
Guided Fast Local Search for Speeding Up a
Financial Forecasting Algorithm
Ming Shao∗, Dafni Smonou∗, Michael Kampouridis†, Edward Tsang∗

∗Centre for Computational Finance and Economic Agents, University of Essex, Wivenhoe Park, CO4 3SQ, UK
†School of Computing, University of Kent, ME4 4AG, UK

Abstract—Guided Local Search is a powerful meta-heuristic
algorithm that has been applied to a successful Genetic Pro-
gramming Financial Forecasting tool called EDDIE. Although
previous research has shown that it has significantly improved
the performance of EDDIE, it also increased its computational
cost to a high extent. This paper presents an attempt to deal
with this issue by combining Guided Local Search with Fast
Local Search, an algorithm that has shown in the past to be able
to significantly reduce the computational cost of Guided Local
Search. Results show that EDDIE’s computational cost has been
reduced by an impressive 75%, while at the same time there is
no cost to the predictive performance of the algorithm.

I. INTRODUCTION

In the area of computational finance, financial forecasting
plays a more and more important role and is widely applied
in the industry [1]. Due to its importance, an increasing
number of investors and researchers have been attracted to
investigate in the field [2]–[5]. In recent years, with the latest
technological advancements, many financial forecasting tools,
which take advantage of computational intelligence, have been
released [6]. A new version of a Genetic Programming (GP)
financial forecasting tool called EDDIE-8 has been released
[3], which is the extended version of EDDIE (Evolutionary
Dynamic Data Investment Evaluator) [2], [3], [7], [8]. The new
feature of EDDIE-8, as compared to its predecessor EDDIE-
7, is the enriched and extended grammar of Genetic Decision
Trees (GDTs) [3], [5], [7]. More details on EDDIE will be
provided in Section II-B.

Results in [3], [9] have shown that better solutions have
been reached by EDDIE-8 thanks to its extended grammar.
However, this new grammar led to an enlarged search space,
which could potentially lead to ineffective search. To be more
specific, due to the significantly larger search space, it is
easier for good solutions to be missed. One of the works
that attempted tackling this issue was Smonou et al. [2]. This
work implemented three Meta-heuristics (Simulated Annealing
(SA), Tabu Search (TS), and Guided Local Search (GLS)),
which were applied to the period nodes of the GP trees.
Results showed that all of these meta-heuristics provided
significant improvements to the predictive performance of
EDDIE-8. Smonou et al. [2] also state that the GLS algorithm
returned the best performance out of the three, significantly
outperforming its opponents. However, a new issue arose,
which was the algorithm’s computational cost, as the GLS
introduced a high number of additional fitness evaluations.
The above is thus a drawback that needs to be tackled, as

fast algorithms are of great importance in the field of financial
forecasting.

Fast Local Search (FLS) [2], [3] is a heuristic, which has
been proven helpful in improving the efficiency of GLS [10],
as it has been found that it can significantly speed up the
algorithm. Our goal thus in this paper is to implement FLS
and combine it with GLS, as an attempt to reduce the com-
putational time of GLS, while at the same time maintaining
the algorithm’s predictive performance at the same levels. The
combination of GLS and FLS is called Guided Fast Local
Search (GFLS) [10]. Doing the above is an important step
towards making EDDIE an even better financial forecasting
algorithm, which is vital, because of the significance of the
financial forecasting field itself, which requires the continuous
development of new and improved algorithms that can be used
for real-life trading.

The rest of the paper is divided into five parts: Section
II offers more detail on the EDDIE-8 algorithm. Section III
presents the local search algorithms that are used as part of
EDDIE-8. Section IV discusses the experimental designs, and
Section V presents the results. Finally, Section VI concludes
the paper and discusses potential future work.

II. EDDIE-8

EDDIE is a Genetic Programming financial forecasting tool.
It attempts at answering the question: ”Will the price of stock
X go up by r% within the next n days?” [4], [11], [12]. This
Section will present the process of the latest version of EDDIE,
called EDDIE-8.

A. The general process of EDDIE-8

As already mentioned, EDDIE-8 is a GP algorithm. In this
section, we are going to present the unique features of the
algorithm, which are: data preparation, GDT initialization, and
GDT evaluation. The rest of the algorithm is a standard GP
process.

1) Data preparation: A time series of historical data need
to be fed into system [2]. The data used are daily closing prices
of stocks and indices and are freely available online such as in
Yahoo Finance website http://finance.yahoo.com [2]. The time
series is divided into two parts, which are the training and
testing data. The training data are used to discover a GDT
with the highest fitness value, which is then applied to the
testing data for evaluation.

Secondly, six technical indicators [13] which have been
implemented in EDDIE are the Moving Average (MA), Trade
Break Out (TBR), Filter (FLR), Volatility (Vol), Momentum
(Mom), and Momentum Moving Average (MomMA) [4]. The
period values of indicators are inside the interval [MinP,
MaxP]. More information about the interval is provided in
Section IV. The actual values of each indicator over the
training data are calculated.

Lastly, as mentioned earlier, EDDIE is trying to answer the
question: ”Will the price of stock X go up by r% within the
next n days?” The actual signals of time series are calculated
by looking ahead of n days [3]. The signals are assigned the
value 1 if the prices do increase by r% within the coming n
days, or 0 if they do not. The values r and n are specified by
the user.

