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Abstract
Several previous studies have focused on modelling and analysing the collective dy-
namic behaviour of population-based algorithms. However, an empirical approach
for identifying and characterising such a behaviour is surprisingly lacking. In this pa-
per, we present a new model to capture this collective behaviour, and to extract and
quantify features associated with it.
The proposed model studies the topological distribution of an algorithm’s activity
from both a genotypic and a phenotypic perspective, and represents population dy-
namics using multiple levels of abstraction. The model can have different instantia-
tions. Here it has been implemented using a modified version of self-organising maps.
These are used to represent and track the population motion in the fitness landscape
as the algorithm operates on solving a problem.
Based on this model, we developed a set of features that characterise the population’s
collective dynamic behaviour. By analysing them and revealing their dependency on
fitness distributions, we were then able to define an indicator of the exploitation be-
haviour of an algorithm. This is an entropy-based measure that assesses the depen-
dency on fitness distributions of different features of population dynamics.
To test the proposed measures, evolutionary algorithms with different crossover op-
erators, selection pressure levels and population handling techniques have been ex-
amined, which lead populations to exhibit a wide range of exploitation-exploration
behaviours.

Keywords
Collective behaviour analysis, exploitation, population dynamics, population-based
algorithms, evolutionary algorithms, emergent features, self-organising maps.

1 Introduction

Population-based algorithms explore a search space by sampling it to gather informa-
tion and then redistributing the population within it based on such information. This
biases the movement of the population in a way that is hoped to guide the algorithm to
examine known good areas of the search space with more intensity and/or to try to lo-
cate new promising areas. Naturally, it is well known that whether an algorithm’s bias
is beneficial or not depends on the match between that bias and the fitness measure
used to inform the search (Wolpert and Macready, 1997). Nonetheless, as the search
mechanisms move, create and/or eliminate individuals, the population shows a collec-
tive behaviour which often changes dynamically over time.
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Understanding and characterising the collective dynamic behaviour of
population-based algorithms is thus very important. For example, identifying
emergent collective properties related to an algorithm’s dynamics allows the compar-
ison of algorithms in terms of behaviours, not just performance (e.g., the number of
fitness evaluations to reach an optimum). Therefore, this is not only a prerequisite
for designing new population-based algorithms for specific applications but it may
also enable practitioners to make technically sound choices of algorithms, operators,
parameters, etc.

1.1 Previous Empirical and Theoretical Studies

Various previous approaches have tried to develop a better understanding of the collec-
tive behaviour of population-based algorithms. An approach is to practically study the
dynamic behaviour of an algorithm with respect to a specific problem by defining and
analysing suitable empirical measures (Bethke, 1981; Goldberg, 1989; Mitchell et al.,
1992; Jones, 1995; Tomassini et al., 2005; Vanneschi, 2007; Graff and Poli, 2008; Poli and
Vanneschi, 2007; Vanneschi et al., 2004). Typically, efforts have concentrated on trying
to characterise landscape features and landscape/search-algorithm interactions with
the objective of understanding what makes a problem easy or hard for evolutionary
algorithms rather than on the characterisation of the behaviour of populations.

An alternative approach is to theoretically model the dynamics of search algo-
rithms. Within evolutionary computation theory, approaches have included: Markov
chain formulations (Vose and Liepins, 1991; Davis and Principe, 1993; Poli et al., 2004;
Mitavskiy and Rowe, 2006), the schema theory (Holland, 1992; Stephens and Wael-
broeck, 1999; Poli et al., 2004; Poli and McPhee, 2003a,b; Stephens and Poli, 2007), com-
putational complexity techniques (Droste et al., 2002; Jansen et al., 2005; Witt, 2006;
Jansen and Wegener, 2002; Storch and Wegener, 2004; Neumann and Wegener, 2007),
the statistical-mechanics formulation (Prügel-Bennett and Shapiro, 1994; Shapiro et al.,
1994), and the characterisation of the fundamental limitations of search (Wolpert and
Macready, 1997; Whitley and Watson, 2005; Schumacher et al., 2001; Igel and Toussaint,
2003; Poli et al., 2009). All of these have seen some successes at mathematically mod-
elling evolutionary algorithms.

The main questions that the aforementioned theoretical studies have tried to ad-
dress are whether an algorithm is able to reach an optimal solution (i.e., convergence),
how fast solutions this can be reached (i.e., convergence speed) and/or modelling the
changes of a population’s state over time (i.e., population dynamics). Here we will
focus on areas of theory that investigate population dynamics, namely schema theory,
Markov chain model, and statistical mechanical model, to position our work in relation to
them.

Schema theory captures the dynamics of a population at a somewhat coarse-
grained level by describing how the population redistributes itself among a set of
schemata, where the schema is a fixed subset of the search space. The model describes
how the number of individuals in a schema changes over time depending on the num-
ber of individuals in a related set of schemata and their fitness. Markov chain models
of EAs use a different, more microscopic representation for the state of the population
and describe how the probability distribution over population states changes over time.
This model can make precise predictions about population dynamics, but these require
considerable mathematical and computational resources. An alternative model, statis-
tical mechanics, has been proposed to represent the dynamics of large complex systems
in terms of their statistical properties. Statistical mechanics models population dynam-
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ics by predicting the changes of the population’s fitness distribution over time.
Note that the first two models focus on a genotypic representation of the population

while the third model uses phenotypes (fitness) to represent population dynamics, but no
model uses both. Finally, we should note that in all cases representation schemes are static,
in the sense that once one has decided what form of schema, state space representation
or fitness-distribution representation to adopt, this remains constant throughout a run.
As we will see later, our work departs from these traditions and proposes an dynamic
genotype-phenotype representation of population dynamics.

1.2 Exploration and Exploitation

While the models presented above are of significant theoretical importance, they have
little practical use in characterising realistic algorithms running on realistic problems
and extracting features of the collective dynamic behaviour of populations.

Looking at what has been done in this area, we find that researchers often talk
about two emergent behaviours of search algorithms: exploration and exploitation. Intu-
itively, exploration refers to a behaviour associated with the discovery of new good re-
gions in the search space, while exploitation refers to the exploration previously discov-
ered good regions (Holland, 1992; Eiben and Schippers, 1998; Macready and Wolpert,
1998). However, we should note that there is no precise definition in the literature of
the notions of exploration and exploitation and no precise characterisation of the dis-
tinction between them.

Clearly, whatever definition one embraces, when discussing exploration and ex-
ploitation one often talks about both the search space and the fitness values. After
all the genetic operators create new solutions by combining/altering existing (use-
ful) information contained in the genotypic representation of individuals, while selection
favours fitter solutions thereby using the phenotypic value (fitness) of individuals. Pos-
sibly because of this and of the lack of a more precise definition, often people simply
attribute the exploration features of an evolutionary algorithm entirely to the proper-
ties of the genetic operators used by the algorithm (e.g., crossover or mutation), while
it is assumed that exploitation is achieved by selection.

This is an unsatisfactory interpretation as the reality appears to be much more com-
plex: each search operator, including selection, has a certain bias in guiding the search,
and the aggregation of these biases results in an emergent collective behaviour that
exhibits a certain degree of exploration/exploitation at different times of the search.

1.3 Contributions of this Paper

In this paper, we develop an empirical coarse-grained model that captures and tracks
a population’s dynamics represented as topological distribution of various features de-
scribing populations from both a genotypic and a phenotypic perspective.1 The model
uses a variable representation that represents the population’s dynamics at a relatively
high level of abstraction which makes it easier to talk about collective behaviours of
populations.

