when the system parameters begin to interact in a non-linear
fashion [4], therefore fuzzy logic is applied as a reconfiguration engine in the proposed system to avoid a
detailed modeling of the impact of all the system parameters on its behavior.
The use of fuzzy logic to optimize the proposed hardware design space offers the following advantages: Firstly,
detailed modeling of the system is not required which is otherwise necessary to describe the behavior of the
system under various configurations. Secondly, if modeling is required in case of a non-fuzzy logic based
approach due to the large size of problem space, a linear model may not be possible to depict the behavior
of the system and non-linear models are generally complex and compute intensive to be implemented at
run-time for reconfiguration. Therefore the use of fuzzy logic provides a robust, adaptive, and light-weight
approach to achieve balanced energy consumption and throughput of the system.
The next section gives an overview of the related research in the field of reconfigurable Multiprocessor System
on Chip (MPSoC) architectures and allied techniques.

2 Related Work

Most of the research in reconfigurable architectures has been focused on Field Programmable Gate Arrays
(FPGAs) as the target platform. As some of the FPGAs also provide a run-time reconfiguration option, this
feature is largely being exploited in adaptive hardware scenarios to provide optimized energy consumption
and performance, or to support configurations larger than the available area on the device. However FPGAs
suffer from higher reconfiguration latency as discussed in [5, 6, 7]. In order to address this issue Resano et
al. [6] proposed a pre-emptive task scheduling and replacement scheme over a dynamically reconfigurable
hardware (DRH) model that supports task migration and inter-task communication. Another example of
such an approach was proposed by Kalte et al. [8] which implemented each task to a single location in FPGA
and manipulated the configuration data stream to relocate the task in the FPGA. As a result of their work a
tool called REPLICA2Pro was developed to facilitate the reconfiguration task for the Virtex-II/Pro FPGAs.
Danne et al. [9] proposed two periodic real-time task scheduling algorithms for full FPGA reconfiguration.
The first one is based on the earliest deadline first (EDF) concept, termed EDF-Next Fit (EDF-NF) and the
second is based on the concept of servers that reserve area and execution time for other tasks called Merge
Server Distribute Load (MSDL). The system utilization of the EDF-NF algorithm was found to be better
than MSDL; however MSDL was proven to be more feasible for larger real-time tasks sets. Other examples
of scheduling techniques and their applications can be found in [10, 11, 12, 13].
MPSoCs have also been investigated for run-time energy aware scheduling in several research articles. Thread
scheduling is generally classified into balanced and unbalanced scheduling categories. Balanced scheduling
distributes an equal amount of threads among the cores. DeVuyst et al. [14] have analyzed the performance
of various scheduling schemes considering both energy and performance, and have shown that uneven thread
scheduling often outperforms balanced scheduling, as greater throughput can be achieved by combining cer-
tain threads together on one core rather than by distributing among several cores. Reconfigurable multicore
platforms also pose challenges in handling the communication between dynamically changing tasks and their
synchronization. Li [15] has performed a detailed analysis of the performance of various task scheduling
algorithms for minimizing schedule length combined with an energy consumption constraint. This work also
analyzed the algorithms for minimizing energy consumption combined with a schedule length constraint on
Dynamic Voltage and Frequency (DVF) supported multiprocessor systems. Yang et al. [16] have proposed
a task scheduling method for concurrent tasks on a multicore platform that combines offline and online
scheduling to exploit the energy-performance trade-off at run-time. This work is an extension of a proposed
framework based on grey box modeling for improved concurrency and lower energy consumption by Prayati
et al. [17]. Ma et al. [18] discuss a design time and run-time scheduling scheme for concurrent task man-
agement for real-time applications on a heterogeneous multicore platform. At design time, a set of schedules
and assignments for each task was defined using Pareto curves, and at run-time a lightweight scheduler was
used to select optimal working points exploiting dynamic and non-deterministic behavior of the system. For
an MPEG4 texture decoder application their approach has shown significant improvement in performance
while maintaining lower energy consumption. Other references to related work in this field can be found in
[19, 20, 21].
Considering memory as the best candidate for optimization in an energy constrained multicore scenario,

2



Ahn et al. [22] presented a simplified approach to group DRAM chips into multiple virtual memory devices
that receive separate address and control signals on a shared command path. This approach reduces energy
consumption by minimizing the number of bits activated per memory access and by replacing the memory
register with a demultiplexer register for routing command signals to the appropriate memory module, in-
stead of mere transmission on the path.
Another candidate for power optimization in an MPSoC is the Network-on-Chip (NoC). [23] have presented
a low latency router architecture with a two stage pipeline employing an adaptive routing scheme for con-
gestion aware flow control. The router architecture was termed as path sensitive, as it utilized look-ahead
routing for selecting the next route based on the four possible quadrants and routed the packet to the cor-
responding virtual channels assigned to that quadrant. Additionally, based on this partitioned approach a
decomposed crossbar switch was proposed that resulted in a reduction of size for its connections and lower
packet conflicts. Their work also includes a complete solution safeguarding against both the traditional link
faults and internal router upsets, without incurring any significant latency, area and power overhead. Park et
al. [24] have provided a detailed analysis of various logic errors and have proposed data recovery mechanisms.
Individual cases were analyzed such as link errors occurring during flit traversal between routers, deadlocks,
intra-router errors in the router pipeline such as errors caused by virtual channel allocators, routing units,
switch allocators, and crossbars.
The next section provides an overview of the target design space and simulation environment and explores
the implementation of proposed E-FLORE architecture in details.

