
Comments on
‘A structure-preserving method for the quaternion LU
decomposition in quaternionic quantum theory’ by

Minghui Wang and Wenhao Ma

Stephen J. Sangwinea

aSchool of Computer Science and Electronic Engineering, University of Essex, Wivenhoe
Park, Colchester CO4 3SQ, United Kingdom

Abstract

Claims were made in an article by Wang and Ma in 2013 that they had devised
an algorithm for the quaternion LU decomposition that was significantly faster
than the LU decomposition implemented in the Quaternion Toolbox for Mat-
lab (QTFM). These claims have been tested and found to be unsupported by
Matlab code supplied to the author by Wang and Ma. The author’s tests are
presented, and test code made available as supplementary material. It is found
that not only is the QTFM code faster, but that Wang and Ma’s algorithm
has run-time that scales with the square of the size of the matrix, whereas the
algorithm in QTFM has run time approximately linear in matrix size. These
findings are consistent with an inspection of the code.

1. Background

In a paper published in 2013 [1], Wang and Ma described an algorithm for
the quaternion LU decomposition that they claimed was faster than the LU
decomposition implemented in the Quaternion Toolbox for Matlab [2]. The
author of the present comment is one of the authors of QTFM, and the author
of the LU decomposition code (which is unremarkable, being based very closely
on the classical LU decomposition described by Golub and van Loan [3] and
referenced in the source code file lu.m).

The author tested a version of Wang and Ma’s code copied and pasted
from Algorithm 3.1 in the published article (with minimal editing to make it
into syntactically correct Matlab code) and found that it ran slower than
the LU decomposition in the QTFM toolbox. Correspondence with the editor
then resulted in the author being supplied with a copy of Wang and Ma’s code
(provided as supplementary material to this comment). This code was tested

Email address: sjs@essex.ac.uk (Stephen J. Sangwine)

Preprint submitted to Elsevier December 16, 2014



and the results are presented below. Not only was the QTFM code found to
run faster on all except small matrices, but its run time was confirmed to scale
linearly with the number of rows in the matrix, whereas Wang and Ma’s code
has run time proportional to the square of the number of rows in the matrix.
Note that Wang and Ma’s code does not work on rectangular matrices, unlike
the QTFM code. The tests were therefore limited to square matrices, as in
Wang and Ma’s paper. In the rest of this comment, the shorthand notation
WM will be used to refer to Wang and Ma’s algorithm/code.

2. Outline of test issues

The code supplied by Wang and Ma is in a Matlab function with the array
size as the input parameter (the array to be decomposed is created inside the
function). The QTFM LU function is embedded in the file as a sub-function. It
is not known whether this is how Wang and Ma ran the QTFM code, but this
is not an important issue as the author has verified that it makes no material
difference to the run time whether the QTFM code is embedded in the function
file, or run from the QTFM installation directory (which would be the normal
way to use it).

Calling the QTFM code with a function call, while using inline code for the
WM version, is clearly not a fair comparison. Both sets of code should be inline,
or both should be called as functions, or the overhead of the function call and
parameter passing should be accounted for. The importance of comparing code
using similar calling profiles is underlined by [4] which describes differences
encountered in the running time of Matlab code due to differences in the
handling of large array parameters inside or outside a function.

To attempt a fair comparison and to permit testing of the code on matrices
of various sizes, the WM code was modified to make it into a function, and
called from a script, looping over matrix sizes and saving measured run-times
using the Matlab tic and toc functions. The modified code is available as
supplementary material. The appendix lists the file names and describes each
file.

Further issues that were studied and found to have little or no significance
were:

• the version of QTFM,

• the version of Matlab,

• the operating system and platform (Windows PC or MacBook/OS X)

A test was run with version 1.9 of the QTFM library, which was the most recent
version at the time Wang and Ma wrote their paper, running on a Windows PC
computer. The same code has been run using the latest version of QTFM
running on a Mac computer, and no significant difference was found: Wang
and Ma’s claim to have developed a method that is faster than QTFM is not
supported by the test results. The version of Matlab used on the Windows

2



PC was R2013a (8.1) whereas on the MacBook it was R2014b (8.4). This made
no difference to the results (QTFM was faster in every case, except for small
matrix sizes). The ‘crossover’ point between the WM LU code and the QTFM
code is about 30 × 30 (that is both versions take about the same time on a
30×30 matrix, above this size QTFM is markedly faster). Note that Wang and
Ma’s claim is based on tests with matrices up to 1500 square (Table 1 in their
paper). This comment is based on tests with matrices up to 500 × 500 in size
as this is sufficient to demonstrate the point.