Our model represents the population using a grid of nodes, where each node points
to a region of population activity and records information about genotypic density,
fitness values, and distances for the individuals in such a region. During a run of an al-
gorithm, as the regions of population activity change over time, the nodes in the model
adjust to track these regions and continue gathering information about them. Thus,
over a run, the model produces a sequence of grids that capture the population dynamics

1An initial formulation and some results of our model were presented in (Turkey and Poli, 2012).
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represented as a topological distribution of genotypic density, fitness values and distances. This
model share some features with previous theoretical models of EAs: it is similar to a
schema-based model in that it uses sets of genotypes as elements of the representation,
it is similar to Markov chain models in that it tracks the changes of the population, and
it is similar to statistical mechanics models as it keeps track of the fitness distribution
(but it does so at a finer level of granularity, i.e., at the level of activity nodes).

Higher levels of abstraction in the description of the population’s collective dy-
namic behaviour can be obtained by grouping the nodes in our model into activity
regions and by categorising these regions according to the type of activity carried out
within them. As we will see later, this allows us to define a variety of measures that can
be used to characterise different aspects of the collective behaviour of the population
and to analyse its coarse-grained dynamics.

In addition, by exploiting our coarse-grained representation of population dynam-
ics, we contribute to clarifying the notions of exploration and exploitation. In particular,
we do so by quantifying by how much the fitness distribution guides the search activ-
ities of an algorithm. Although other proposed measures can be qualitatively used to
characterise the exploitation/exploration behaviour, we suggest a specific new entropy-
based exploration indicator of the dynamic behaviour of population. This assesses the
fitness-dependency of the topological distributions of different features of the collective
dynamic behaviour of an algorithm. This is particularly easy to do with our model, as
it is designed to track the topological distribution of fitness values and other genotypic
features of populations.

Many implementations of the proposed coarse-grained representation of pop-
ulations are possible. In this article, a modified version of self-organising maps
(SOMs) (Kohonen, 2001) are used to track population movement in the search space
and to mine information about the emergent collective behaviour of an algorithm as it
operates on solving a problem.2 The model has been applied on different EAs that use
different operators and techniques. The reported results show that the model was able
to characterise their collective behaviours and reveal the effect of different biases the
algorithms used.

The rest of this paper is organised as follows. Section 2 will present the proposed
model in detail and will develop measures of the collective dynamic behaviour of pop-
ulations. It will also aim at assessing the fitness-dependency of different aspects of
population activities. In Section 3, we present the details of our implementation of the
proposed model using SOMs. Section 4 reports and discusses the results of our experi-
ments. Finally, we end the paper with some conclusions in Section 5.

2 Proposed Model of Collective Dynamic Behaviour

In this section, the formulation of the proposed model is presented. Then, we define
features of the collective behaviour of an algorithm based on the model. Finally, the
proposed exploitation indicator is defined.

2.1 Principles of the Proposed Model

The proposed model uses a grid of nodes to capture the topological distribution of in-
dividuals in a population-based algorithm at certain points in time.3 Each node is a

2SOMs have previously been used to improve the performance of evolutionary algorithms by enhancing
the search strategy and avoiding genetic drift (Amor and Rettinger, 2005).

3In this work, we assume that the algorithm is operating on real-coded problems. However, a grid of
nodes for different types of representations can be defined.
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vector representing the centre of a group of individuals in a localised area in the search
space. In addition, each node also stores information describing the activities of the
group in that area. To track the dynamic behaviour of a population over a run, the
grid is updated to represent motion of the population and record information about its
activities as the algorithm works on solving a problem. Emergent features that char-
acterise collective dynamic behaviour are extracted by analysing the changes in node
positions and other information stored in the nodes.

Formally, the grid, Ct, represents a snapshot of the population distribution at
time t. Let C0 be a grid of nodes that represent the distribution of the initial pop-
ulation Pinit = {(x1, y1), . . . , (xη, yη)}, where η is the population size, xi ∈ RD rep-
resents the position of individual i in the search space, D being the search space
dimension, and yi ∈ R is the associated fitness value. Furthermore, let the time-
ordered set P = {(x1, y1), . . . , (xN , yN )} represents a sequence of all the individuals
created by an algorithm over a period of a run from the initial population, where
N is the total number of calls to the fitness function. The grid is updated every τ
individuals produced by the algorithm (i.e., τ represents the sampling period). For
example, C1 is computed starting from C0 and using the sequence of individuals
P1 = {(x1, y1), . . . , (xτ , yτ )}. That is, the grid’s node vectors are adjusted to track in-
dividuals of the sequence P1 and record information about them. Generally speaking,
the grid Ct is created by tracking and recording information about the set of individ-
uals Pt = {(xk+1, yk+1), . . . , (xk+τ , yk+τ )}, where k = τ × (t − 1). More specifically, if
PC

t
r ⊆ Pt is the subset of individuals associated with a node, Ctr, based on their dis-

tance from the node vector (as explained in Section 3), we have that the sets xC
t
r and

yC
t
r representing the positions and fitness values of the individuals associated with Ctr

provide information about the population activity happening in the region represented
by that node.

More formally, the grid Ct consists of a matrix of n × n nodes, where each node,
Ctr, is represented by the following tuple

Ctr = 〈mCtr , dC
t
r , fC

t
r , f

Ctr
best-so-far, h

Ctr 〉 (1)

where t is time, r ∈ {1 . . . n} × {1 . . . n} is the position in the grid and the elements of
the tuple are as follows:

mCtr ∈ RD is a vector representing the centre of a region of activity of the population.
As the algorithm works on redistributing the population around activity regions,
the node vector tracks the newly created individuals in its vicinity (the mechanism
of updating vector positions is explained in Section 3);

dC
t
r =

∑
a∈xCtr |a − mCtr | (hit distance) is the sum of the distances between mCtr and

the individuals, xC
t
r , associated with the node. This can be used as an indicator of

how far away from the centre of activity an algorithm searches for new solutions;

fC
t
r = 1

|yCtr |

∑
a∈yCtr a is the mean fitness of the individuals associated with Ctr. This

element gives an insight about the quality of the region of the search space repre-
sented by the node;

f
Ctr
best-so-far is the best fitness value of an individual associated with Ctr since time t = 0.

Formally, if fC
0
r

best-so-far = max yC
0
r , then the best fitness for time t > 0 is defined as
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f
Ctr
best-so-far = max{fC

t−1
r

best-so-far,max yC
t
r}. This quantity tells us how well the popula-

tion is searching this area of the search space, and whether this activity has led to
achieve any growth in fitness;

hC
t
r = |PCtr | (hits counter) is the number of individuals associated with the node. This
number represents the volume of activity an algorithm allocates for a particular
area of the search space.

As the algorithm starts exploring the fitness landscape and redistributing the pop-
ulation, some nodes (that represent identified areas of activity at a certain point in time)
may be abandoned as the population moves towards different areas. At any point in
time, we are only interested in the nodes that have observed some population activ-
ity. These nodes are called active nodes and they are defined as AN t = {Ctr|hC

t
r > 0}.

Active nodes in this model represent spots in the search space where population activ-
ities have taken place. Nodes are, in a way, similar to schemata, in that both represent
subsets of the search space. However, differently from schemata, our nodes have the
ability to track the population dynamics over time, and they store information about
these dynamic activities. This feature enables us to capture the distributions of activity
density, observed fitness values, and other features of the topological distribution of a
population.

A higher level of abstraction in describing population activity is obtained by ag-
gregating active nodes into activity regions. An activity region is a set of adjacent active
nodes the vectors of which point towards similar directions. Formalising this definition
requires introducing some further notions.