2) GDT initialization: To begin with, the Backus Normal
Form (BNF) [2], [3] (grammar) is illustrated in Fig. II-A2. In
addition, a very simple GDT is presented in Fig.II-A2.From
the Fig.2 it can be seen that, the root of GDT is an ”If-then-
else” statement. The ”If” branch is either a Boolean or a logic
operator which eventually returns a Boolean value ”True” or
”False”. If ”True”, it goes to ”then” branch, which is another
GDT, otherwise it goes to ”else” branch which can be either
a GDT or a decision. The decision is a constant value 1 or 0
which represents buy or not-to-buy respectively.

The VarConstructor statement has two children, which are
a technical indicator and a period. The values of the indicators
and periods are all randomly picked by the system from the
interval [MinP, MaxP]. For the functionality, the number of
combinations between indicator and period are much greater
than earlier versions of EDDIE. Section II-B gives more
detailed illustrations on this point.

<Tree> ::= If-then-else <Condition><Tree><Tree> | Decision
<Condition> ::= <Condition> ”And” <Condition> |

<Condition> ”Or” <Condition> |
”Not” <Condition> |
VarConstructor <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period |
Vol period | Mom period | MomMA period

<RelationOperation> ::= ”>” | ”<” | ”=”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols,
Period is an integer within a parameterized range [MinP, MaxP],
Decision is an integer, Positive or Negative implemented,
Threshold is a real number.

Fig. 1. The BNF of GDT [3].

3) GDT evaluation: The financial forecasting problem that
EDDIE is dealing with is a typical classification problem. To
evaluate the fitness of EDDIE’s GDTs, we use the follow-
ing performance metrics: Rate of Correctness (RC), Rate of
Missing Chances (RMC), and Rate of Failure (RF). These are
calculated by using Equations 1, 2 and 3 respectively, where
TP represents the True Positive, TN the True Negative, FP the
False Positive and finally FN the False Negative predictions.

RC =
TP + TN

TP + TN + FP + FN
(1)

If

<

VarConstructor

MovingAverage 20

6.4

Buy(1) If

>

VarConstructor

Momentum 50

5.57

Not-Buy(0) Buy(1)

Fig. 2. Sample GDT generated by EDDIE-8.

RMC =
FN

FN + TP
(2)

RF =
FP

FP + TP
(3)

These metrics are then combined in Equation 4, which is the
fitness function. Different combinations of weights represent
different types of investors [12]. For example, a conservative
investor would prefer to avoid incorrect predictions by giving
higher weight of RF [3], [12].

ff = w1 ∗RC − w2 ∗RMC − w3 ∗RF (4)

As explained, the rest of the algorithm follows a typical
GP process. The experimental parameters of the GP will be
presented in Section IV.

B. Extended search space

In the industry and the literature so far, predictions are
made with the use of technical analysis indicators with pre-
specified period lengths. For instance, when using the Moving
Average (MA) indicator, traders usually use a short-term and
a long-term MA, e.g., 12 days and 50 days MA. However, the
problem with the above approach is that it does not guarantee
that the selected periods are the optimal ones. Why should a
12 days MA be better across all possible datasets than a 15
days MA?

To overcome the above limitations, EDDIE-8 was intro-
duced. As we saw in the previous section, EDDIE-8 is a more
flexible algorithm, as it allows the GP to search in the space
of the periods and create new technical indicators. Thus, the
algorithm’s user is not restricted in pre-specified indicators.
The advantage of this approach was that it led to new and
improved technical indicators, which had never been used
before.

However, this flexibility led to an increased search space,
which caused the GP to occasionally miss good solutions. To
illustrate this, we’ll give an example by comparing EDDIE-
8 to its predecessor, EDDIE-7, which also uses the same
six indicators, but with two fixed periods, 12 and 50 days
(similar to what happens in other works in the literature, and
also in the industry). If a given GDT has a maximum of k
indicator nodes, then the number of possible combinations,

under EDDIE-7, for the GDT’s indicators is (6 × 2)k. On
the other hand, since EDDIE-8 uses the same six indicators
with period values between the interval [2,65], which contains
64 period values, then the number of possible combinations is
(6×64)k. Comparing these two numbers (6×2)k and (6×64)k,
it can be seen that the number of possible combinations for a
GDT’s indicators in EDDIE-8 is significantly larger than it is
in EDDIE-7. As a result, while EDDIE-8 on average outper-
formed EDDIE-7, it could occasionally miss good solutions
due to ineffective search.

C. Heuristics, Meta-heuristics and Hyper-heuristics

To date, a lot of research has been done in order to
improve the search quality, and consequently, the performance
of EDDIE-8. A significant step towards this was [2], where
Smonou et al. applied three meta-heuristics, namely Simulated
Annealing (SA), Tabu Search (TS), and Guided Local Search
(GLS), to the period nodes of EDDIE-8. Results showed
that the algorithm’s prediction performance had significantly
improved. In addition, what was remarkable was that the
GLS algorithm led to 35 significant improvements in the best
results of the performance metrics, and only to 4 diminutions.
However, a disadvantage of the GLS approach was that it made
EDDIE-8 significantly slower.

To address the above issue, our goal in this paper is to speed
up the GLS algorithm. To achieve this, we will be using an
algorithm called Fast Local Search (FLS), which is a heuristic
that has been proven helpful in the past in improving the
efficiency of GLS [10]. As has been shown by [10], FLS
drastically speeds GLS up by redefining the neighborhood
search process. The next section explains how these algorithms
are implemented.