3 System architecture and simulation setup

In this section an overview of the proposed approach is described in detail: initially the reconfigurable
multicore architecture is introduced, the proposed interconnect infrastructure, the fuzzy logic reconfiguration
engine, the benchmark applications used and finally the simulation setup.

3.1 Reconfigurable MPSoC Architecture

The proposed SoC is comprised of a 16-core symmetric chip multiprocessor platform based on the Intel x86
architecture, holding a shared memory architecture (see Figure 1). The platform incorporates L1 and L2
caches with configurable size and associativity. The number of active cores and processor frequency/voltage
can be varied for energy and throughput regulation. The system configuration parameters are given in Table
1, showing various operating points of the system in terms of frequency and energy consumption. The energy
consumption and voltage/frequency information was obtained from the Intel 486 GX embedded processor
datasheet [25].
Each core of the system is assumed to be is connected to a CMOS power switch, such as the one proposed
by Kim et al. [26], so that during the reconfiguration process when it is turned off, the leakage energy of the
core should not contribute to the overall energy consumption of the system. An example of power gating of
processing units can be found in the work by Zhigang et al. [27] and is depicted in Figure 2. The default size
and associativity for L1 and L2 caches are 8KB, 4-way set associative; and 128KB, 8-way set associative as
per original Intel 486 GX processor specifications [25]. Due to the possible variance in timing by changing
cache size and associativity, the L1 cache miss penalty was assumed to be fixed at 10 cycles and that for L2
cache was set to 30 cycles. The L1 and L2 cache timing and energy data was obtained from CACTI [28].
However CACTI is not a trace driven simulator, so energy consumption resulting in a number of hits or
misses is not accounted for a particular application. Therefore detailed analytical models presented by Qadri
et al. [29] were used to estimate the Cache energy and throughput based on cache hit/miss information.
In order to estimate the energy consumed in inter-processor communication a simulation methodology similar
to [30, 31, 32, 33] is adopted. Each core in the MPSoC is assumed to be linked through a 2D mesh Network-
on-Chip (NoC). The impact of various MPSoC configurations on the NoC power consumption is calculated
using Orion 2.0 [34, 35], which is a fast and accurate NoC power and area simulator.

3



Core 1

L1 Cache

Core 2

L1 Cache

Core 4

L1 Cache

L2 Cache

Core 6

L1 Cache

Core 8

L1 Cache

Core 9

L1 Cache

Core 10

L1 Cache

Core 0

L1 Cache

Core 7

L1 Cache

Core 11

L1 Cache

Core 3

L1 Cache

Core 12

L1 Cache

Core 13

L1 Cache

Core 14

L1 Cache

Core 15

L1 Cache

Core 5

L1 Cache

Figure 1: Target MPSoC Architecture

Table 1: System Parameters

Parameter Value
Processor Type Intel x86

Number of Cores 16
Operating Frequencies [16, 20, 25, 33] MHz

Energy Consumption per cycle [13.1,15.4,18.7,22.9]nJ

4



Figure 2: Power Gating using Header/Footer Switches

Defuzzification MPSoC 

Normalization/

Scaling

L1/L2 Cache Size

L1/L2 Cache Assoc.

CPU Frequency

Number of Cores

L1/L2 Cache Miss Rate

CPU Throughput

Energy Consumption

Figure 3: Closed Loop operation

3.2 The Essex-Fuzzy Logic Reconfiguration Engine (E-FLORE)

Fuzzy logic is considered to be one of the most suitable candidates for bridging the gap between computer
and human logic. Fuzzy logic has been widely used for design space exploration and finding optimization in
various applications [36, 37, 38, 39, 40, 41, 42, 43, 44]. Research has been carried out in-order to use fuzzy
logic along with other optimization tools in order to explore optimal solutions [45, 46, 47]. Furthermore the
ability of fuzzy inference systems to interpret linguistic rules and to defuzzify the results to crisp numbers,
without the use of sophisticated mathematical models of the system, has made a case for attaining the target
of reconfiguration of the proposed MPSoC architecture through the application of fuzzy logic.
The proposed MPSoC architecture takes advantage of Fuzzy logic based reconfiguration in a closed loop
as shown in Figure 3, and is referred to as Essex Fuzzy Logic Reconfiguration Engine (E-FLORE). It may
be noted that the proposed system is based on the principles of a typical feedback control system but the
advantage of using fuzzy logic here is that, one does not need to model the impact of input parameters over
the outputs precisely, as the fuzzy systems have a natural ability to handle vague information based on a
rule base of linguistic terms.

In order to control the reconfiguration process a number of parameters were identified that can be modified
dynamically. These parameters include L1/L2 Cache Size and associativity, CPU Frequency, and Number
of active Cores. Based on the input parameters, system variables were identified that receive a clear impact
from these parameters, which include L1/L2 aggregate Cache Miss Rate, aggregate CPU throughput, and
Energy Consumption.
In order to fuzzify the input and output variables, each variable was partitioned into three fuzzy subsets
which were assigned to their respective triangular membership functions namely µA, µB , and µC ; classifying
lower, middle and upper bounds of the given variable. For example in Table 2, for L1 and L2 the cache miss