3. Test results in detail

The author tested both sets of code on array sizes from 10 to 500 square, and
found that, except at the smallest sizes, the QTFM code is much faster than
that of Wang and Ma. At 200 elements square, the WM code takes over 24
seconds to compute the LU decomposition, whereas the QTFM LU runs in just
less than a second. This is inconsistent with the results in Table 1 of Wang and
Ma’s paper, which shows that QTFM ran for about 1 second on a 200 square
array, whereas their own code took about half a second. Numerical results from
the author’s tests are given in Table 1, and the data is plotted in Figures 1 and
2.

The WM code does achieve smaller residual error than QTFM by about a
factor of 3, which roughly agrees with Table 1 in their paper, but the errors
are small (of the order of 10−10 maximum difference in absolute value between
elements of the original matrix and the reconstructed version from the L and U
matrices).

To check why the WM code runs so slowly, the author ran the Matlab
profiler on it, and found that almost all of their run time is spent on lines 40-43
of the file structured_lu.m. This is not surprising, as this code is computing
with matrix elements one at a time – it is not vectorised, unlike the QTFM
code, which works with whole rows and columns at a time. The WM code in
the paper, and the version supplied to the author, lacks proper vectorisation,
and largely works one element at a time. This is consistent with the test results.

4. Conclusion

The tests carried out by the author do not support Wang and Ma’s claim
that their algorithm is faster than QTFM’s LU decomposition, except for small
matrices with less than 30 rows/columns. Further the tests show that the run-
time of the QTFM LU code scales as expected, approximately linearly with the
number of rows in the matrix (since the code contains only one loop, iterating
over all rows in the matrix), whereas the run-time of the WM code scales ap-
proximately as the size of the matrix squared (due to nested loops that process
rows and columns respectively).

3



Table 1: Test results comparing the WM LU code and the QTFM LU code.

n WM LU QTFM LU
run time (s) error ×1011 run time (s) error ×1011

10 0.087 0.007 0.366 0.009
15 0.017 0.015 0.045 0.009
20 0.028 0.018 0.060 0.012
25 0.051 0.047 0.076 0.016
30 0.086 0.043 0.093 0.020
35 0.138 0.059 0.110 0.025
40 0.203 0.053 0.125 0.025
45 0.282 0.088 0.145 0.044
50 0.390 0.089 0.159 0.033
75 1.318 0.201 0.252 0.065

100 3.097 0.214 0.353 0.086
125 5.859 0.355 0.476 0.170
150 10.302 0.471 0.611 0.178
175 16.354 0.590 0.764 0.266
200 24.361 0.836 0.985 0.289
300 82.917 0.962 2.531 0.393
500 378.207 2.149 9.638 0.695

array size
0 50 100 150 200 250 300 350 400 450 500

el
ap

se
d 

tim
e

0

50

100

150

200

250

300

350

400

QTFM
WM

Figure 1: Plot of the elapsed time data from Table 1.

4



array size
0 50 100 150 200 250 300 350 400 450 500

er
ro

r

#10 -11

0

0.5

1

1.5

2

2.5

QTFM
WM

Figure 2: Plot of the error data from Table 1.

Appendix A. List of code files

The following supplementary material was used for the tests described in
this comment:

• wang qlu7.m — Source code file supplied by Wang and Ma through the
editor.

• structured lu.m — Wang and Ma’s (WM) code made into a function
with the same parameter profile as the QTFM function.

• structured test.m — a script to run the QTFM and WM code for vari-
ous matrix sizes and plot the results. The data in the variables t1 and t2

is available for inspection after the code runs. The corresponding matrix
sizes are in variable S.

The QTFM code is not made available as supplementary material, as it is a
large toolbox, and is freely available from the Sourceforge site [2]. Version 1.9
(used by Wang and Ma) and later versions are available there. The QTFM
LU code is in the source file named lu.m which will be found in the directory
@quaternion.

[1] M. Wang, W. Ma, A structure-preserving method for the quaternion LU
decomposition in quaternionic quantum theory, Computer Physics Commu-
nications 184 (9) (2013) 2182–2186.

5



[2] S. J. Sangwine, N. Le Bihan, Quaternion Toolbox for Matlab R©, [Online],
software library available at: http://qtfm.sourceforge.net/ (2005).

[3] G. H. Golub, C. F. van Loan, Matrix Computations, 3rd Edition, Johns
Hopkins studies in the Mathematical Sciences, The Johns Hopkins Univer-
sity Press, Baltimore and London, 1996.

[4] R. Nibali, Enclosing MATLAB code in a function makes it super slow,
Online forum thread, available at www.mathworks.com/matlabcentral/

newsreader/view_thread/247063 (19 March 2009).

6