III. METHODOLOGY

In this section, we will first start by presenting how a Hill
Climber (HC) was applied to EDDIE-8’s period nodes. This
is because Guided Local Search is a meta-heuristic that sits
on top of HC. We will then move to the presentation of GLS
and FLS.

A. Hill Climbing

In computer science, Hill Climbing (HC) is a ”Mathematical
Optimization” [14] technique and a branch of ”Local Search”
[14]. It is also an ”Iterative Improvement” [15] heuristic that
starts with a random solution, and attempts to improve it by
iteratively changing one or more attributes of it. Russell et
al. [15] mention that it is a practical approach and is more
likely to generate better results to a problem [15]. However,
the drawback of HC is the high possibility of getting stuck in
local optima so it is not guaranteed to locate the best solution
[15].

The process where HC is applied to EDDIE-8 is illustrated
in the Algorithm 1. Firstly, a proportion of the GDTs popu-
lation is randomly selected to undergo the HC process. Then,
for each selected GDT all period nodes are identified. These
will constitute the neighborhood of the HC. In the next step,

the period nodes are visited in a random order and updated by
a random marginal change k. For instance, if a given period
is 23, and k = +5, then the period would be updated to
28. After this update, the fitness of the GDT is calculated
and compared to the fitness before the period change. If the
new fitness is higher, then the new period will be kept. This
process is repeated for all period nodes of the selected GDTs,
until the fitness function has failed to improve a number of
m consequent times. The pseudo-code of HC is presented in
Algorithm 1.

Algorithm 1 Pseudo code of HC. (Based on [15])
Input: GDT, original GDT wants to be improved;

maxFailure, local optimum condition;
1: failures ← 0;
2: while failures < maxFailure do
3: pickedVarConstructor ← pickVarConstructor(GDT); // Randomly

picked a varConstructor node from inputted GDT.
4: fitnessBeforeHC ← Fitness(GDT); // Calculate fitness value of

inputted GDT.
5: k ← MarginChange(); // Pick a random modification value.
6: GDT’ ← copyGDT(K); // Duplicate a GDT with new period value.
7: fitnessAfterHC ← Fitness(GDT’);
8: if fitnessAfterHC > fitnessBeforeHC then
9: GDT← GDT’; // Keep new GDT if the fitness has been improved.

10: else
11: failure++;
12: end if
13: end while
14: return GDT;

B. Guided Local Search

Guided Local Search (GLS) is a meta-heuristic, which sits
on top of local search methods (e.g. Hill Climbing) to change
its behaviours in order to guide them to escape from local
optima [10]. It is realized by using three terms (solution
features, augmented fitness function and penalties) to confine
the local search to focus on promising regions of search space
[10].

First of all, the term solution features is employed by GLS to
characterize solutions [10]. The domain of variables is divided
into a number of non-overlapping and equally-sized intervals
[16]. Every feature has a cost value (constant or variable),
which indicates the extent of impact the corresponding so-
lution property has [10]. The indicator function of solution
features fi is shown in Equation 5:

Ii(s) =

{
1 solution s has property i
0 otherwise , s ∈ S (5)

In addition, in GLS, the Augmented Fitness Function (AFF)
is used instead of EDDIE-8’s fitness function (Equation 4), to
guide the local search to escape from local maximum. The idea
is to make the local maximum more costly, so that GLS has
more chances to visit its neighbors [10]. The AFF is formed
as shown in Equation [10]:

h(s) = g(s)− λ×
M∑
i=1

pi × Ii(s) (6)

where: g is original fitness function,
M is the number of features defined over solutions,
pi is penalty parameter corresponding to feature fi,
λ is regularization parameter and represents the importance of

penalties.

Last but not least, whether the penalty parameter of feature
fi is modified depends on their utility values. Utility is
calculated using Equation 7:

util(s, fi) = Ii(s)×
ci

1 + pi
(7)

where: ci is the cost value of feature fi.

The penalty parameters are increased by one for the features
that have the maximum utility value [10]. They record how
many times the corresponding features have been penalized.
From equation 7 it can be seen that the higher the cost value,
the more likely the corresponding feature will be penalized.
In contrast, the more times a particular feature has been
penalized, the lower the utility of penalizing it again [17].

GLS has already been implemented on EDDIE by Smonou
et al. in [2]. In their implementation GLS sits on top of a basic
HC (as mentioned in section III-A), to guide it to escape from
local maxima. The stopping criterion of GLS is when HC has
been called 10 times. The procedure of GLS in EDDIE-8 is
shown in Algorithm 3. At the beginning of GLS, indicators
and penalties are initialized (Lines 2 - 5). In each iteration of
GLS, the augmented fitness value is calculated (Line 8). Then
HC is executed based on augmented fitness value (Lines 10
- 21). Lastly, the GLS indicators and penalties are adjusted
based on a new GDT and utility value (Lines 22 - 28).

C. Guided Fast Local Search

Prior to explaining the GFLS, it is important to mention
the way FLS works. The current neighborhood is divided
into a number of small sub-neighborhoods with a binary
bit attached to each of them [10]. The idea is to scan the
sub-neighborhoods with bit equals to 1 in a given order
continuously. Initially, every bit is set to 1. The bit is switched
to 0 if the corresponding sub-neighborhood is examined and
does not make any improvements; otherwise the bit is kept as
1. As the solution improves, the number of bits, which equal
to 1 gets fewer and fewer, and eventually the procedure ends
up with every bit being 0.