5



rate varies from 0-100%, the membership function A is used to classify a low miss rate which is defined from
0-40%, B a moderate miss rate from 25-75%, and C a high miss rate from 60-100%. A similar approach is
adopted for the rest of the input and output variables, and is detailed in Table 2 and 3 respectively.
To establish the relationship between the input variables and output parameters of the SoC, fuzzy logic rules
were defined as shown in Appendix A. The rules were formed in such a way that a balanced throughput and
energy consumption ratio can be achieved. For primary or core level configuration E-FLORE was devised
so as to keep track of the average L1 miss rate, energy consumption and throughput for all the cores and to
strive to find an optimum cache size, associativity and operating frequency. The cache size and associativity
not only affect the miss rate but they also have an impact on the throughput and energy consumption of the
device. Similarly for the secondary or system level configuration E-FLORE strives to find an optimal number
of cores, L2 cache size and associativity while taking into account the L2 miss rate and total throughput and
energy consumption of the SoC.
The proposed system applies the Centeroid method that calculates the centeroid or center of gravity (COG)
of the area under the membership function, thus the defuzzified value depends on both the size and shape of
the membership function, so is a more complete representation of the inference. However due to averaging,
the control action is diluted and becomes less sensitive to minor variations. But conversely, this is a very
robust process that generates less oscillatory process response [48].
The fuzzy logic engine was implemented using fuzzy logic API presented in [49] conforming to IEC 61131-7
standard [50].

3.3 Benchmark Applications

As the proposed architecture is comprised of a multicore setup, a set of NAS parallel benchmarks [51] based
on OpenMP [52] is selected to perform the target evaluation. The benchmark applications used for this
purpose are described as follows:

• IS (A): IS stands for Integer Sort. This application sorts small integers using the bucket sort [53]
algorithm. The IS class A solves a problem size of 223 integers for 10 iterations.

• CG (A): The conjugate gradient method is used to compute an approximation to the smallest eigenvalue
of a large, sparse, symmetric positive definite matrix. The CG class A, executes for a problem size of
up to 14,000 for 15 iterations.

• FT(A): A 3-D partial differential equation solution using Fast Fourier Transforms. This kernel performs
the essence of many spectral codes. The FT class A solves a problem size of 2562 x128, for 6 iterations.

• MG(A): A simplified multigrid kernel. It approximates a solution to the discrete Poisson problem. The
class A problem size is 2563 for 4 iterations.

• EP(S): An embarrassingly parallel kernel. It provides an estimate of the achievable upper limits for
floating point performance. In order to achieve this, the kernel generates pseudo-random floating point
values using the Marsaglia polar method [54]. The class S application generates 33,554,432 random
numbers.

3.4 Simulation Setup

The proposed architecture was simulated on a full system simulator Simics [55] which facilitates instruction
level simulations and is capable of running unmodified operating systems such as VxWorks, Solaris, Linux,
Tru64, and Windows XP virtually on the target platforms. The simulator is targeted to provide a fairly
accurate timing profile, but at present does not support energy profiling of the target system. Simics pro-
vides a reasonably accurate cache profiling utility, making it well-suited for memory system research. An x86
based 16-core system was defined with each core having private L1 cache and coupled with a single shared L2
cache. The cache memory simulation was carried out using the g-cache model which is the standard cache
model that handles one transaction at a time in a flat way i.e. all needed operations (copy-back, fetch, etc.)
are performed in order and at once.
Fedora Linux version 10 was chosen as the target OS due to the inherent multicore support provided in

6



Table 2: Fuzzy Membership Functions for Input Variables

µA=

{
0 if 40% ≤ L1/L2 Miss rate ≤ 0%

40−x
40 if 0% ≤ L1/L2 Miss rate ≤ 40%

µB=

 0 if 75% ≤ L1/L2 Miss rate ≤ 0%
x−25
25 if 25% ≤ L1/L2 Miss rate ≤ 50%

75−x
25 if 50% ≤ L1/L2 Miss rate ≤ 75%

µC=

{
0 if 100% ≤ if L1/L2 Miss rate ≤ 60%

x−60
40 if 60% ≤ L1/L2 Miss rate ≤ 100%

 L1 and L2 Miss rate

µA=

{
0 if 0.35 ≤ Throughput ≤ 0

0.35−x
0.35 if 0 ≤ Throughput ≤ 0.35

µB=

 0 if 0.8 ≤ Throughput ≤ 0
x−0.2
0.3 if 0.2 ≤ Throughput ≤ 0.5

0.8−x
0.3 if 0.5 ≤ Throughput ≤ 0.8

µC=

{
0 if 1.0 ≤ Throughput ≤ 0.65

x−0.65
0.35 if 0.65 ≤ Throughput ≤ 1.0

Normalized Throughput

µA=

{
0 if 0.35 ≤ Energy Consumption ≤ 0

0.35−x
0.35 if 0 ≤ Energy Consumption ≤ 0.35

µB=

 0 if 0.8 ≤ Energy Consumption ≤ 0
x−0.2
0.3 if 0.2 ≤ Energy Consumption ≤ 0.5

0.8−x
0.3 if 0.5 ≤ Energy Consumption ≤ 0.8

µC=

{
0 if 1.0 ≤ Energy Consumption ≤ 0.65

x−0.65
0.35 if 0.65 ≤ Energy Consumption ≤ 1.0

Normalized Energy Consumption

7



Table 3: Fuzzy Membership Functions for Output Variables

µA=

{
0 if 3.5KB ≤ L1 Cache size ≤ 1KB

3.5−x
3.5 if 1KB ≤ L1 Cache size ≤ 3.5KB

µB=

 0 if L1 Cache size ≤ 2KB or ≥ 7KB
x−2
2.5 if 2KB ≤ L1 Cache size ≤ 7KB
7−x
2.5 if 4.5KB ≤ L1 Cache size ≤ 7KB

