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Abstract

We study observational learning in environments with congestion costs: an agent’s payoff

from choosing an action decreases as more predecessors choose that action. Herds cannot occur

if congestion on every action can get so large that an agent prefers a different action regardless

of his beliefs about the state. To the extent that switching away from the more popular action

reveals private information, it improves learning. The absence of herding does not guarantee

complete (asymptotic) learning, however, as information cascades can occur through perpetual

but uninformative switching between actions. We provide conditions on congestion costs that

guarantee complete learning and conditions that guarantee bounded learning. Learning can

be virtually complete even if each agent has only an infinitesimal effect on congestion costs.

We apply our results to markets where congestion costs arise through responsive pricing and

to queuing problems where agents dislike waiting for service.
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1 Introduction

We examine how rational agents learn from observing the actions—but not directly the

information—of other rational agents. The focus of our study is a class of payoff interdepen-

dence: as more of an agent’s predecessors choose one action, the agent’s payoff from choosing

that action decreases. We term this kind of payoff interdependence congestion costs. They

naturally arise as direct economic costs in many contexts. For example, as more individuals

purchase a product, prices may increase (Avery and Zemsky, 1998), short-term supplies may

run out, quality of service may worsen, or waiting times may lengthen. There are empirical

estimates that “queuing costs” have significant effects on consumer behavior (Aksin et al.,

2013; Lu et al., 2013). Another example is in the context of market entry: when firms choose

whether to enter a new market, expected profits are likely to be decreasing in the number of

other entrants. Congestion costs can also reflect a pure taste for “anti-conformity”, as agents

sometimes have intrinsic preferences for avoiding options to which others flock.

Our model in Section 2 builds on the canonical models of observational learning (Banerjee,

1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000). A sequence of agents each choose

between two actions, A and B. One of the actions is superior to the other; all agents share

common preferences on this dimension, but each agent has imperfect private information about

which action is superior. Each agent acts based on his private signal and the observed choices

of all predecessors. We assume that private signals have bounded informativeness because

this case turns out to be more interesting, but otherwise make no assumptions about their

distribution.

We enrich the standard model by assuming that while all agents prefer the superior action

ceteris paribus, agents may also dislike taking an action more when more of their predecessors

have chosen it.1 We parameterize how much agents care about these congestion costs relative

to taking the superior action by a marginal-rate-of-substitution parameter k ≥ 0. For example,

the congestion cost associated with an action may equal k times the number of predecessors

who chose that action. When k = 0, the model obviously collapses to the standard one without

congestion costs. Our primary focus is on the long-run outcomes of observational learning when

k > 0. Does society eventually learn which action is superior, and how does the presence of

congestion affect the long-run frequency of actions, in particular the fraction of agents who

choose the superior action?

Section 3 develops some preliminaries about individual decision-making as a function of

the private signal and the public history of actions. We turn to the asymptotic properties

of observational learning in Section 4. In the canonical model without congestion, all agents

eventually take the same action, i.e. herds necessarily form in finite time.2 Moreover, learning

is bounded in the sense that society never learns with certainty, even asymptotically, which

1We discuss positive payoff interdependence in the conclusion, Section 7.
2Throughout this introduction, we ease exposition by suppressing technical details such as “almost sure” caveats,

and often referring to just “learning” in lieu of “asymptotic learning”.
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action is superior. Both these conclusions also hold in the current environment so long as the

net congestion cost (i.e. the difference in congestion cost incurred by taking one action rather

than the other) that an agent may face is small enough.3

By contrast, if the net congestion cost can become sufficiently high, then it is clear that

herds cannot form: should a long-enough sequence of agents take action A, then eventually

someone will take action B even if extremely confident that A is superior. It is noteworthy,

however, that the impossibility of herding does not imply that society eventually learns which

action is superior. What is crucial is whether agents “switch” from one action to the other

purely in response to congestion, or also in response to their private information. It is possible

that after some time, agents perpetually cycle between the two actions without conveying any

information about their private signals. In other words, an information cascade may begin

wherein every agent’s action is preordained despite the absence of a herd; this phenomenon

can occur no matter how much agents care about congestion relative to taking the superior

action, i.e. no matter the value of the marginal-rate-of-substitution parameter k > 0. Indeed,

there are interesting classes of congestion costs where net congestion can grow arbitrarily large

and yet, no matter the value of k, an information cascade with cyclical behavior will necessarily

arise in finite time.