As Voudouris [10] states, although FLS does not generally
generate ideal results, it becomes a very powerful optimization
algorithm (called GFLS) when combined with GLS. The idea
is to associate solution features to sub-neighborhoods. In this
case, the indicators are consistent with bits. Voudouris [10]
also states that with FLS, GLS can be significantly sped up.
Thus, for this reason FLS is decided to be implemented and
embedded in GLS. The pseudo code of GFLS is illustrated in
Algorithm 3.

IV. EXPERIMENTAL DESIGN

A. Data

As mentioned in section II-A1, the datasets that have been
used in the project are daily closing prices of stocks and

Algorithm 2 Pseudo code of GLS on EDDIE-8
Input: GDT, maxFailure
1: M ← 16; // Initialize number of features.
2: for i ← 1 until M do
3: Ii ← initIndicator(GDT); // Initialize indicators based on GDT.
4: pi ← 0; // Initialize penalties to 0.
5: end for
6: k ← 0;
7: while k < 10 do
8: h ← g - λ×

∑M
i=1 pi × Ii(s);

9: failures ← 0;
10: while failures < maxFailure do
11: pickedVarConstructor ← pickVarConstructor(GDT); // Randomly

picked a varConstructor node from inputted GDT.
12: fitnessBeforeHC ← Fitness(GDT); // Calculate fitness value of

inputted GDT.
13: k ← MarginChange(); // Pick a random modification value.
14: GDT’ ← copyGDT(K); // Duplicate a GDT with new period

value.
15: fitnessAfterHC ← Fitness(GDT’);
16: if fitnessAfterHC > fitnessBeforeHC) then
17: GDT ← GDT’; // Keep new GDT if the fitness has been

improved.
18: else
19: failure++;
20: end if
21: end while
22: for i ← 1 until M do
23: util(s, fi) = Ii(s)×

ci

1 + pi
;

24: Ii ← initIndicator(GDT’); // Update indicators based on GDT’.
25: end for
26: for each i such that utili is maximum do
27: pi ← pi + 1;
28: end for
29: end while
30: return GDT;

indices. These stocks are from FTSE 100 (UK) and are the
following: Aggreko, Barclays, British Petroleum, Cadbury,
Carnival, Easyjet, First, Hammerson, Imperial Tobacco, Marks
& Spencer, Next, Royal Bank of Scotland (RBS), Schroders,
Sky, Tesco, Vodafone, and Xstrata. The indices are DJIA
(USA), HSI (Hong Kong), MDAX (Germany), NASDAQ
(USA), NIKEI (Japan) and NYSE (USA).

B. EDDIE-8 Parameters

The parameters of EDDIE-8 are kept the same as in [2],
and [3], due to consistency purposes. The general experimental
setting parameters are listed in Table I.

TABLE I
PARAMETERS OF EDDIE-8.

Parameters Value
Training period 1000
Testing period 300

n days 20
{MinP, MaxP} {2,65}

C. GP Parameters

The GP parameters are listed in Table II. All of them are
kept the same as in [2] for the purpose of results comparison,
even through the results are not so sensitive to changes in

Algorithm 3 Pseudo code of GLS combined with FLS.
Input: GDT
1: M ← 16; // Initialize number of features.
2: for i ← 1 until M do
3: Ii ← initIndicator(GDT); // Initialize indicators based on GDT.
4: pi ← 0; // Initialize penalties to 0.
5: end for
6: k ← 0;
7: while k < 10 do
8: h ← g - λ×

∑M
i=1 pi × Ii(s);

9: for i ← 1 until M do
10: biti ← indicatori;
11: end for
12: while ∃ bit, bit=1 do
13: pickedVarConstructor ← pickVarConstructor(GDT);
14: period ← Period(pickedVarConstructor); // Get period value from

inputted pickedVarConstructor.
15: bitIndex ← Index(period); // Get index number of inputted period.
16: if bitbitIndex =1 then
17: fitnessBeforeHC ← Fitness(GDT); // Calculate fitness value of

inputted GDT.
18: k ← MarginChange(); // Pick a random modification value.
19: GDT’ ← copyGDT(K); // Duplicate a GDT with new period

value.
20: fitnessAfterHC ← Fitness(GDT’);
21: if fitnessAfterHC > fitnessBeforeHC then
22: GDT ← GDT’; // Keep new GDT if the fitness has been

improved.
23: bitbitIndex =1; // Set bit to 1 if the corresponding period

has improved the fitness of GDT.
24: else
25: bitbitIndex =0; // Set bit to 0 if not.
26: end if
27: for i ← 1 until M do
28: util(s, fi) = Ii(s)×

ci

1 + pi
;

29: Ii ← initIndicator(GDT’); // Update indicators based on
GDT’.

30: end for
31: for each i such that utili is maximum do
32: pi ← pi + 1;
33: end for
34: end if
35: end while
36: end while
37: return GDT;

these parameters [3]. In order to analyze the results, GP is
run 50 times for each dataset. The mean and the best values
are calculated and recorded. The details of the results are
demonstrated in Section V.

TABLE II
PARAMETERS OF GP.