µC=

{
0 if L1 Cache size ≤ 5.5KB or ≥ 8KB

x−5.5
2.5 if 5.5KB ≤ L1 Cache size ≤ 8KB

L1 Cache size

µA=

{
0 if L2 Cache size ≤ 1KB or ≥ 50KB

50−x
50 if 1KB ≤ L2 Cache size ≤ 50KB

µB=

 0 if L2 Cache size ≤ 20KB or ≥ 100KB
x−20
40 if 20KB ≤ L2 Cache size ≤ 60KB

100−x
40 if 60KB ≤ L2 Cache size ≤ 100KB

µC=

{
0 if L2 Cache size ≤ 80KB or ≥ 128KB

x−80
48 if 80KB ≤ L2 Cache size ≤ 128KB

L2 Cache size

µA=

{
0 if L1/L2 Cache Associativity ≤ 0 or ≥ 2
1 if 0 ≤ L1/L2 Cache Associativity ≤ 2

µB=

{
0 if L1/L2 Cache Associativity ≤ 1 or ≥ 8
1 if 1 ≤ L1/L2 Cache Associativity ≤ 8

µC=

{
0 if L1/L2 Cache Associativity ≤ 4 or ≥ 16
1 if 4 ≤ L1/L2 Cache Associativity ≤ 16

L1/L2 Cache Associativity

µA=

{
0 if Operating frequency ≤ 16MHz or ≥ 20MHz
1 if 16 ≤ Operating frequency ≤ 20MHz

µB=

{
0 if Operating frequency ≤ 20MHz or ≥ 25MHz
1 if 20MHz ≤ Operating frequency ≤ 25MHz

µC=

{
0 if Operating frequency ≤ 25MHz or ≥ 33MHz
1 if 25MHz ≤ Operating frequency ≤ 33MHz

Operating frequency

8



µA=

{
0 if Number of cores ≤ 1 or ≥ 6
1 if 1 ≤ Number of cores ≤ 6

µB=

{
0 if Number of cores ≤ 5 or ≥ 12
1 if 5 ≤ Number of cores ≤ 12

µC=

{
0 if Number of cores ≤ 10 or ≥ 16
1 if10 ≤ Number of cores ≤ 16

Number of cores

Table 4: Timing and Energy Consumption of various Cache Configurations

Cache Size Associativity Access Time[nsec] Cycle Time[nsec] Read Energy [J] Write Energy[J]
2 KB 1 4.74 2.87 1.86E-09 4.04E-10
4 KB 4 6.26 3.14 3.78E-09 6.96E-10
4 KB 8 6.33 3.10 7.03E-09 1.03E-09
8 KB 4 6.11 3.32 1.27E-08 1.52E-09
16 KB 1 5.39 3.48 4.23E-09 7.64E-10
32 KB 4 6.42 4.18 4.06E-08 3.77E-09
64 KB 4 7.52 3.90 2.39E-08 2.70E-09
64 KB 8 7.23 4.24 8.09E-08 6.10E-09
128 KB 8 7.92 4.38 8.53E-08 7.17E-09

Linux. Also Advanced Configuration and Power Interface (ACPI) enabled operating systems such as Linux
support hot-plugging (i.e. turning on/off) of a CPU core on-the-go which is a vital feature for reconfigurable
MPSoC scenarios like the one presented here. The instruction execution, and cache hit/miss information was
instrumented through Simics [55]. Interconnect network energy information was gathered by using Orion
[34], cache energy and timing information was gathered by using CACTI [28], and finally MPSoC’s total
energy was calculated as the sum of interconnect energy, cache energy, and each processor core energy. The
processor core energy information was obtained from the Intel 486 GX embedded processor datasheet [25],
whereas the cache energy was calculated using the mathematical models presented in [29].
To profile thread execution statistics the Intel Concurrency Checker [56] was used, which provided informa-
tion such as core utilization, thread distribution, percentage of parallelism and timing of the applications.
All the applications were sampled for the whole execution cycle of the application and then reconfiguration
was carried out based on the decisions made by the E-FLORE. Simics provides the facility of check-pointing
through which, each time the machine parameters such as cache size, and associativity, and operating fre-
quency were modified; and the number of cores were adjusted by using the Linux hotplug feature. The
applications were re-executed for each iteration, so as to observe a clear impact of cache reconfiguration and
CPU scaling on the energy consumption and throughput of the MPSoC.

4 Results

As the main emphasis of the proposed reconfiguration process is to have a balance between throughput
and energy consumption of the SoC. In order to achieve this, the reconfiguration engine based on data
of un-optimized core (iteration 0) starts modifying the reconfigurable parameters, i.e. Number of Cores,
Operating Frequency, L1 Cache Size and Associativity (see Figure 4). The reconfiguration engine completed
the system configuration in five iterations and results were found unvarying for all the subsequent iterations.
The impact of reconfiguration on individual parameters is discussed as follows.