Let us define a function, Nr(Ctr), that returns a set of all immediate neighbours of
a node that is a member of the set of active nodes AN t:

Nr(Ctr) =
{
Ctr′ ∈ AN t | 0 < ‖r − r′‖ <

√
2 and ‖mCtr −mCt

r′ ‖ < ω
}

where ω = 0.05 × Dia is a distance threshold, Dia being the largest distance between
any two points in the search space. The function above returns the empty set ∅ in case
Ctr has no neighbours. With this in hand, we can define a function Nc(Ctr, Ctr′), that
returns a set of consecutive neighbours between Ctr and Ctr′ :

Nc(Ctr, C
t
r′) =

{
X ∈ ANt |X ∈ Nr(Ctr) and X ∈ Nr(Ctr′), or

Nc(Ctr, X) 6= ∅ and Nc(X,Ctr′) 6= ∅
}

An activity region, Region(Ctr) for Ctr ∈ AN t, is the set of all the nodes that are either
direct or indirect neighbours of node Ctr, that is:

Region(Ctr) =
{
X | Nc(Ctr, X) 6= ∅

}
Figure 1 illustrates the proposed model and how it relates to the individuals in the
population. The figure also shows how regions of active exploration in the search space
are represented by activity regions within the model.

An even higher level of abstraction can be obtained considering sets of activity
regions. For example, the set of all activity regions (set of sets) is defined as follows:

At =
⋃

X∈AN t

{Region(X)}
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Figure 1: The proposed model and its relationship with the population. The model
(at the top of the figure) is made up of nodes organised in a logical grid. Each node
represents one or a small group of individuals out of the individuals generated by a
population-based algorithm within a certain time period (typically they are the cur-
rent population, but they can also represent the most recently produced individuals
within a population). Nodes store multiple pieces of information about the individ-
uals they represent, including a vector (the downward pointing arrows in the figure)
that is the centroid of the individuals represented by a node. Not every node has an
arrow, because nodes may have no individual associated with them. Node that do
are said to be active nodes. Because self-organising maps are used to instantiate the
model, neighbouring active nodes tend to represent neighbouring areas of the search
space. Therefore, if we group active nodes into activity regions (the shaded regions in
the model), collectively we find that each region represents a corresponding region of
active search within the search space (represented by the clusters of individuals at the
bottom of the figures).

This can be divided into the set of growth regions gt and the set of non-growth regions ngt.
The set of growth regions contains all the regions where the population has managed
to discover a better fitness value in the last τ fitness evaluations, while the non-growth
region set contains the regions of the population where no fitness improvement has
been achieved in the same period. Formally, these are defined as

gt =
{
Rt ∈ At | max

X1∈Rt
fX1

best-so-far > max
X2∈Rt−1

fX2

best-so-far

}
and ngt = At \ gt .

The sets of all the nodes belonging to growth regions and non-growth regions are
defined as Gt = {X|X ∈ R and R ∈ gt} and NGt = {X|X ∈ R and R ∈ ngt}, respec-
tively. Later we will also use the notion of best region, Bestt = argmaxx∈At f

x
best-so-far.
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Note that the different levels of coarse-grained representation proposed above pre-
serve the topological distribution of activity density, fitness values, and other features.
In the next two subsections, we will define a set of features to represent the dynamic
collective and emergent behaviour of a population based on these notions.

2.2 Extracting Features of Collective Dynamic Behaviour

Many features that characterise aspects of the collective dynamic behaviour of an al-
gorithm can be extracted by monitoring changes in the activity regions of the model
over time and analysing the corresponding recorded information. These features can
be classified into three types.

Activity-related features describe the way an algorithm allocates its activities to the
regions of population. The volume of activity can simply be measured using the num-
ber of individuals (hits counter hC

t
r ) that have been associated with nodes of a certain

region. Region size (number of nodes in a region) is also used to describe aspects of
population activity. These features characterise the population collective behaviour
from a higher level (phenotype level). In evolutionary algorithms, selection methods
and population handling techniques (e.g., niching techniques) have the significant in-
fluence on these emergent features and also affect other search operators.

Distance-related features describe two aspects of the population collective behaviour
from the genotype point of view: how widely the population distributes its activities
away from the centre (node vector), and the bias in population movement. Two dis-
tance measures can be calculated: the sum of the distances between the node’s vector
and input individuals (dC

t
r ) and the displacement which signifies the amount of shift

in population centres of activity and it is calculated as the change of vector positions
(the distance between mCtr and mCt−1

r ).
Correlated features analyse the association between two different emergent features.

Revealing and quantifying dependencies between emergent features could help char-
acterising what directs the search and to what extent. In this work, we analyse the
dependency of the two types of features mentioned above on fitness values. The resul-
tant measures are used as indicators to the exploitation behaviour of the algorithm.

The first two types of features are introduced in the next subsection, while the third
type is presented in Section 2.3.

2.2.1 Activity-related and Distance-related Features
Below we will define four features that characterise the dynamic collective behaviour
of the population over time as an algorithm operates on the problem. For each feature
we also define a related coarse-grained quantity, the average of that feature over the
course of a run, to represent the overall behaviour of an algorithm across time.

The activity rate in a set of nodes St is the number of hits these nodes receive collec-
tively at time t. It measures the intensity with which an algorithm explores these nodes
and the regions they represent. It is defined as:

ActivityRate(St) =
1

τ

( ∑
X∈St

hX
)

(2)

where St is the set of all nodes in a set of regions and τ is the sampling period.
This function can be applied to any set of nodes, but it makes most sense when ap-
plied to sets of nodes representing activity regions, particularly Gt, NGt and Bestt.
In these cases this measure tells us the way an algorithm tends to allocate its activi-
ties. For example, allocating more activities to growth regions implies that the algo-
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rithm exhibits exploitation behaviour as it tends to invest more individuals in regions
where good fitness values have been discovered. The average of activity rate over a
run of an algorithm is defined as ActivityRateavg(S) =

1
M

∑M
t=1 ActivityRate(St), where

S = {S1 . . . SM} is a time-ordered sequence of sets of nodes representing a certain type
of regions over the period of a run, M = N/τ represents the total number of sampling
points and N is the total number of fitness function evaluations in a run.

Another useful features is the size ratio of a region, i.e., the number of active nodes
of a certain set of regions relative to the total number of active nodes:

SizeRatio(st) =
( ∑
Rt∈st

|Rt|
)
/|AN t| (3)

where st is a set of regions (i.e., gt, ngt or {Bestt}).4
While ActivityRate(St) measures the portion of search activity in a certain type

of regions, SizeRatio(st) tells us how concentrated these activities were. When
ActivityRate(St) = SizeRatio(st), that implies that the activities were evenly distributed
among the nodes of st and each node has been hit by only one individual. On the
other hand, if ActivityRate(St) > SizeRatio(st), the activities were more concentrated
and at least one node in St has been hit by more than one individual. The smaller
SizeRatio(st), the more concentrated the activities. The average size ratio over a run
is defined as SizeRatioavg(s) = 1

M

∑M
t=1 SizeRatio(st), where s = {s1 . . . sM} is a time-

ordered sequence of sets of regions of a certain type.
The proposed model updates its node vectors to track the population as it moves

around the search space by monitoring every new individual created by the algorithm.
These changes in vector positions reveal the speed of movement and the algorithm’s
bias. The average change in node vector positions (displacement) is measured as follows:

Displacement(St) =
1

|St|
( ∑
Xt∈St

‖mXt −mXt−1‖
)

(4)

This feature represents the extent to which the population distribution shifted, after the
algorithm has created τ individuals. The total displacement achieved by an algorithm
over the period of a run is measured as Disptot =

∑M
t=1 Displacement(AN t) , where M

is defined above and AN t is the set of all active nodes at time t. High displacement
values imply that the algorithm tends to move its areas of activity around the search
space, while smaller values imply that the algorithm is searching in the same areas.

Another useful features is the hit distance — the distance between a newly created
individual and the nearest node vector:

HitDistance(St) =
( ∑
X∈St

dX
)
/
( ∑
X∈St

hX
)

(5)

The hit distance reveals the collective behaviour of the population in localised areas
of the search space and characterises the effect of genetic operators. The average hit
distance over a run is defined as HitDisavg = 1

M

∑M
t=1 HitDistance(AN t).