GP parameters Value
Max Initial Depth 6

Max Depth 8
Generations 50

Population size 500
Tournament size 2

Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01

D. HC Parameters

As it was mentioned in section III-A, the HC would quit
when there was a predefined number of failures in terms of

fitness improvement. In previous works [2], [7], the maximum
number of failures was set to m = 10 times. However, in
our current work we were interested in investigating whether
we could achieve further fitness improvements if we were to
let the HC ran longer. Thus, we experimented by increasing
“Failure” to 20 and 30. Results showed that there was indeed
an improvement in the average fitness of the GDTs. However,
we also found that the computational time of the algorithm
was increasing linearly with the m number of “Failures”.
Therefore, we decided not to use anything higher than 30, as
it was extremely computationally expensive. In this paper, the
“Failure” value 30 will be used for the rest of our experiments,
since it provides a good balance between the performance and
the computational cost.

E. GLS/GFLS Parameters

As in previous works, GLS is applied to the period values.
The period interval used by EDDIE-8 is [2,65]. Therefore, the
solution features are defined in intervals of four consecutive
numbers. For instance, periods [2, 3, 4, 5] will constitute
Feature 1, periods [6, 7, 8, 9] will constitute Feature 2, and
so on. There are in total 64 period values and can be divided
into 16 features.

Moreover, the value of the regularization parameter λ, which
is part of the AFF (Equation 6), is presented in Equation
8. According to [10], this is an effective and generalized
calculation for λ.

λ = a× g(s)

|F (s)|
(8)

V. RESULTS AND DISCUSSION

This Section demonstrates the results of EDDIE with GLS
and EDDIE with GFLS. Each algorithm has been run 50
times for every dataset specifically for the purpose of the
statistical analysis of the results. The computational times of
each algorithm have been calculated and presented in Section
V-A. Moreover, the results of our experiments are divided into
Average and Best (Sections V-B and V-C respectively) and are
presented by the four metrics of Fitness, RC, RMC and RF.

In addition to the results illustration, in order to reach more
sufficient conclusions about the algorithms performance, the
non-parametric Friedman Test [18], [19], has been applied.
This test presents the average ranking of each algorithm, over
all datasets tested in this work, for each performance metric
(Fitness, RC, RMC, RF). The lower the ranking, the better the
performance of the algorithm.

Last but not least, the post-hoc Bonferroni-Dunn test [20]
has been implemented in order to measure the significance of
the algorithms ranking under a 5% and a 10% significance
level. The null hypothesis H0 is rejected when the algorithms
are significantly different in terms of ranking values.

A. Computational Cost

As it was mentioned in Section II-C, FLS is combined with
GLS with the view to speed up the GLS complicated process.
The idea is once a new GDT is examined and found not better

than the original GDT, it is then regarded as a valley; its
neighbors are also then identified as being in a valley and thus
are not visited. In order to calculate the average computational
time for each algorithm, we looked into the 50 runs of a
single dataset, which was the Aggreko dataset1. The average
computational time of the two algorithms, EDDIE-GLS and
EDDIE-GFLS, for a single run has been calculated and is
presented in Table III.

TABLE III
AVERAGE COMPUTATIONAL TIME OF EDDIE-GLS AND EDDIE-GFLS.

Algorithm Computational time
GLS 168.6774 minutes

GFLS 40.7612 minutes

By comparing the figures in Table III we can reach the
conclusion that FLS has managed to help reducing the com-
putational time of GLS by 75%, from 168 minutes down to
40. This is a significant improvement and meets the main goal
of this paper, which was to reduce the computational times of
GLS.

From the above figures, we can conclude that the effect of
FLS seems is quite significant. Thanks to the breaking down
of the neighborhood to sub-neighborhoods, the search focused
only on the effective parts of the landscape. As a result, the
GFLS algorithm was able to move significantly faster. We
can thus conclude that FLS had indeed been very valuable
in speeding up the algorithm.

In the next section we will be comparing the performance
results between GLS and GFLS. We do not expect GFLS to
be better than GLS, because as [10] said, GFLS does not
generate ideal results; nevertheless, as long as these results are
not significantly different than the GLS, then we can conclude
that it is beneficial using this algorithm, due to the speed up
improvements.

B. Average Results

Tables IV, V, VI and VII present the mean results of Fitness,
RC, RMC and RF for the two algorithms. The best performing
algorithm for a given metric is denoted with bold fonts, and
the average ranking value of each algorithm produced by the
Friedman Test is indicated in the last row of each Table.

As it can be observed by the average results, the GFLS
algorithm has managed to maintain the average results of
EDDIE at the same level as the GLS. Moreover, GLS has
performed better in a total of 49 cases while GFLS in 44
cases. Therefore, both algorithms have similar performance in
terms of average results. Furthermore, the average rankings of
GFLS are better than the GLS in terms of Fitness and RF, and
the GFLS ranks approximately the same with the GLS in RC.
However, with the use of the post-hoc Bonferroni-Dunn test
all differences in the average rankings were proven to be non

1Since the datasets have exactly the same length and the GP experiments
share the same parameters in all datasets, we do not expect the computational
times to differ among the datasets.

significant at 5% level. Therefore at this point we can argue
that GFLS has managed to maintain the same good level of
performance in terms of average results, but with significantly
reduced computational cost.

TABLE IV
THE RESULTS OF MEAN FITNESS.