9



(a) (b) (c)

(d) (e) (f)

Figure 4: E-FLORE Results for (a) L1 Cache Associativity,(b) L2 Cache Associativity,(c) L1 Cache Size,
(d) L2 Cache Size, (e) CPU Frequency, and (f) Number of Cores

(a) (b) (c)

(d) (e)

Figure 5: Impact of optimizations by E-FLORE on (a) L1 Miss Rate, (b) L2 Miss Rate, (c) Average CPU
Utilization, (d) Normalized Throughput, and (e) Energy Consumption

10



4.1 L1 Cache

The L1 cache size and associativity play an important role in determining the throughput and energy
consumption of an MPSoC. Theoretically an infinitely large cache with highest the associativity is the best
option to bring down the miss rate, which is the major cause of processor stalls i.e. the main contributor
to energy wastage and throughput loss. However increasing the size and associativity of the cache not only
increases the latency but also the energy consumption. The proposed fuzzy engine modified the associativity
of the L1 cache from the default 4-way set associative to the 8-way set associative for IS and CG benchmarks,
and 1-way or direct-mapped associativity for MG, and kept the same for the rest of the applications (see
Figure 4(a)). The size of the cache for MG was configured to be 2Kbytes, and for the rest of applications
4Kbytes compared to the original 8Kbytes (see Figure 4(c)). These modifications resulted in the aggregate
L1 miss rate to increase from 15% to 23% for MG, for IS it was reduced from 10% to 5%, and remained
almost constant for all other applications (see Figure 5(a)).
It must be noted that the L1 miss rate is calculated on an aggregate basis for all the CPU cores in the
MPSoC by averaging the individual miss rates for the purpose of simplification. Thus the same average miss
rate for fewer number of cores can be greater if considered on an individual basis. However as the cache
size is reduced, the cache throughput is increased and energy consumption is significantly decreased. This
phenomenon can be observed from Table 4, which contains the different cache configurations used and their
timing and energy consumption information based on CACTI [28].

4.2 L2 Cache

The proposed MPSoC architecture leverages the use of a shared level 2 (L2), uniform cache memory. For the
L2 cache the E-FLORE configured the associativity to be 1-way set associative or direct-mapped for MG,
and 4-way associative for EP applications, whereas for the rest of the applications it remains unchanged
(see Figure 4(b)). The L2 cache size was decreased to 32KB for FT, 16KB for MG and for the rest of the
applications it was changed to 64KB (see Figure 4(d)). The impact of these alterations on the miss rate is
almost negligible for all the benchmarks except for CG and MG, where it has been increased to around 30%
for CG compared to the default of 15%, and 18% for MG from the default value of 6% (see Figure 5 (b)).
However in the case of CG a significant amount of energy savings and throughput increase can be observed
(see Figure 5(e)), which is due to the impact of reducing cache size and number of cores by the E-FLORE.

4.3 CPU Frequency and Number of Cores

The MPSoC’s operating frequency not only influences the throughput but also its energy consumption i.e.
the higher the frequency the greater the energy consumption. As the E-FLORE addresses the energy and
throughput of the system holistically at the same time, in final iterations the frequency of operation remains
unchanged for all the applications, except for EP and IS where it is decreased to 25MHz (see Figure 4(e)).
Whereas the number of cores was decreased to 5 for FT, 8 for MG, IS and EP, and 12 for CG (see Figure
4(f)). The impact of these changes on throughput can be observed in Figure 5(d) where the throughput
was increased by almost 20 times for IS and 5 times for CG, whereas for the rest of the benchmarks it was
decreased.
The reason for that is the applications are not prioritized statistically by the user but have been prioritized
by the kernel itself. Secondly for any application; increasing the number of threads beyond a certain level
actually decreases performance since the thread handling overhead will surpass the per thread execution
time. This phenomenon is discussed in detail in [48]. For the rest of the applications, throughput had to be
compromised in order to achieve greater energy savings and core utilization. This can be observed in Figure
5(c), where the core utilization for all the applications show a significant increase, as in the case of FT where
it is almost 3 times greater and for CG there is more than a 40% increase compared to the nominal value
of 10%. Similarly the energy consumption for all the benchmarks has been decreased significantly; as in
the case of IS it is almost 80 times less than the original configuration and for FT it is around 60% of the
default (see Figure 5 (e)). This is due to the fact that almost a third of the energy of the MPSoC is being
consumed by the interconnect network. Thus reducing the number of nodes (i.e. CPU cores) significantly
decreases the overall energy consumption of the SoC. Also the individual cores are connected to CMOS
switches i.e. shutting down a core also eliminates any leakage energy consumption by them. The decrease in

11



the number of cores also reduces the L2 cache transactions and consequently greater overall energy savings
can be achieved.

5 Conclusion

In this chapter a novel fuzzy logic based MPSoC reconfiguration scheme called Essex-Fuzzy Logic Reconfig-
uration Engine (E-FLORE) was presented. The fuzzy reconfiguration engine was used to find an optimal
balance between the energy consumption and performance of the system. To evaluate the proposed scheme
an Intel x86 based multicore SoC with 16 processor cores and a shared memory architecture, was simulated
using the Simics full system simulator. A detailed analysis of core, cache, and interconnect power consump-
tion was conducted and overall a significant amount of energy saving with increased core utilization was
observed. However, due to these optimizations in some cases, the device throughput was reduced with an
increase in cache miss rate.
The system in general validated the use of the proposed Fuzzy Logic based technique for MPSoC reconfigu-
ration; therefore this technique can be adapted for a variety of architectures to search for a good compromise
for throughput and energy under user defined constraints. The proposed MPSoC architecture can be tai-
lored for use in variety of applications such as NoC research, dynamic thread scheduling, operating system
development and high performance computing.