2.3 Using Fitness-Dependency as Indicator to an Exploitation Behaviour

Population activities can be guided (or biased) by various factors that an algorithm uses
to make decisions. In addition to the observed fitness values, for example, distance or

4Please note the difference between st, which is a set of regions (set of sets), and St, which is the set of all
nodes in these regions. Formally, St = {X|X ∈ R and R ∈ st}.
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similarity between individuals can be used (as in fitness-sharing techniques). In this
section, we develop a measure to quantify the level of fitness-dependency in directing
the search, and use it as an indicator to population exploitation behaviour.

In order to characterise fitness-dependency of population behaviour, we have to
measure the amount of certainty the presence of information (fitness values) brings to the ac-
tivities of a population. That is to say, we want to assess how much the features of the
collective behaviour of populations — such as the activity rate, the displacement dis-
tance, or the hit distance — are dependent on the fitness distribution. To quantify this
association, we used an entropy-based measure, which is a normalised variant of mu-
tual information called the uncertainty coefficient (Press et al., 2007). This is defined as
follows:

U(Y |X) =
I(X,Y )

H(Y )
(6)

where

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
( p(x, y)

p(x)p(y)

)
(7)

is the mutual information between two random variables X and Y , and

H(X) = −
∑
x∈X

p(x) log(x) (8)

is the entropy of a random variable X .
In information theory, entropy is a measure of the uncertainty or randomness asso-

ciated with a random variable (Shannon, 1948), while mutual information is a quantity
that measures the mutual dependence of the two random variables. In Equation 6, the
mutual information can be expressed as I(X,Y ) = H(Y )−H(Y |X), where H(Y |X) is
the conditional entropy of Y given X . This quantifies the uncertainty about Y left after
knowing X . So, in effect the dependency between X and Y represents how much uncertainty
about Y has been removed by knowing X . The value of U(Y |X) lies between zero and one,
where 0 means that X and Y have no association, while 1 means that knowing X can
totally predict Y .

To use Equation (6) to assess the fitness-dependency of the behaviour of an algo-
rithm, first, we need to compute the probability distribution of each feature of the col-
lective behaviour over all activity regions. The probability distribution of a feature is
estimated by binning active nodes according to the values of that feature and then com-
puting a probability histogram. More specifically, we find the maximum and minimum
values of each feature over all active nodes, we evenly partition the interval between
them into m sub-intervals (m = 10 in this work), and we then divide the active nodes
into classes according to of their feature values. If Lφ1

i for i = 1 . . .m, are the classes of
the active nodes obtained by binning them based on feature φ1, then the probability of
each class is computed as

p(Lφ1

i ) =
( ∑
X∈Lφ1i

hX
)
/τ, for i = 1 . . .m . (9)

We also need to compute the joint probability of two classes of features. Given that
the proposed model provides us with topological distributions of different features of
population dynamics, finding the association and computing the joint probability for
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two features is easy. If Lφ2

i for i = 1 . . .m, is another sequence of classes obtained by
binning nodes using feature φ2, then the joint probability of Lφ1

i and Lφ2

j is

p(Lφ1

i , L
φ2

j ) =
( ∑
X∈Lφ1i ∩L

φ2
j

hX
)
/τ, for i, j = 1 . . .m (10)

With these definitions of in hand, we can use the uncertainty coefficient (Equation
6) to analyse the dependency of hit distance, displacement, and activity (hit count) on
fitness. For simplicity, we will denote the corresponding values of the uncertainty co-
efficient as Ut(hd|fit), Ut(dis|fit) and Ut(act|fit), respectively. These three measures,
Ut(act|fit) in particular, are used as an exploitation behaviour indicator at a certain point
in time. The bigger the value they have the more dependent on fitness the algorithm
behaviour is at that time.

The average of fitness-dependency of activity over one algorithm run is de-
fined as Uavg(act|fit) = 1

M

∑M
t=1 Ut(act|fit). Similarly, we define Uavg(hd|fit) and

Uavg(dis|fit). The average of fitness-dependency rate is the quantity we will use as an ex-
ploitation indicator characterising the collective behaviour of an algorithm over a run.

So far, in this section, we have presented a way to assess the exploitation char-
acteristics of an algorithm in terms of the extent to which the algorithm exploits the
sampled fitness values to direct the search. However, developing an accurate measure
that quantifies the exploitation behaviour is complicated. This is because algorithms
may make use of information other than fitness, to redistribute their activities; also, a
precise definition of exploitation/exploration is lacking. The same can be said about
assessing exploration behaviour. However, if we assume that any action made by an
algorithm can be viewed as either exploitation or exploration depending on whether
or not information influenced the decision leading to that action, then the proposed
fitness-dependency measure quantifies a significant part of population exploitation be-
haviour.

3 Implementing the Proposed Model using Self-Organising Map

A Self-Organising Map (Kohonen, 2001) is an artificial neural network that can be
trained using unsupervised learning. After training, SOMs can be used for mapping
(classifying) or visualising high dimensional data. SOMs consist of a set of nodes (or
neurons) arranged, usually, in a two-dimensional grid. A node, i, has an associated
vector, mi, of the same dimension of the input space and is connected to its neighbours
according to a neighbourhood radius, as explained later in this section. The training
is done by feeding a SOM with a large number of training samples drawn from the
data space. Each time a sample, x, is fed into a SOM, the best matching node (BMN)
is identified as the node whose vector has the smallest distance from the input sample,
i.e., BMN = argmini ‖x−mi‖. Then mBMN is updated by moving it slightly in the
direction of x. The change to the BMN’s vector results in changing the vectors of its
neighbours as well (more on this below).

In this work, the dynamics of the grid nodesCtr of the proposed model is controlled
by a SOM learning algorithm. In other words, a SOM is responsible for adjusting the
position of each node vector, mCtr .

We use SOMs in two stages. In the first stage the model node vectors are set using a
SOM training algorithm fed with the individuals in the initial population. More specif-
ically, after randomly generating initial vectors, in each training iteration, the SOM is
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fed with η (the size of population) individuals randomly selected from the initial pop-
ulation Pinit. Node vectors, mCr , are then updated as follows:

mCr = mCr + αe

(
− ‖r−rBMN‖

2

2σ2

)(
x−mCr

)
(11)

where x is the input individual vector, α is the learning rate, σ is the neighbourhood
radius and rBMN is the index of the BMN. During this stage, the initial learning rate
is set to α = 0.07 and the neighbourhood radius is set to σ = n/2.5 In this phase,
these parameters are decreased over time as standard in SOMs. For training iteration
c, the learning rate is computed as αc = α exp (−c/I ) and the neighbourhood radius is
computed as σc = σ exp

(
− c

I/log(σ)

)
, where I is the total number of training iterations.

Note that, although an individual from the initial population may be used several times
in SOM training, its information (as described by the proposed model, Equation 1) is
recorded by the grid only once. The resulting grid, C0, is topologically consistent and
provides a representation of the initial population distribution in the search space.

In the second stage, the initial model is progressively modified (again using a SOM
training algorithm) so as to track the collective dynamic behaviour of a population.
In this stage, newly created individuals are fed into the SOM to adjust the node vec-
tors. Here, we use a fixed non-zero learning rate and neighbourhood radius so that the
nodes can track the population. In addition to the change that new individuals bring
to the node vectors of the SOM, information of those individuals (as required in the
model) is also recorded in the nodes. This process produces a sequence of grids Ct, for
t = 1, . . . , N/τ , that represent population distributions and activities over time. Collec-
tively they capture the collective dynamic behaviour of the population over the period
of a run.

4 Experimental Results

In this section, we first describe a set of algorithms used in the experimentation as
well as the operators and techniques used within them and then we experimentally
characterise their collective dynamic behaviour using the model and features proposed
above.