Dataset GLS GFLS
Aggreko 0.1211 0.1038
Barclays 0.1729 0.1765

BP 0.1854 0.1781
Cadbury 0.2560 0.2629
Carnival 0.1248 0.1063

DJIA 0.2872 0.2817
Easyjet 0.1269 0.1252

First 0.1623 0.1628
Hammerson 0.1323 0.1231

HSI 0.2536 0.2599
Imp 0.2046 0.1999

Marks&Spencer 0.1152 0.1240
MDAX 0.1230 0.1141

NASDAQ 0.1874 0.1983
Next 0.1331 0.1171

NIKEI 0.1515 0.1538
NYSE 0.1730 0.1385
RBS 0.1639 0.1690

Schroders 0.1881 0.1894
Sky 0.1675 0.1813

Tesco 0.2377 0.2343
Vodafone 0.1005 0.1265
Xstrata 0.2180 0.2227

Ranking 1.5217 1.4783

TABLE V
THE RESULTS OF MEAN RC.

Dataset GLS GFLS
Aggreko 0.5074 0.4887
Barclays 0.5556 0.5598

BP 0.5429 0.5351
Cadbury 0.6316 0.6388
Carnival 0.5381 0.5229

DJIA 0.6494 0.6430
Easyjet 0.4657 0.4646

First 0.5033 0.5042
Hammerson 0.5135 0.5043

HSI 0.6135 0.6193
Imp 0.5664 0.5577

Marks&Spencer 0.4796 0.4875
MDAX 0.4963 0.4908

NASDAQ 0.5400 0.5521
Next 0.4861 0.4688

NIKEI 0.5313 0.5294
NYSE 0.5462 0.5153
RBS 0.5287 0.5349

Schroders 0.5573 0.5589
Sky 0.5231 0.5368

Tesco 0.5942 0.5897
Vodafone 0.4842 0.5163
Xstrata 0.5640 0.5716

Ranking 1.4783 1.5217

TABLE VI
THE RESULTS OF MEAN RMC.

Dataset GLS GFLS
Aggreko 0.3088 0.3307
Barclays 0.4161 0.4423

BP 0.4162 0.4226
Cadbury 0.2061 0.1880
Carnival 0.1435 0.1926

DJIA 0.1642 0.1805
Easyjet 0.6340 0.6382

First 0.5347 0.5272
Hammerson 0.4807 0.4828

HSI 0.2178 0.2273
Imp 0.4696 0.5027

Marks&Spencer 0.5139 0.4953
MDAX 0.2098 0.2529

NASDAQ 0.4229 0.3972
Next 0.4808 0.5181

NIKEI 0.2806 0.2661
NYSE 0.2119 0.3184
RBS 0.3896 0.3755

Schroders 0.3217 0.3430
Sky 0.4468 0.4510

Tesco 0.3154 0.3341
Vodafone 0.3217 0.3182
Xstrata 0.3190 0.2913

AverageRank 1.3478 1.6522

TABLE VII
THE RESULTS OF MEAN RF.

Dataset GLS GFLS
Aggreko 0.5081 0.5211
Barclays 0.3962 0.3840

BP 0.3292 0.3357
Cadbury 0.3412 0.3387
Carnival 0.6124 0.6273

DJIA 0.2867 0.2867
Easyjet 0.2971 0.2991

First 0.2872 0.2901
Hammerson 0.4258 0.4371

HSI 0.3092 0.2967
Imp 0.2942 0.2813

Marks&Spencer 0.4040 0.3966
MDAX 0.5127 0.5171

NASDAQ 0.3145 0.3108
Next 0.3683 0.3745

NIKEI 0.4642 0.4575
NYSE 0.4451 0.4627
RBS 0.3830 0.3812

Schroders 0.3803 0.3721
Sky 0.3388 0.3189

Tesco 0.2911 0.2868
Vodafone 0.5262 0.5050
Xstrata 0.2951 0.3037

AverageRank 1.5217 1.4783

C. Best Results

Tables VIII, IX, X and XI present the best results of each
algorithm for the four individual metrics Fitness, RC, RMC

and RF. Once again, the best performing algorithm will be
denoted with bold fonts, and the average ranking value of the
algorithms is included in the bottom row of each Table.

As it can be observed from Table VIII (Best Fitness), there
are certain cases where GFLS has managed to improve the
best fitness of the datasets impressively in comparison to GLS.
More specifically, on the BP dataset, GFLS has improved the
best fitness of BP by 6.4% on Next by 14.5%, on RBS by
7%, on Schroders by 6% and on Xstrata by 8%. Finally even
though the ranking of the GFLS is better than the GLS, this
has been proven to be non significant at a 95% confidence
level.

In addition, the above pattern can also be found in the
remaining Best results (RC, RMC, RF), which are presented in
Tables IX - XI. The GFLS has again offered some impressive
improvements: Barclay’s RMC by 13%, BP’s RMC by 12%,
Next’s RC and RMC by 15 and 18%, respectively, NIKEI’s
RC and RMC by 19 and 36%, respectively, and Xstrata’s RMC
by 14%. However, the overall ranking for each of the three
metrics is again close for GLS and GFLS, and insignificant at
5% level. Therefore, all of the best results observations lead us
to argue that GFLS has maintained the same good performance
of GLS under all four metrics, in terms of Best results.

TABLE VIII
THE RESULTS OF BEST FITNESS.