Whether such outcomes can occur turns on the incremental effect that any one agent’s

action has on the net congestion cost faced by his successors. We identify general properties

of congestion costs that ensure bounded learning even when herds cannot arise. Conversely,

we provide conditions that guarantee complete learning. What drives complete learning when

it arises in our model is not that every agent behaves informatively; rather it is an inevitable

return to some agent behaving informatively. Put differently, even when there is complete

learning, it will often be the case that on any sample path of play there are (many) phases of

“temporary information cascades”.

A natural question is what happens when any given agent cares little about congestion,

i.e. the marginal-rate-of-substitution parameter k > 0 vanishes. When net congestion costs

are bounded there is bounded learning once k is small enough. However, if net congestion can

grow arbitrarily large when sufficiently many consecutive agents play the same action, then

there is essentially complete learning as k → 0. Intuitively, only at near-certain public beliefs

can vanishingly small incremental congestion costs produce the sort of uninformative cycling

that stalls learning.

There is a sense in which this result can be interpreted as a fragility of the conventional

bounded-learning result. Section 4 clarifies precisely how our model is (and is not) continuous

at the limit as k → 0. Here, we illustrate a substantive economic point using the example

where the congestion cost of taking an action equals the number of predecessors who have

chosen it. In this example, when k = 0.1 someone would prefer to patronize a restaurant

known to be inferior in order to reduce his “queue” by ten people. When k = 0.01 he would

3More precisely, this requires that the net congestion cost be bounded above in absolute value by some threshold
that is sufficiently small relative to the marginal-rate-of-substitution parameter k.
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only do so in order to reduce his queue by one hundred people. One might expect that insights

from the standard model would provide a good approximation for such small k. With regards

to asymptotic learning, however, this intuition can be dramatically incorrect. Consider, for

instance, the canonical binary-signal structure where each agent receives a signal that matches

the true state (i.e. the superior action) 2/3 of the time. When k = 0, the asymptotic public

belief that an action is the superior action cannot exceed 0.8 nor drop below 0.2. When

k = 0.1, on the other hand, this public belief must settle either above 0.96 or below 0.04; when

k = 0.01, it must settle above 0.996 or below 0.004. Thus, when individual preferences more

closely resemble the standard no-congestion-cost model, not only are long-run beliefs more

confident, but those beliefs are also further away from the standard no-congestion-cost model.

It should be noted, however, that the force whereby smaller k leads to more confident long-run

beliefs goes hand in hand with slower learning, because it takes longer for enough congestion

to accumulate before agents switch their actions. While our focus on asymptotic learning

rather than speed of convergence follows most of the literature on observational learning (see

Lobel et al. (2009) for an exception), the focus may be a greater weakness when considering

comparative statics in k because of the aforementioned tension.

In Section 5, we discuss three applications that fit into our general framework. The first

application interprets congestion costs as being induced by a tax-and-redistribution scheme

used by a social planner in the standard observational learning model without congestion. By

establishing that agents will asymptotically choose the superior action under certain forms

of congestion costs, we propose a simple transfer scheme that a planner can use to obtain

the first-best outcome in the long run.4 The second application views congestion costs as

induced by the evolution of market prices over time. Our analysis here accommodates a

class of reduced-form price-setting rules that correspond to a range of market-competition

assumptions from monopoly at one end to Bertrand competition at the other. We illustrate

how different price-setting rules yield different conclusions about whether prices eventually

reveal all agents’ information. The third application explores a queuing model where agents are

served in sequence, but service only occurs with some probability in each period. Congestion

costs here arise from agents’ dislike for delay in being served. We illustrate how different

assumptions about the observability of predecessors being served yield different conclusions

about asymptotic learning.