4.1 Algorithms and Experiments Description

To test the proposed model and features, a variety of operators, selection pressure lev-
els and population handling techniques have been utilised which produce a drastically
different collective behaviours. More specifically, we used both standard evolutionary
algorithms 6 as well as EAs that utilise fitness sharing, deterministic crowding and random
immigrant (details are in Appendix A). With each algorithm, arithmetic crossover, blend-
ing crossover (BLX-α), and heuristic crossover were used (their details and settings are
explained in Appendix B). All EAs used tournament selection.

We chose arithmetic crossover, BLX-α, and heuristic crossover as they are repre-
sentative of operators that exchange genetic material in a stochastic, deterministic, and
fitness-biased manner, respectively. These crossover methods show different behaviours
(in particular different levels of exploration and exploitation) because they handle the
diversity of the population and they make use of the information available to them in

5We conducted our experiments on a grid of size 25 × 25
6By standard evolutionary algorithm we mean a generational evolutionary algorithm that uses no extra

techniques. Full parameters settings are given in Appendix A
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different ways (Herrera et al., 2003). However, their behaviour is also a function of their
parameter settings.

Uniform arithmetic crossover (Michalewicz, 1996) handles the genetic material in
a deterministic fashion. However, for λ > 1 or λ < 0, this operator exhibits an explo-
rative behaviour and increases the population diversity (Herrera et al., 2003). BLX-α
(Eshelman and Schaffer, 1992) creates new individuals by generating random values
for their genes within ranges calculated from the parents gene values and α. BLX-
α has a more stochastic behaviour and its exploration/exploitation behaviour can be
tuned by adjusting α (Nomura and Shimohara, 2001). Heuristic crossover (Herrera
and Lozano, 1996; Wright, 1990), on the other hand, creates offspring close to the best
parent, which makes this operator more exploitative because it does not only make use
of the provided genetic material, but also uses the fitness values to bias the search.

Unfortunately, we cannot assess the effect of recombination operators on the collec-
tive dynamic behaviour based only on the way they combine/alter genetic materials to
produce new individuals. That is because the quality of the operators’ output depends
on the quality of the genetic material which is chosen by the selection mechanism. For
this reason, we used tournament selection, where the selection pressure can easily be
controlled by increasing/decreasing the tournament size. Larger tournaments induce
a high selection pressure and lead to a high exploitation behaviour whereas small tour-
naments lead to low pressure and high exploration.

Our experiments focus on characterising the collective dynamic behaviour of EAs
that use different parameter settings for their crossover methods over different levels of
selection pressure. The interaction between the biases of different operator creates dif-
ferent collective dynamic behaviours. While tournament selection uses fitness values to
bias the search, other population handling techniques involve other elements. Fitness
sharing and crowding use distances in handling the population, while random immi-
grants tries to counterbalance the bias of selection by adding more stochastic behaviour
(randomness) into the search.

We adopted a naming system to refer to the algorithms and their settings when
presenting results. An algorithm name consists of four parts, representing, respec-
tively, the population handling technique, the crossover method, the crossover control
parameter, and the tournament size. For example, StBLX-0.5-3 is a standard EA using
BLX crossover with control parameter value 0.5 and tournament size 3. Full details of
the algorithm naming system along with parameter settings, algorithm techniques and
benchmark problems are provided in Appendix A.

In showing the results of the experiments, we used two types of figures. The first
describes the change of a certain feature over time (fitness function evaluations) (e.g.,
Figure 3), while the second characterises the effect of using different selection pressures
(different tournament sizes) on a certain feature of the collective behaviour (e.g., Fig-
ure 5). In most of the figures of the second type, we compared the effect of selection
pressure on different settings of each crossover (the first row of plots), and we com-
pared the crossover methods with each other using different settings (the lower row of
plots). We called these parameter settings balanced, exploitative and explorative depend-
ing on the qualitative behaviour they induced. We picked the most explorative settings
(or the least exploitative in case of Heuristic crossover) from the range of used settings
for the explorative parameter settings (BLX-0.75, Heur-0.4, and Arth-1.5). In a simi-
lar way, we chose the exploitative parameter settings (BLX-0.0, Heur-0.1, and Arth-0.2).
The set of balanced parameter settings represents more moderate and common settings
for each of the crossover methods (BLX-0.5, Heur-0.2, and Arth-0.4).
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Figure 2: Growth and non-growth regions formation on the SOM grid of nodes.

4.2 Characterising Emergent Features of Collective Dynamic Behaviour

4.2.1 Illustration of the Operations of the Model
Figure 2 depicts the regions formation in the model for four of the algorithms we will
characterise later in this section: three standard EAs with different types of crossover
and one EA with crowding and arithmetic crossover. The figure shows 7 snapshots of
the grid of nodes in the model, during the first 1000 fitness evaluations of a run of each
of the four algorithms. All runs had the same initial random seed (and, hence, the same
initial population and grid of nodes).

As one can see, only a small subset of the model nodes are used at any given
time. Note how the model of the crowding EA holds many more non-growth nodes
than the standard EAs and how these are distributed more evenly within the grid,
indicating that correspondingly different regions of the search space are concurrently
explored. Note also how the most exploitative of the four algorithms (StHeur-0.2-4)
rapidly focuses its search on fewer and smaller (and, hence, more focused) growth
regions.

4.2.2 Activity rate and size ratio
To characterise the effect of using different techniques on how the population dis-
tributes its focus among different regions of activity, we measured the activity rate
(Equation 2) in growth, non-growth, and best regions, in a standard EA (StArth-0.4-
4) and in EAs with fitness sharing (FSArth-0.4-4), deterministic crowding (CrArth-0.4)
and random immigrants (RIArth-0.4-4). All the algorithms use tournament of size 4
(except for deterministic crowding which uses its own selection mechanism) and arith-
metic crossover (Arth-0.4). Figure 3 shows the results.

By comparing Figures 3(A) and (B) one immediately sees that algorithms using
niching techniques allocate little activity to the growth regions, while most of the popu-
lation focuses on searching non-growth regions. This is a sign of the explorative nature
of this type of algorithms. We also see that both the standard evolutionary algorithm
and the random immigrants version have a different collective behaviour, as they ini-
tially focus on the growth regions more than on the non-growth ones. Allocating more
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Figure 3: Activity rates of growth, non-growth, and best regions measured over the
period of a run in standard, fitness-sharing, deterministic-crowding and random-
immigrant EAs.
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Figure 4: Activity rates of growth, non-growth, and best regions measured over the pe-
riod of a run in three standard EAs utilising BLX-0.5, Arth-0.4 and Heur-0.2 crossover.

activities to pursue fitness growth is an indicator of exploitation behaviour. Naturally,
the activity rate of these EAs in growth regions declines as the run proceeds as a result
of the population’s convergence and its losing the ability to achieve fitness growth.

Figure 3(C) depicts activity rate in the best region found by each algorithm. As
we can see from the figure, after an initial increase, the activity rate in the best region
declines over the course of a run. This phenomenon may contradict the standard inter-
pretation of convergence, which is normally viewed as the population gathering in one
region around the best-found individual (especially in standard EAs). At the beginning
of a run, a standard EA form a large activity region around the best-discovered area.
As the run goes on, this region shrinks. At some point, the bias of the genetic operators
(e.g., BLX-0.75 or Arth-1.5) starts balancing the focusing bias of selection. Then the op-
erators scatter individuals away from the best region, thereby creating little temporary
regions in its vicinity. More results and discussion on this issue will be provided later
in this section.

In Figure 4, we show the effect of using different crossover methods on the ac-
tivity rates in different regions of the population in a standard EA. A comparison of
Figures 4(A) and (B) shows that a standard EA with Heur-0.2 crossover allocates more
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Figure 5: The effect of using different parameter settings for three crossover methods
over different levels of selection pressure on the average of activity rate in the growth
regions.

activities to the growth regions, which is, of course, due to the exploitative nature of
this operator. Standard EAs with Arth-0.4 have the lowest interest in growth regions,
while an EA with BLX-0.5 changes its character as the population loses diversity and
converges. Interestingly, as shown in Figure 4(C), the three algorithms approximately
have the same activity rate in the best region.