Dataset GLS GFLS
Aggreko 0.1916 0.1183
Barclays 0.1679 0.1730

BP 0.1025 0.1668
Cadbury 0.2732 0.2032
Carnival 0.1746 0.1166

DJIA 0.2987 0.2134
Easyjet 0.2300 0.1981

First 0.1654 0.0934
Hammerson 0.1379 0.0920

HSI 0.2711 0.2830
Imp 0.1999 0.1509

Marks&Spencer 0.1293 0.1292
MDAX 0.1432 0.0951

NASDAQ 0.2317 0.2076
Next 0.0478 0.1929

NIKEI -0.078 0.1442
NYSE 0.1799 0.1582
RBS 0.1597 0.2285

Schroders 0.1646 0.2267
Sky 0.1897 0.1655

Tesco 0.2672 0.2304
Vodafone 0.0621 0.1054
Xstrata 0.1082 0.1953

AverageRank 1.3913 1.6087

TABLE IX
THE RESULTS OF BEST RC.

Dataset GLS GFLS
Aggreko 0.5933 0.5200
Barclays 0.5533 0.5567

BP 0.4567 0.5233
Cadbury 0.6500 0.5733
Carnival 0.6000 0.5333

DJIA 0.6633 0.5633
Easyjet 0.5867 0.5500

First 0.5100 0.4267
Hammerson 0.5167 0.4733

HSI 0.6333 0.6467
Imp 0.5667 0.5133

Marks&Spencer 0.4933 0.4933
MDAX 0.5067 0.4800

NASDAQ 0.5900 0.5633
Next 0.4000 0.5467

NIKEI 0.3367 0.5300
NYSE 0.5600 0.5267
RBS 0.5233 0.5967

Schroders 0.5333 0.6000
Sky 0.5400 0.5200

Tesco 0.6267 0.5867
Vodafone 0.4267 0.5067
Xstrata 0.4433 0.5400

AverageRank 1.4130 1.5870

D. Further Discussion

From the results presentation it was observed that GFLS
has notably reduced the computational cost of GLS, while
maintaining similar performance to GLS, as all rankings were
proven non significant at a 95% confidence level. This is an
important achievement, because not only GFLS is significantly
faster than GLS, it has also proven to be competitive as well.

TABLE X
THE RESULTS OF BEST RMC.

Dataset GLS GFLS
Aggreko 0.3403 0.4375
Barclays 0.5482 0.4217

BP 0.5436 0.4205
Cadbury 0.1508 0.2737
Carnival 0.1304 0.1739

DJIA 0.1095 0.2333
Easyjet 0.3153 0.3990

First 0.4686 0.6908
Hammerson 0.4379 0.5325

HSI 0.1659 0.1024
Imp 0.3243 0.5892

Marks&Spencer 0.5591 0.5323
MDAX 0.1020 0.3605

NASDAQ 0.3134 0.3234
Next 0.6364 0.4545

NIKEI 0.7764 0.4161
NYSE 0.2840 0.2037
RBS 0.3587 0.4130

Schroders 0.3833 0.3444
Sky 0.5385 0.5077

Tesco 0.2990 0.3039
Vodafone 0.2587 0.4406
Xstrata 0.4860 0.3458

AverageRank 1.4348 1.5652

TABLE XI
THE RESULTS OF BEST RF.

Dataset GLS GFLS
Aggreko 0.4345 0.5000
Barclays 0.3644 0.3962

BP 0.3904 0.3506
Cadbury 0.3391 0.3780
Carnival 0.5745 0.6200

DJIA 0.2943 0.3374
Easyjet 0.3015 0.3068

First 0.3125 0.3118
Ham 0.4277 0.4626
HSI 0.3077 0.3160
Imp 0.3590 0.3274

M&S 0.3692 0.3786
MDAX 0.5019 0.5228

NASDAQ 0.3030 0.3267
Next 0.4286 0.2987

NIKEI 0.6727 0.4405
NYSE 0.4257 0.4580
RBS 0.3949 0.2941

Schrod 0.3901 0.3295
Sky 0.2683 0.3191

Tesco 0.2629 0.3039
Vodafone 0.5602 0.5152
Xstrata 0.3642 0.3137

AverageRank 1.3913 1.6087

Speeding up financial forecasting algorithms is extremely
valuable, as it offers the investors important advantages against
their competitors. In an era where a big proportion of trading
is done algorithmically, it is crucial to have fast algorithms.
Therefore, a speed-up of an already successful algorithm in a
scale of 75% gives an additional advantage to its users, since
they can obtain trees in a timelier manner. As a result, this
could lead to potentially higher profit margins.

VI. CONCLUSION

This paper presented work on the application of Fast Local
Search (FLS) algorithm to a meta-heuristic called Guided
Local Search (GLS), which was originally applied to a Genetic
Programming (GP) financial forecasting algorithm called ED-
DIE 8. The feature that made EDDIE 8 unique was its ability
to search in the space of technical indicators for solutions,
instead of using specific ones. As a result EDDIE 8’s search
area has increased dramatically leading to occasionally missed
solutions. GLS was applied as part of attempts to tackle with
this issue. Although it was proven beneficial for EDDIE 8,
it has increased the computational time of the algorithm to a
high extent.