A limitation of our baseline model is the assumption that agents must necessarily choose

between options A and B regardless of how large the congestion cost of either option is. In other

words, it effectively assumes that all other options for an agent are dominated, no matter how

severe the congestion is on the two options with uncertain payoffs. In Section 6, we explore the

robustness of our learning results to the presence of an outside option that provides some fixed

utility level, independent of both the state of the world and the behavior of other agents. We

make two assumptions, both of which we view as sensible for many applications: (i) congestion

4See Naor (1969) for early work examining optimal taxation (“tolls”) to reduce the negative externality caused
by congestion in a queuing model without learning.
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on A and B will eventually decay fully if agents avoid that option altogether; (ii) if there is

no congestion on either A or B, the outside option is dominated. Our main results carry over

to this setting; in particular, we prove that when net congestion costs are unbounded, even

though agents may often choose the outside option—“balk”, in the terminology of queuing

theory—there is essentially complete learning as k → 0, just like in the baseline model without

an outside option.

Related Literature. There are few prior studies of observational learning with direct

congestion or queuing costs. Gaigl (2009) assumes that congestion costs take a particular

functional form that is subsumed by our general formulation; specifically, he analyzes what we

call the linear absolute-cost example (Example 2 in Subsection 2.1), where the congestion cost

of an action is a linear function of the number of predecessors who have taken that action.5 For

continuous signal structures, he discusses when information cascades and herds can occur but

does not address asymptotic learning; for binary signals, he also provides results on learning.

Besides accomodating richer signal structures, our analysis reveals that the nature of congestion

costs is key: the linear absolute-cost example satisfies two properties—congestion is unbounded

and has gaps (defined in Section 4)—that need not hold more generally but matter crucially for

conclusions about learning, information cascades, and herds. For instance, complete learning

does not arise in the linear absolute-cost example, but does for other congestion costs. A

general analysis of different kinds of congestion costs requires distinct techniques, yields broader

theoretical insights, and permits us to apply our results to different economic applications.

Veeraraghavan and Debo (2011) and Debo et al. (2012) develop queuing-with-learning

models where agents observe only an aggregate statistic of predecessors’ choices but not the

entire history. Bayesian inference in this setting is extremely complex, and hence these papers

do not analyse asymptotic learning but instead characterise some properties of equilibrium

play in early rounds. Cripps and Thomas (2014) characterize equilibria in a queuing problem

with strategic experimentation; in their setting, agents decide both whether to join the queue

and whether (and when) to quit it before being served. More broadly, Hassin and Haviv (2003)

provide an introduction to strategic queuing models, albeit generally without learning.

Our work also relates to Avery and Zemsky (1998), who build on Glosten and Milgrom’s

(1985) model of sequential trade for an asset of common but unknown value. In Avery and

Zemsky’s introductory example, a market-maker sets the price of a risky asset at the start of

every period to equal its expected value based on all prior trades. As the price fully incorporates

all public information, each trader acts informatively, buying when his private information is

favourable and selling when it is unfavourable.6 The market price thus converges to the asset’s

true value. Such market prices play a similar role to congestion costs in our model: holding

5We learned of Gaigl’s work only after circulating a prior draft of this paper.
6Thus, in this example, the market-maker loses money on average. Avery and Zemsky’s (1998) richer model

with noise traders and bid-ask spreads does not share this feature. The authors’ focus is on how multidimensional
private information allows for herding even with informationally-efficient prices. Park and Sabourian (2011) clarify
the information structures needed for such results.

4



fixed a trader’s belief about the asset’s value, buying the asset becomes less desirable as more

predecessors buy the asset. Our model can be seen as extending this introductory example from

Avery and Zemsky (1998) beyond the realm of markets and specific theories of price formation.

Doing so, we show on the one hand that complete learning can obtain even in settings where

most agents act uninformatively, and on the other hand that different mechanisms of price

formation can substantially alter the conclusion of complete learning.

There are models of observational learning without congestion costs in which complete

learning obtains. Lee (1993) derives such a result when agents’ action spaces are a continuum—

rich enough to reveal their posteriors—and preferences satisfy some reasonable properties.

Even with only a finite number of actions, Smith and Sørensen (2000) and Goeree et al.