To analyse the combined effect of using different crossover methods and differ-
ent selection pressures (tournament sizes) on a population’s allocation of activities to
regions, we used standard EAs utilising three crossover methods, with four parame-
ter settings for each one, over different selection pressure levels. The parameters were
chosen so that a range of exploitation and exploration (or less exploitation, in the case
of Heur-λ) behaviours would be produced. Figure 5 depict the results.

Let us first focus on Figures 5 (A)–(C), which report the average activity rate in
growth regions using BLX-α, Heur-λ and Arth-λ crossovers. When using exploitative
parameter settings (BLX-0.0, BLX-0.25, Arth-0.2, Arth-0.4, Heur-0.1, . . . , Heur-0.4), the
average activity rates in growth regions increases with the selection pressure, until a
certain point beyond which increasing the selection pressure further has little effect of
the activity rate. This happens because highly exploitative operators force the popu-
lation to converge too quickly onto one region in the search space, thereby losing the
ability to discover new good regions and produce further fitness growth. Thus, stepping
up selection pressure accelerates losing the ability of producing growth in exploitative crossover
methods. The faster the population converges, the fewer growth regions can be found
and, thus, the less activity in these regions. Because of this, with exploitative crossovers
and high selection pressure the population can only rely on mutation to bring about
some diversity that may help discover new regions and move the search away from
local optima.

Conversely, as shown in Figures 5 (A)–(C), increasing the selection pressure in EAs
that use crossovers with explorative parameter settings (BLX-0.5, BLX-0.75, Arth-1.2 and
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Figure 6: The effect of increasing the selection pressure on the size ratio of the best
region for EAs using Heur-0.2 crossover.

Arth-1.5) drives the population to discover more growth regions.7 With low selection
pressure, explorative crossovers have a bias that prevents the population from converg-
ing and concentrating its activities only on the good regions that has so far discovered.
Instead, crossover will “push” individuals away from these regions, thereby reducing
the chance of finding better solutions in these regions and, thus, producing growth.
However, also in these crossovers increasing the selection pressure makes the popula-
tion converge, although less rapidly, and counterbalances their diversification effects.
In this case, the population converges to a small region around the best solutions and
the explorative crossover creates some small growth regions by scattering individuals
around the best region.

To better illustrate these observations, in Figures 5(D)–(E) we have reproduced
nine configurations from the previous plots but this time we have grouped them on the
basis of how exploitative/explorative the crossover’s parameters settings are. More
specifically, Figure 5(D) shows the activity-rate averages for crossovers using balanced
parameter settings, while Figures 5(E) and (F) report those for exploitative and explo-
rative settings, respectively.

Search operators and selection methods have a major influence on the size of ac-
tivity regions explored by an algorithm. For example, using a high selection pressure
will shrink the population activity regions more than using a low selection pressure.
Figures 6(A)–(G) illustrate this using the size ratio and the activity rate of the best re-
gion in an EA using Heur-0.2 crossover. The figures show that as the selection pressure
increases, the activity rate becomes more concentrated. However, the effect of the se-
lection pressure on the size ratio becomes weaker as the selection pressure increases.
This is shown also in Figure 6(H) that plots size ratio and activity rate averages as a
function of the tournament size.

Figures 7(A)–(C) show the effects of the selection pressure on the activity concen-
tration in the best region in standard EAs with different types of crossover. Figure 7(D)

7Of course, growth in those regions does not mean that an algorithm also improves the best-so-far fitness
of the search.
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Figure 7: The averages of size ratio and activity rate of the best region for StHeur-0.2,
StBLX-0.5, and StArth-0.4 EAs over different levels of selection pressure.

compares the size ratios of these algorithms and shows that they are more and less
the same, which implies that selection, more than crossover, has a significant effect on
changing the size ratio of the best regions of population.

4.2.3 Hit Distance and Displacement
Hit distance and displacement provide information about the population dynamics
from a geometric perspective.

Hit distance measures how far a population searches away from previously sam-
pled regions in the fitness landscape. For example, a large hit distance implies that
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crossover methods, and with different population handling techniques.
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search operators produce/maintain genetic diversity. The hit distance varies as the
run progresses and also depends on the diversity of population and the nature of the
operators used. Figure 8 shows how using different crossover methods or population
handling techniques affects the hit distance.

In particular, Figures 8(A)–(C) illustrate the effect of using different crossover
methods. (We have used the same selection pressure level for all results, except for
CrArth-0.4 that uses its own selection mechanism). Note that the ones with an ex-
plorative nature tend to have a large hit distance, while the hit distance in the more
exploitative ones is smaller and declines rapidly to a low level as the run proceeds.
Despite the fact that selection pressure has an impact on population diversity, explo-
rative crossovers manage to maintain a higher level of hit distance than the exploita-
tive ones. StArth-1.2-2, StArth-1.5-2, StBLX-0.5-2 and StBLX-0.75-2 (see Figures 8(A)
and (B), respectively) start the run with a high hit distance and as the selection pressure
forces the population to converge, the hit distance decreases, but maintain a higher
level than other exploitative crossovers. On the other hand, exploitative crossovers
start the run with different hit distances (according to how exploitative they are based
on their parameter settings), but as the run goes on, the hit distances drop to the same
level regardless the parameter settings. This is particularly noticeable with StHeur-
λ-2 (Figure 8(C)) but the same can be said about both other algorithms (Figures 8(A)
and (B)). In these algorithms, all the operators, apart from mutation, have an exploita-
tive nature and there is no operator that can maintain the diversity of the population.
Moreover, as the diversity goes to the lowest level, the population activity becomes
limited to a certain region where the new individuals (hits) are created not far away
from their parents. Figure 8(D) shows the hit distance of three different algorithms that
use the same crossover (Arth-0.4) but with different population-handling techniques.
The algorithms act on the diversity of population in different ways, which lead the hit
distance to be different even if they use exactly the same crossover method.

To explore in greater depth the effects of selection pressure on the hit distance
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Figure 9: The effect of using different parameter settings for three crossover methods
and different levels of selection pressure on the average hit distance of all activity re-
gions.
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Figure 10: The effect of using different parameter settings for three crossover methods
over levels of selection pressure on the total displacement of activity regions.

of different crossover methods, we measured the average of hit distance over differ-
ent selection pressure levels, for the three crossover methods studied in this paper.
Figures 9(A)–(C) show that the selection pressure has a large effect on explorative
crossover methods, while the exploitative crossover methods undergo a lesser decline.
The significant change in hit distance observed in explorative crossover methods is
due to the conflicting biases of these crossovers and selection, where increasing the se-
lection pressure overwhelms the bias of crossovers. Figures 9(D)–(F) compare the hit
distance for crossovers with balanced, exploitative and explorative parameter settings,
respectively.

As indicated in Section 2.2, the total displacement characterises a population’s dy-
namics by measuring the amount of change population activities cause to the positions
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Figure 11: Model grid visualised using U-Matrix method to show the change in node
vectors movements as they track population activity. Darker areas represent node vec-
tors that are close to each other and vice versa.
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Figure 12: Hit distance and displacement comparison over the period of a run for EAs
using different crossovers.

of node vectors. Populations that have a high total displacement exhibit a highly ex-
plorative nature, as they tend to transfer their activity regions around the search space
and not to concentrate on certain regions. They usually have the ability to escape local
optima, but they may risk abandoning the global optimum due to their tendency to
widen and diversify the search. Figure 10 shows the effect of using different crossover
methods and different level of selection pressure on the population’s total displace-
ment. Algorithms with explorative crossovers have a greater total displacement. Also,
increasing the selection pressure affects them more than exploitative crossovers.