In order to address this problem, a combination of FLS and
GLS has been implemented to the period nodes of EDDIE8’s
Genetic Decision Trees. Results showed that GFLS sped up
the GLS algorithm by an impressive 75%, while maintaining
similar predictive performance in both average and best results.
This thus led us to believe that the combination of FLS and
GLS is a very valuable addition to the EDDIE-8 algorithm. As
we explained, the importance of the above achievement lies on
the fact that investors gain a significant competitive advantage
that can potentially lead to higher profit.

GFLS could be quite a market potential meta-heuristic in the
financial forecasting industry. Our next goal would be to re-
duce its computational cost and improve its performance with
EDDIE even more by redefining its neighborhood function
and test it under more datasets. Furthermore, GFLS could
be combined with other algorithms under Hyper-heuristic
frameworks, in order to combine the advantages of different
meta-heuristics under the umbrella of a single algorithm.

REFERENCES

[1] E. Tsang and S. Martinez-Jaramillo, “Computational finance,” IEEE
Computational Intelligence Society Newsletter, pp. 3–8, 2004.

[2] D. Smonou, M. Kampouridis, and E. Tsang, “Metaheuristics applica-
tion on a financial forecasting problem,” in Proceedings of the IEEE
Congress on Evolutionary Computation, Cancun, Mexico, 20-23 June
2013.

[3] M. Kampouridis and E. Tsang, “EDDIE for investment opportunities
forecasting: Extending the search space of the GP,” in Proceedings of
the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18-
23 July 2010, pp. 2019–2026.

[4] E. Tsang, P. Yung, and J. Li, “EDDIE-automation, a decision
support tool for financial forecasting,” Decision Support Systems,
vol. 37, no. 4, pp. 559–565, 2004, data mining for financial
decision making. [Online]. Available: http://cswww.essex.ac.uk/CSP/
finance/papers/TsYuLi-Eddie-Dss2004.pdf

[5] M. Kampouridis and E. Tsang, “Using hyperheuristics under a GP
framework for financial forecasting,” in Proc. Fifth International Con-
ference on Learning and Intelligent Optimization (LION5), ser. Lecture
Notes in Computer Science, C. A. Coello Coello, Ed., vol. 6683.
Springer, Heidelberg, 2011, pp. 16–30.

[6] M. Bernal-Urbina and A. Flores-Mendez, “Time series forecasting
through polynomial artificial neural networks and genetic programming,”
in Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on
Computational Intelligence). IEEE International Joint Conference on,
2008, pp. 3325–3330.

[7] M. Kampouridis, A. Alsheddy, and E. Tsang, “On the investigation
of hyper-heuristics on a financial forecasting problem,” Annals of
Mathematics and Artificial Intelligence, 2012.

[8] M. Kampouridis, “An initial investigation of choice function hyper-
heuristics for the problem of financial forecasting,” in Proceedings of the
IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico,
2013.

[9] M. Kampouridis and E. Tsang, “Investment opportunities forecasting:
Extending the grammar of a gp-based tool,” International Journal of
Computational Intelligence Systems, vol. 5, no. 3, pp. 530–541, 2012.

[10] C. Voudouris, “Guided local search for combinatorial optimisation
problems,” Ph.D. dissertation, Department of Computer Science,
University of Essex, UK, 1997. [Online]. Available: ftp://ftp.essex.ac.
uk/pub/csp/Voudouris-PhD97-pdf.zip

[11] E. Tsang, J. Li, S. Markose, H. Er, A. Salhi, and G. Iori,
“EDDIE in financial decision making,” Journal of Management and
Economics, 2000. [Online]. Available: http://cswww.essex.ac.uk/CSP/
finance/papers/Tsang-Eddie-JMgtEcon2000.ps

[12] J. Li, “Fgp: A genetic programming based financial forecasting
tool,” Ph.D. dissertation, School of Computer Science and Electronic
Engineering, University of Essex, UK, 7 October 2000. [Online].
Available: http://www.kampouridis.net/papers/thesis.pdf

[13] F. Allen and R. Karjalainen, “Using genetic algorithms to find
technical trading rules,” Journal of Management and Economics, pp.
245–271, 1999. [Online]. Available: http://finance.wharton.upenn.edu/
∼rlwctr/papers/9520.pdf

[14] G. Kendall, “Artificial intelligence methods, an overview of
search algorithms,” Lecture slide of moodle G5BAIM, University
of Nottingham, 2013. [Online]. Available: www.cs.nott.ac.uk/∼gxk/
courses/g5baim/006hc/powerpoint/hc.ppt?

[15] S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and D. D. Edwards,
Artificial intelligence: a modern approach. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1996.

[16] C. Voudouris, “Guided local search - an illustrative example in function
optimisation,” in In BT Technology Journal, Vol.16, No.3, 1998, pp. 46–
50.

[17] E. Tsang and C. Voudouris, “Fast local search and guided local search
and their application to british telecom’s workforce scheduling problem,”
Operations Research Letters, Tech. Rep., 1995.

[18] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec 2006. [Online].
Available: http://dl.acm.org/citation.cfm?id=1248547.1248548

[19] S. Garcia and F. Herrera, “An extension on statistical comparisons of
classifiers over multiple data sets for all pairwise comparisons,” Journal
of Machine Learning Research, vol. 9, pp. 2677–2694, 2008. [Online].
Available: http://jmlr.csail.mit.edu/papers/v9/garcia08a.html

[20] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American Statistical Association, vol. 56, no. 293, pp. 52–64, 1961.
[Online]. Available: http://dx.doi.org/10.2307/2282330