(2006) respectively show that complete learning obtains when private beliefs are unbounded

(and agents have the same preferences) or agents’ preferences include a full-support private-

values component (while private beliefs remain bounded).7 Congestion costs in our framework

generate heterogeneity in agents’ preferences, but do so endogenously and in a sample-path-

dependent manner. It is worth emphasizing that large—even unbounded—total congestion

costs do not imply complete learning; by creating a “wedge” between agents’ utilities from the

two actions, large congestion costs are compatible with information cascades (but not herds).8

Furthermore, in the settings explored by Lee (1993), Smith and Sørensen (2000), and Goeree

et al. (2006), every agent’s action reveals some information about his private signal; as already

mentioned, this is typically not the case here even when complete learning obtains.

Finally, this paper contributes to a growing theoretical literature on observational learning

when there is direct payoff interdependence between agents. A significant fraction of this

literature has focussed on sequential elections (e.g. Dekel and Piccione, 2000; Callander, 2007;

Ali and Kartik, 2012, and the references therein), but other work also studies coordination

problems (Dasgupta, 2000), common-value auctions (Neeman and Orosel, 1999), settings with

network externalities (Choi, 1997), and when agents partially internalize the welfare of future

agents (Smith and Sørensen, 2008). Congestion-cost models such as ours focus on a different

kind of payoff interdependence and on environments where agents only care about past actions.

While the latter is a limitation for some applications, it is appropriate in other contexts and

permits a fairly general treatment of the payoff interdependence we study.9

7Intuitively, information cascades cannot occur under unbounded private beliefs or full-support preference shocks
because whatever the current public belief, an agent can receive either a sufficiently strong signal or preference
shock to overturn it. Smith and Sørensen (2000) and Herrera and Hörner (2012) observe that, under bounded
private beliefs and common preferences, the absence of information cascades is compatible with a failure of complete
learning. Acemoglu et al. (2011) show that complete learning can occur under bounded private beliefs and common
preferences if not all agents necessarily observe all predecessors’ choices.

8That information cascades can arise in the absence of herds due to preference heterogeneity has been noted
in other settings of observational learning, e.g. by Smith and Sørensen (2000), Cipriani and Guarino (2008) and
Dasgupta and Prat (2008).

9On the experimental front, Drehmann et al. (2007) conduct an internet experiment that includes a treatment
with congestion costs, which they show reduce the average length of runs of consecutive actions modestly compared
to the no-congestion benchmark. They also include treatments with forward-looking payoff externalities, in which
they find that subjects’ behavior do not differ significantly from myopic behavior. Accordingly, they suggest that
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2 The Model

A payoff-relevant state of the world, θ ∈ {−1, 1}, is (without loss of generality) drawn

from a uniform prior. A countable infinity of agents, i = 1, 2, . . ., take actions in sequence,

each observing the entire history of actions. Before choosing his action, each agent i gets

a private signal that is independently and identically distributed conditional on the state.

Following Smith and Sørensen (2000), we work directly with the random variable of private

beliefs, which is an agent’s belief that θ = 1 after observing his signal but ignoring the history

of play, computed by Bayes rule using the uniform prior and the signal distributions. Denote

the private belief of agent i as bi ∈ (0, 1). Given the state θ ∈ {−1, 1}, the private-belief

stochastic process 〈bi〉 is conditionally i.i.d. with conditional c.d.f. F (·|θ). We assume that no

private signal perfectly reveals the state of the world, which implies that F (·|1) and F (·| − 1)

are mutually absolutely continuous and have common support. Denote the support’s convex

hull by [b, b] ⊆ [0, 1]. To avoid trivialities, signals must be informative, which implies that

b < 1/2 < b. To focus on the most interesting case, we assume bounded private beliefs: b > 0

and b < 1; the case of unbounded private beliefs (b = 0 and b = 1) is discussed in the

conclusion. Notice that this setting allows for continuous or discrete signals.

We assume for now that each agent faces a binary choice; Section 6 discusses a generaliza-

tion. Denote each agent’s action by ai ∈ {−1, 1} and let ai := (a1, . . . , ai) denote a history.

Agent i’s preferences are given by a von-Neumann-Morgenstern utility function

ui
(
ai, θ

)
:= 11{ai=θ} − kc(a

i),

where 11{·} denotes the indicator function, c (·) is a state-independent congestion cost function,

and k > 0 is a scalar parameter. Gross of congestion costs, the gain from taking the superior

action (i.e. the action that matches the state) is normalized to one. The assumption that c(·)
depends only upon ai implies that congestion is “backward looking” in the sense of only de-

pending on predecessors’ choices. Note that because the domain of c(·) varies with an agent’s

index, different agents may be affected differently in terms of congestion by common predeces-

sors, and furthermore, different agents may trade off the gain from taking the superior action

relative to congestion differently. The standard model without congestion obtains when k = 0.