Figure 11 uses the U-Matrix method (Ultsch and Siemon, 1990) (which colours
node vectors based on the average distance of their neighbours) to illustrate the move-
ments of node vectors as they track population activity. The figure shows samples of
two runs, StHeur-0.2-2 and StBLX-0.5-2, where the darker areas represent node vectors
that are close to each other, while the light areas represent node vectors that point to
different areas in the search space. We can see that StHeur-0.2-2 has a higher displace-
ment, as the node vectors move faster towards the best-found region. More explanation
on this particular example will be provided bellow.

Comparing population displacement and hit distance reveals information about
different operator biases and the way they explore the search space. Figure 12 shows
examples of how hit distance and displacement of different EA change over a run. In
Figure 12(A) we notice that StHeur-0.2-2 has a low hit distance compared to StBLX-0.5-
2. However, StHeur-0.2-2 displacement (Figures 12 (D)) is greater than that of StBLX-
0.5-2 and this changes in a fashion that implies a rapid move to a region in the search
space that is then followed by a sudden slowing down of its dynamics. This suggests
that Heur-0.2 crossover has a stronger bias and tend to move the population in the direc-
tion of good observed fitness values, while BLX-0.5 tends to explore around activity regions
longer and does not guide the search in such a directed way. The same explanation ap-
plies to StBLX-0.0-2 and StBLX-0.75-2 in Figures 12(B) and (E), while Figures 12(C) and
(F) show that StHeur-0.1-2 and StArth-0.2-2 have approximately the same displacement
behaviour despite the fact that they have a different hit distance.
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Figure 13: Fitness-dependency of activity, Ut(act|fit), for EAs with Arth-λ, BLX-α and
Heur-λ crossovers and different population handling techniques.

4.3 Characterising Exploitation Behaviour

Experiments were carried out to characterise exploitation behaviour of the same set
of algorithms by assessing the fitness-dependency of our collective-behaviour fea-
tures. Figure 13 shows the fitness-dependency of the activity of different algorithms
over time. When a population is more diverse and has a wide range of fitness val-
ues, which is the case of the initial population, algorithms show a higher level of ex-
ploitation as they tend to be more selective and focus on regions of good fitness. As
the run progresses and the activity regions become smaller and so does the range of
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(E) Exploitative parameter settings
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Figure 14: Average fitness-dependency of activity, Uavg(act|fit), for different parameter
settings for three crossover methods over different levels of selection pressure.
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fitness values, our exploitation indicator declines towards a lower value which de-
pends on the operators used and their parameter settings. Algorithms using heuris-
tic crossover exhibit higher exploitation behaviour, while algorithms with diversity
maintaining/generating techniques (fitness sharing, deterministic crowding and ran-
dom immigrants) show the lowest level of exploitation.

Figure 14 shows the effect of changing the selection pressure on the average of
fitness-dependency of activity Uavg(act|fit). In particular, Figures 14(A)–(C) show
Uavg(act|fit) for the three crossover methods with four different settings for each, while
Figures 14(D)–(F) compare algorithms with three different parameter settings. Notice
that for most of these algorithms as we increase the selection pressure, the bias of selec-
tion tends to overcome the bias of crossover and the collective behaviour tends to be-
come more exploitative. It is clear from the figures that when crossover has an exploita-
tive bias (Heur-0.1, . . . , Heur-0.4, Arth-0.2, Arth-0.4, BLX-0.0 and BLX-0.25), increasing
selection pressure forces the algorithms to have similar exploitation behaviours regard-
less of the parameter settings of crossover. That is because these operators have a bias
consistent with selection. On the contrary, crossover methods with explorative param-
eter settings tend to be more resistant to the bias of selection as shown in Figure 14(G).

Figures 15 and 16 depict the effects of the selection pressure on fitness-dependency
of hit distance (Uavg(hd|fit)) and displacement (Uavg(dis|fit)), respectively. These ef-
fects are more marked for fitness-dependency of activity than for the other features
(more details are provided in Table 1), although our exploitation behaviour indicators
are still increasing functions of the selection pressure. All crossover methods, approxi-
mately, have their bias overcome by the selection bias as the selection pressure increases
However, algorithms using crossovers with explorative parameter settings are more re-
silient to the selection bias, as shown in Figures 15(G) and 16(G). Note also that in Fig-
ures 15(F) and 16(F), fitness-dependency of hit distance and displacement of algorithms
with exploitative parameter settings vary to a lesser extent.

Table 1 summarises our exploitation indicators for Standard EAs. The table shows
the minimum, maximum, and range of each of our three fitness-dependency averages
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Figure 15: Average fitness-dependency of hit distance, Uavg(hd|fit), for different pa-
rameter settings for three crossovers over different levels of selection pressure.

Evolutionary Computation Volume x, Number x 23



M. Turkey and R. Poli

2 3 4 5 6 7 8

0.3

0.4

0.5

0.6

 

 

(D) Balanced parameter Settings

StBLX−0.5
StHeur−0.2
StArth−0.4

2 3 4 5 6 7 8

0.3

0.4

0.5

0.6

U
a
v
g
(d
is
|f
it
)

 

 

(A)Fitness-Dependency of Disp. in StBLX

StBLX−0.0
StBLX−0.25
StBLX−0.5
StBLX−0.75

2 3 4 5 6 7 8

0.3

0.4

0.5

0.6

 

 

(B)Fitness-Dependency of Disp. in StHeur

StHeur−0.1
StHeur−0.2
StHeur−0.3
StHeur−0.4

2 3 4 5 6 7 8

0.3

0.4

0.5

0.6

 

 

(C)Fitness-Dependency of Disp. in StArth

StArth−0.2
StArth−0.4
StArth−1.2
StArth−1.5

2 3 4 5 6 7 8

0.3

0.4

0.5

0.6

Tournament Size (Selection Pressure)
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Figure 16: Average fitness-dependency of displacement, Uavg(dis|fit), for different pa-
rameter settings for three crossover methods over different levels of selection pressure.

for the three crossover methods over all the possible settings and all selection pressure
levels. From the table we see that Uavg(act|fit) has the lowest minimum value and
the biggest maximum value, thus, the largest range, among all dependency measures.
On the other hand, we see that Uavg(hd|fit) has the highest minimum value and the
smallest range among all dependency measures. These two observations tell us that the
activity is more driven by selection because increasing the selection pressure increases
the fitness-dependency, while the hit distance is mainly dependent on crossover, as
changing the selection pressure does not have a significant effect on fitness depen-
dency. Displacement fitness-dependency ranges are in between these extremes, which
suggests that both selection and crossover have an effect on its fitness dependency. By
looking at each of the table parts separately, we notice that heuristic crossover (Heur-λ)
has the highest fitness dependency, which is consistent with its fitness-exploiting na-

Table 1: Minimum, maximum and range of fitness-dependency averages of the three
crossover methods across all parameter settings and selection pressures used in our
experiments. Underlined and Bold values represent the smallest and biggest value for
each column within each part of the table.

Dependency Measure Algorithm Minimum Maximum Range
Uavg(act|fit) StArth 0.3262 0.6583 0.3321

StBLX 0.2674 0.6597 0.3923
StHeur 0.3505 0.6648 0.3142

Uavg(hd|fit) StArth 0.3775 0.5742 0.1967
StBLX 0.3711 0.5599 0.1888
StHeur 0.4812 0.5701 0.0889

Uavg(dis|fit) StArth 0.3365 0.5502 0.2137
StBLX 0.2914 0.5461 0.2547
StHeur 0.3892 0.5547 0.1655
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ture in handling the genetic material. We also see that hit-distance fitness-dependency
of the same crossover is the least affected by selection pressure. On the other hand,
blending crossover (BLX-α) has the lowest minimum fitness-dependencies for all the
three exploitation indicators, which can be attributed to its stochastic nature (although,
by looking at the last column of the table, we see that selection pressure increases the
fitness-dependency of BLX-α).