Appendix

A Fuzzy Logic Rules

The fuzzy logic system provides a mean to form a rule base in linguistic terms. There is no set criteria to
form a rule base therefore the overall performance of the system relies on the quality of rules. However the
robustness of fuzzy systems does not allow the response to degrade intermittently as the quality of knowl-
edge base degrades [57]. A set of rules is defined for E-FLORE relating input and output variables, and are
detailed in Table 5, 6. For further explanation, an example can be taken of the first rule in Table 5, that
can be read as
if ”L1 Miss Rate” is LOW and ”Energy Consumption” is LOW and ”Throughput” is LOW then ”L1
Cache Associativity” is NO CHANGE, ”L1 Size” is NO CHANGE and ”Clock Frequency” is HIGH

References

[1] M. Qadri and K. McDonald-Maier, “A fuzzy logic reconfiguration engine for symmetric chip multi-
processors,” in 2010 International Conference on Complex, Intelligent and Software Intensive Systems,
IEEE. Krakow, Poland: IEEE Computer Society Washington, February 2010, pp. 937–943.

[2] ——, “A fuzzy logic based dynamic reconfiguration scheme for optimal energy and throughput in sym-
metric chip multiprocessors,” in Adaptive Hardware and Systems (AHS), 2010 NASA/ESA Conference
on, IEEE. Anaheim California, USA: IEEE, June 2010, pp. 333–339.

[3] A. Ibrahim, Fuzzy Logic for Embedded Systems Applications. Newton, MA, USA: Butterworth-
Heinemann, 2003.

[4] G. M. Marakas, Modern Data Warehousing, Mining, and Visualization: Core Concepts. Pearson
Education, 2002.

[5] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins, “Interconnection networks enable
fine-grain dynamic multi-tasking on fpgas,” Field-Programmable Logic and Applications: Reconfigurable
Computing Is Going Mainstream, vol. 2438/2002, pp. 741–763, 2002.

12



Table 5: Core level Rules for E-FLORE

L1 Miss Rate Energy Cons. Throughput L1 Cache Assoc. L1 Size Clock Freq.
L L L - - H
L L M - - M
L L H - - -
L M L M M H
L M M M M M
L M H M M M
L H L L L M
L H M L L L
L H H L L L
M L L H M H
M L M H M M
M L H H M -
M M L M M H
M M M M M M
M M H M M M
M H L H L M
M H M H L L
M H H H L L
H L L H H H
H L M H H M
H L H H H -
H M L H M H
H M M H M M
H M H H M M
H H L M M M
H H M M M L
H H H M M L

13



Table 6: SoC level Rules for E-FLORE

L2 Miss Rate Energy Cons. Throughput L2 Cache Assoc. L2 Size No. of Cores
L L L - - L
L L M - - L
L L H - - M
L M L M M L
L M M M M L
L M H M M M
L H L L L L
L H M L L M
L H H L L L
M L L H M L
M L M H M L
M L H H M M
M M L M M L
M M M M M L
M M H M M M
M H L L H L
M H M L H M
M H H L H L
H L L M H L
H L M M H L
H L H M H M
H M L H H L
H M M H H L
H M H H H M
H H L M M L
H H M M M M
H H H M M L

14



[6] J. Resano, D. Mozos, D. Verkest, and F. Catthoor, “A reconfigurable manager for dynamically recon-
figurable hardware,” Design & Test of Computers, IEEE, vol. 22, no. 5, pp. 452–460, 2005.

[7] K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and software,” ACM
Computing Surveys (csuR), vol. 34, no. 2, pp. 171–210, 2002.

[8] H. Kalte and M. Porrmann, “Replica2pro: task relocation by bitstream manipulation in virtex-ii/pro
fpgas,” in Proceedings of the 3rd conference on Computing frontiers, ser. CF ’06. New York, NY,
USA: ACM, May 2006, pp. 403–412. [Online]. Available: http://doi.acm.org/10.1145/1128022.1128045

[9] K. Danne and M. Platzner, “A heuristic approach to schedule periodic real-time tasks on reconfigurable
hardware,” in Field Programmable Logic and Applications, 2005. International Conference on, IEEE.
Tampere, Finland: IEEE, August 2005, pp. 568–573.

[10] K. Danne, R. Miihlenbernd, and M. Platzner, “Executing hardware tasks on dynamically reconfigurable
devices under real-time conditions,” in Field Programmable Logic and Applications, 2006. FPL’06.
International Conference on, IEEE. Madrid, Spain: IEEE, August 2006, pp. 1–6.

[11] K. Danne and M. Platzner, “An edf schedulability test for periodic tasks on reconfigurable hardware
devices,” in Proceedings of the 2006 ACM SIGPLAN/SIGBED conference on Language, compilers, and
tool support for embedded systems, ser. LCTES ’06. New York, NY, USA: ACM, June 2006, pp.
93–102. [Online]. Available: http://doi.acm.org/10.1145/1134650.1134665

[12] P. Saha and T. El-Ghazawi, “Extending embedded computing scheduling algorithms for reconfigurable
computing systems,” in Programmable Logic, 2007. SPL’07. 2007 3rd Southern Conference on, IEEE.
Mar del Plata, Argentina: IEEE, February 2007, pp. 87–92.

[13] ——, “Software/hardware co-scheduling for reconfigurable computing systems,” in Field-Programmable
Custom Computing Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium on, IEEE. Napa
Valley, California: IEEE, April 2007, pp. 299–300.

[14] M. DeVuyst, R. Kumar, and D. M. Tullsen, “Exploiting unbalanced thread scheduling for energy
and performance on a cmp of smt processors,” in Proceedings of the 20th international conference on
Parallel and distributed processing, ser. IPDPS’06. Washington, DC, USA: IEEE Computer Society,
April 2006, pp. 140–140. [Online]. Available: http://portal.acm.org/citation.cfm?id=1898953.1899070

[15] K. Li, “Performance analysis of power-aware task scheduling algorithms on multiprocessor computers
with dynamic voltage and speed,” IEEE Trans. Parallel Distrib. Syst., vol. 19, pp. 1484–1497,
November 2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=1441362.1441371

[16] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, and R. Lauwereins, “Energy-aware
runtime scheduling for embedded-multiprocessor socs,” Design & Test of Computers, IEEE, vol. 18,
no. 5, pp. 46–58, 2001.