5 Conclusions

In this paper, we have presented a model to represent the collective dynamic behaviour
of population-based algorithms. As we saw in Section 1, previous models used either
the genotypic or the phenotypic representation to capture such behaviour. Many such
models are tailored to evolutionary algorithms (usually a simple version of them) and
have a limited practical use. Here we have proposed an algorithm-independent empir-
ical approach that uses a sequence of topological genotypic and phenotypic represen-
tations (at the same time) to capture the population collective behaviour. Our models
allow one to represent the dynamics at different levels of abstraction, via the aggrega-
tion of the most elementary components of the model into more coarse-grained entities.

In addition, a number of measures have been proposed to represent different fea-
tures of the collective dynamic behaviour of a population. These fall within two cat-
egories: activity-related features and distance-related features. Activity-related mea-
sures describe the way an algorithm distributes its activities around regions in the
search space while distance-related measures describe the population’s dynamics from
a geometric viewpoint. These measures can be used to qualitatively characterise the
exploration/exploitation behaviour of an algorithm. Also, a set of fitness-dependency
measures are introduced that can be used as indicators of an algorithm’s exploitation
behaviour. These measures assess the dependency of different population activity on
fitness values, in order to characterise the exploitation tendency of an algorithm. We
used an entropy-based measure, namely the uncertainty coefficient, to quantify the de-
pendency of different emergent features of the collective behaviour on the fitness.

The proposed model has been implemented using a modified version of a self-
organising map. SOMs are used to capture the distribution of the initial population,
and track its moves as the algorithm operates on solving the problem and creates new
individuals in different areas of the search space. There is nothing special about this
choice. Other topology preserving algorithms might have been used. Also, for a num-
ber of features, one does not need a topology and so a vector-quantisation algorithm
would suffice. In the future, we will investigate the relative benefits and drawbacks of
alternative techniques.

In this article, we have studied the collective dynamic behaviour of EAs focus-
ing on the effect of using different crossover methods, various parameter settings, and
different population handling techniques. The impact of combining consistent or con-
flictive biases on the emergent features of the collective behaviour has been studied.
However, we believe our methods would also work well with other population-based
algorithms. In the future, we will explore also this avenue of research.

Results of experimenting with different EAs have shown that the proposed mea-
sures are able to capture new aspects of the population dynamics and reveal important
features of the collective behaviour. Experiments have also shown that our proposed
measures of exploitation are useful in quantifying the exploitation behaviour of popula-
tions. The proposed measures enable a new level of algorithm comparison and provide
tools to investigate the effect of combining different biases on the resulting collective
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behaviour of a population.
Our model is an effort to contribute to our understanding of the collective dynamic

behaviour of population and the exploration/exploitation phenomena. It provides an
empirical analysis tool that allows us to represent the dynamic behaviour at different
levels of abstraction and to identify and measure different emergent features of the
dynamic behaviour, thus, enabling us to better describe and, potentially, tune that be-
haviour. By studying the dependency between the emergent features, we tried to define
what constitutes exploitation (or exploration) and to understand the effect of operators
with different biases on the collective dynamic behaviour of populations.

This model can also be of use by EA practitioners for analysing the effects of opera-
tors and for tuning their control parameters. It can help characterise the way contradic-
tory/consistent biases combine together to produce the collective behaviour, or how
populations behave differently according to the nature of the fitness landscape they
are operating on. This can help identify what make certain algorithms fail/succeed
in searching certain fitness landscapes. All these issues will be investigated in future
work.
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Appendix

A EAs Parameter Settings, Naming Convention, Techniques and
Benchmark Problems

In this work, we used generational evolutionary algorithms with four population han-
dling techniques: standard, fitness sharing, deterministic crowding and random im-
migrants. Except deterministic crowding that uses its own selection mechanism, we
used tournament selection with different tournament sizes to provide different levels
of selection pressure. Table 2 summarises the common parameter settings among all
the EAs that have been used in our experiments.

We used a naming standard for EAs to capture four facts about an algorithm:
population handling technique, crossover method, crossover control parameter and
tournament size (selection pressure). The algorithm name has the format PPCCCC-r-t
where PP denotes population handling technique as follows: St: Standard EA, FS:
Fitness Sharing EA, Cr: Deterministic Crowding EA and RI: Random Immigrant EA.
CCCC refers to the crossover method, Arth: Arithmetic Crossover, BLX: Blending
Crossover and Heur: Heuristic Crossover. r is a real number representing the control
parameter of the crossover method used and t is an integer representing the tourna-
ment size. For example, FSArth-0.4-4 is an EA using fitness sharing and the arithmetic
crossover with control parameter 0.4 and tournament size 4.

Table 2: Parameter settings of the evolutionary algorithms used in our experiments
Parameter Value
Population size 100
Crossover rate 0.75
Mutation rate 0.2
Mutation step [0, 1.0]
Individual length 5
Total number of evaluation per run 10,000
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In addition to standard generational EA, we used three population handling tech-
niques, they are: i) Fitness sharing (Goldberg and Richardson, 1987) is a fitness scaling
mechanism that alters only the fitness evaluation stage of an EA and can be used with
any other techniques. In this method, similar individuals (located in the vicinity of each
other on the fitness landscape) have to share the fitness among them. Thus, the num-
ber of individuals that can reside in an area is limited by the fitness of that area. A full
description can be found in (Back et al., 1997). ii) Crowding techniques (DeJong, 1975)
insert new individuals into the population by replacing similar individuals. However,
replacement errors may prevent crowding technique from maintaining individuals on
different but nearby peaks. Deterministic crowding (Mahfoud, 1992, 1995) is designed
to minimise the replacement error. A full description and of the algorithm and a pseu-
docode can be found in (Back et al., 1997). iii) Random immigrants mechanism (Cobb
and Grefenstette, 1993) replaces part of the population with randomly created individ-
uals. In this work, we replace 10 per cent of the worst individuals in population by
random ones. We perform this replacement at the end of every EA round.

We tested the algorithms on 5-dimensional real-valued optimisation problems ob-
tained by composing a random combination of 10 basic functions taken from the fol-
lowing family: Sphere, Ranstrigin and Griewank. These functions were randomly gen-
erated, shifted, rotated and combined. In our experiments, we conducted 100 runs for
each algorithm settings (e.g., crossover method and its control parameter, tournament
size . . . etc.). Each run operated on a random fitness landscape. Full details on the
benchmark functions and how to compose them can be found in (Liang et al., 2005).

B Crossover Operators for Real-coded Evolutionary Algorithms

Three crossover methods have been used in this paper. They all return two offspring
and all have a control parameter that can be used to tune their exploration/exploitation
behaviour. These methods are:

• Arithmetic crossover (Arth-λ) (Michalewicz, 1996): Two offspring individu-
als, C1 and C2, are produced from two parents, P1 and P2, as follows:
C1 = P1 × λ+ P2 × (1− λ) and C2 = P1 × (1− λ) + P2 × λ.

• Blending Crossover (BLX-α) (Eshelman and Schaffer, 1992): Two offspring indi-
viduals are produced by randomly (uniformly) generating values for their genes.
Suppose that pi1 and pi2 are the ith parameter of parents P1 and P2, respectively, the
corresponding parameter, cik, of offspring Ck is randomly chosen from the interval
[pmin − I × α, pmax + I × α], where pmin = min{pi1, pi2}, pmax = max{pi1, pi2} and
I = pmax − pmin.

• Heuristic Crossover (Heur-λ)(Herrera and Lozano, 1996; Wright, 1990): This
method that creates one offspring individual around the parent with the high-
est fitness. Here we modified it slightly so as to produce two offspring. Sup-
pose that we have two parent individuals, P1 and P2, and P1 is the one with
higher fitness, then the two offspring individuals, C1 and C2, are created as:
C1 = P1 − λ× (P2 − P1) and C2 = P1 + λ× (P2 − P1).
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