[17] A. Prayati, C. Wong, P. Marchal, F. Catthoor, H. de Man, N. Cossement, R. Lauwereins, D. Verkest,
and A. Birbas, “Task concurrency management experiment for power-efficient speed-up of embedded
mpeg4 im1 player,” in Proceedings of the 2000 International Workshop on Parallel Processing, ser.
ICPP ’00. Washington, DC, USA: IEEE Computer Society, August 2000, pp. 453–. [Online].
Available: http://portal.acm.org/citation.cfm?id=850942.852969

[18] Z. Ma, C. Wong, P. Yang, J. Vounckx, and F. Catthoor, “Mapping the mpeg-4 visual texture decoder:
a system-level design technique based on heterogeneous platforms,” Signal Processing Magazine, IEEE,
vol. 22, no. 3, pp. 65–74, 2005.

[19] F. Bower, D. Sorin, and L. Cox, “The impact of dynamically heterogeneous multicore processors on
thread scheduling,” Micro, IEEE, vol. 28, no. 3, pp. 17–25, 2008.

15



[20] Y. Jiang, X. Shen, J. Chen, and R. Tripathi, “Analysis and approximation of optimal co-scheduling
on chip multiprocessors,” in Proceedings of the 17th international conference on Parallel architectures
and compilation techniques, ser. PACT ’08. New York, NY, USA: ACM, October 2008, pp. 220–229.
[Online]. Available: http://doi.acm.org/10.1145/1454115.1454146

[21] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient operating system scheduling for
performance-asymmetric multi-core architectures,” in Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, ser. SC ’07. New York, NY, USA: ACM, October 2007, pp. 53:1–53:11. [Online].
Available: http://doi.acm.org/10.1145/1362622.1362694

[22] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi, “Multicore dimm: an energy efficient memory
module with independently controlled drams,” IEEE Comput. Archit. Lett., vol. 8, pp. 5–8, January
2009. [Online]. Available: http://portal.acm.org/citation.cfm?id=1591872.1591932

[23] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. R. Das, “A low latency router
supporting adaptivity for on-chip interconnects,” in Proceedings of the 42nd annual Design Automation
Conference, ser. DAC ’05. New York, NY, USA: ACM, December 2005, pp. 559–564. [Online].
Available: http://doi.acm.org/10.1145/1065579.1065726

[24] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das, “Exploring fault-tolerant
network-on-chip architectures,” in Proceedings of the International Conference on Dependable Systems
and Networks. Washington, DC, USA: IEEE Computer Society, June 2006, pp. 93–104. [Online].
Available: http://portal.acm.org/citation.cfm?id=1135532.1135690

[25] Intel, Embedded Ultra-Low Power Intel486 GX Processor Datasheet, Intel Corporation, USA, 1997.

[26] H.-O. Kim, Y. Shin, H. Kim, and I. Eo, “Physical design methodology of power gating circuits
for standard-cell-based design,” in Proceedings of the 43rd annual Design Automation Conference,
ser. DAC ’06. New York, NY, USA: ACM, July 2006, pp. 109–112. [Online]. Available:
http://doi.acm.org/10.1145/1146909.1146942

[27] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose, “Microarchitectural
techniques for power gating of execution units,” in Proceedings of the 2004 international symposium on
Low power electronics and design, ser. ISLPED ’04. New York, NY, USA: ACM, August 2004, pp.
32–37. [Online]. Available: http://doi.acm.org/10.1145/1013235.1013249

[28] D. Tarjan, S. Thoziyoor, and N. Jouppi, “Cacti 4.0,” HP Laboratories Palo Alto, Tech. Rep. HPL-2006-
86, vol. 1, 2006.

[29] M. Qadri and K. McDonald-Maier, “Analytical evaluation of energy and throughput for multilevel
caches,” in 2010 12th International Conference on Computer Modelling and Simulation, IEEE. Cam-
bridge, UK: IEEE Computer Society, March 2010, pp. 598–603.

[30] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with links for power optimization of
interconnection networks,” in Proceedings of the 9th International Symposium on High-Performance
Computer Architecture, ser. HPCA ’03. Washington, DC, USA: IEEE Computer Society, February
2003, p. 91. [Online]. Available: http://portal.acm.org/citation.cfm?id=822080.822800

[31] M. Monchiero, R. Canal, and A. González, “Design space exploration for multicore architectures:
a power/performance/thermal view,” in Proceedings of the 20th annual international conference on
Supercomputing, ser. ICS ’06. New York, NY, USA: ACM, May-June 2006, pp. 177–186. [Online].
Available: http://doi.acm.org/10.1145/1183401.1183428

[32] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi, “A comprehensive
memory modeling tool and its application to the design and analysis of future memory hierarchies,”
in Proceedings of the 35th Annual International Symposium on Computer Architecture, ser. ISCA
’08. Washington, DC, USA: IEEE Computer Society, June 2008, pp. 51–62. [Online]. Available:
http://dx.doi.org/10.1109/ISCA.2008.16

16



[33] L. Guang, E. Nigussie, and H. Tenhunen, “System-level exploration of run-time clusterization for
energy-efficient on-chip communication,” in Proceedings of the 2nd International Workshop on Network
on Chip Architectures, ser. NoCArc ’09. New York, NY, USA: ACM, December 2009, pp. 63–68.
[Online]. Available: http://doi.acm.org/10.1145/1645213.1645228

[34] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: a fast and accurate noc power
and area model for early-stage design space exploration,” in Proceedings of the Conference on
Design, Automation and Test in Europe, ser. DATE ’09. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, April 2009, pp. 423–428. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1874620.1874721

[35] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a power-performance simulator for
interconnection networks,” in Proceedings of the 35th annual ACM/IEEE international symposium on
Microarchitecture, ser. MICRO 35. Los Alamitos, CA, USA: IEEE Computer Society Press, November
2002, pp. 294–305. [Online]. Available: http://portal.acm.org/citation.cfm?id=774861.774893

[36] L. Wu, X. Su, P. Shi, and J. Qiu, “Model approximation for discrete-time state-delay systems in the t-s
fuzzy framework,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 366–378, 2011.

[37] ——, “A new approach to stability analysis and stabilization of discrete-time ts fuzzy time-varying delay
systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 1,
pp. 273–286, 2011.

[38] X. Zhang, Z. Zhang, and G. Lu, “Fault detection for state-delay fuzzy systems subject to random com-
munication delay,” International Journal of Innovative Computing, Information and Control (ICIC),
vol. 8, no. 4, pp. 2439–2451, April 2012.

[39] S.-H. Yang, W.-J. Wang, C.-Y. Chen, C.-H. Hsu, and P.-H. Chou, “The impedance based fuzzy logic
control for the cathode air flow of a direct methanol fuel cell system,” International Journal of Innovative
Computing, Information and Control (ICIC), vol. 7, no. 2, pp. 625–635, February 2011.

[40] M. Khalid, R. Yusof, and H. Mokayed, “Fusion of multi-classifiers for online signature verification using
fuzzy logic inference,” International Journal of Innovative Computing, Information and Control (ICIC),
vol. 7, no. 5(B), pp. 2709–2726, May 2011.

[41] X. Su, L. Wu, P. Shi, and Y.-D. Song, “H8 model reduction of takagisugeno fuzzy stochastic systems,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. PP, no. 99, pp. 1–12,
May 2012.

[42] R. Prakash and R. Anita, “Modeling and simulation of fuzzy logic controller-based model reference
adaptive controller,” International Journal of Innovative Computing, Information and Control (ICIC),
vol. 8, no. 4, pp. 2533–2550, April 2012.

[43] C.-J. Huang, K.-W. Hu, H.-M. Chen, T.-K. Chang, Y.-C. Luo, and Y.-J. Lien, “Application of type-
2 fuzzy logic to rule-based intrusion alert correlation detection,” International Journal of Innovative
Computing, Information and Control (ICIC), vol. 8, no. 4, pp. 2865–2874, April 2012.

[44] X. Su, P. Shi, L. Wu, and Y. Song, “A novel approach to filter design for ts fuzzy discrete-time systems
with time-varying delay,” vol. PP, no. 99, p. 1, 2012.

[45] T. Chen, “A hybrid fuzzy and neural approach with virtual experts and partial consensus for dram price
forecasting,” International Journal of Innovative Computing, Information and Control (ICIC), vol. 8,
no. 1(B), pp. 583–597, January 2012.

[46] M. H. Bahari, A. Karsaz, and N. Pariz, “High maneuvering target tracking using a novel hybrid kalman
filter-fuzzy logic architecture,” International Journal of Innovative Computing, Information and Control
(ICIC), vol. 7, no. 2, pp. 501–510, February 2011.

17



[47] I.-J. Ding, “Enhancements of maximum likelihood eigen-decomposition using fuzzy logic control for
eigenvoice-based speaker adaptation,” International Journal of Innovative Computing, Information and
Control (ICIC), vol. 7, no. 7(B), pp. 4207–4222, July 2011.

[48] C. De Silva, Intelligent control: fuzzy logic applications. USA: CRC Press, 1995.

[49] S. Rabin, AI game programming wisdom. Hingham, Massachusetts: Charles River Media, Inc., 2002.

[50] IEC, International Standard: Programmable controllers - Part 7: Fuzzy control programming, Interna-
tional Electrotechnical Commission, Geneva, Switzerland, 2000, iEC Standard.

[51] H. Jin, M. Frumkin, and J. Yan, The OpenMP implementation of NAS parallel benchmarks and its
performance, 1999.

[52] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory programming,”
Computational Science & Engineering, IEEE, vol. 5, no. 1, pp. 46–55, 1998.

[53] W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, “New implementations and results for the
nas parallel benchmarks 2,” in In 8th SIAM Conference on Parallel Processing for Scientific Computing.
Citeseer, MArch 1997.

[54] G. Marsaglia and T. Bray, “A convenient method for generating normal variables,” Siam Review, vol. 6,
no. 3, pp. 260–264, 1964.

[55] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. H̊allberg, J. H
”ogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation platform,” COM-
PUTER,, vol. 35, no. 2, pp. 50–58, 2002.

[56] Intel, Intel Concurrency Checker, Intel Corporation, USA, 2008.

[57] A. M. Zalzala and P. J. Fleming, Eds., Genetic Algorithms in Engineering Systems. Stevenage, UK,
UK: Institution of Electrical Engineers, 1997.

18

View publication statsView publication stats

https://www.researchgate.net/publication/262314576