For a fixed game, the scalar k could be folded into the cost function c(·), but our parametriza-

tion allows us to discuss a sequence of congestion games converging to a no-congestion game

by holding c(·) fixed and letting k → 0.

Insofar as congestion is concerned, agent i+ 1’s choice depends only on the net congestion

cost he faces, i.e. the additional cost of choosing a = 1 rather than a = −1, which is given by

∆(ai) := c((ai, 1))− c((ai,−1)).

a purely backward-looking analysis might make reasonably good predictions even in settings with forward-looking
considerations. Owens (2010) presents a laboratory experiment on observational learning with payoff externalities,
finding that decisions are highly responsive to both positive and negative payoff externalities.
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We capture the negative externality from congestion by assuming that an extra action causes

the net congestion cost of taking that action to weakly rise. Formally:

Assumption 1 (Monotonicity). For all ai, ∆((ai, 1)) ≥ ∆(ai) ≥ ∆((ai,−1)).

Our other maintained assumption is that the marginal impact of any individual’s choice on

net congestion cost is bounded above. Formally:

Assumption 2 (Bounded increments). sup
ai

max{∆((ai, 1))−∆(ai),∆(ai)−∆((ai,−1))} <∞.

2.1 Leading examples

Below, we introduce two leading examples that satisfy all the maintained assumptions.

These examples are primarily meant to help illustrate the conditions and results that will

follow; we later discuss variations and other specifications. In both of these examples, agents

care only about the frequency with which their predecessors have chosen one action over the

other (rather than which predecessors chose which action), but the examples differ in whether

frequency is measured in proportional or absolute terms.

Example 1. In the linear proportional-cost model, c(a1) = 0 and for each i ≥ 2,

c
(
ai
)

=

∑i−1
j=1 11{aj=ai}

i− 1
.

If we denote ρ(ai) as the proportion of agents 1, . . . , i who have chosen a = 1 under ai, then

for each i ≥ 2, ∆(ai) = 2ρ(ai) − 1. More generally, instead of ∆(ai) being linear in ρ(ai), we

could have ∆(ai) = f(ρ(ai)) for some function f : (0, 1) → R that is strictly increasing but

otherwise arbitrary; this defines the general proportional-costs model.10 ‖

Example 2. In the linear absolute-cost model, let η(ai) =
∑i

j=1 11{aj=1} be the number of agents

who have chosen action 1 in the sequence ai, and define c(a1) = 0 and for each i ≥ 2,

c(ai) =

{
η(ai−1) if ai = 1

i− 1− η(ai−1) if ai = −1.

Here, congestion depends upon the number of agents who have chosen each action rather than

the fraction, so that net congestion ∆(ai) = 2η(ai) − i. A general absolute-costs model has

∆(ai) = f(η(ai))− f(i− η(ai)) for some strictly increasing f : R+ → R. ‖

10Note that f(·) is only defined here on the interior of the unit interval. To avoid some inessential complications,
in this example we exogenously set the first two agents’ choices to be a1 = 1 and a2 = −1.
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3 Individual Decision-Making

Agent i’s decision depends upon his beliefs about which action is superior as well as upon

net congestion costs. Let b be agent i’s private belief that the state is θ = 1, which depends

on i’s private signal alone; let q be the public belief that the state is θ = 1, which depends on

the inference that agent i makes from the history ai−1. Furthermore, let l = (1− q)/q be the

public likelihood ratio, which is the inverse of the relative likelihood of state 1; low l means it

is more likely that θ = 1. By Bayesian updating, i’s posterior belief that the state is θ = 1 is

given by

p(b, l) =
b

b+ (1− b)l
. (1)

As is intuitive, p(b, l) is strictly increasing in b and strictly decreasing in l. The following

lemma describes how posterior beliefs determine action choice.11

Lemma 1. An agent who has private belief b, public likelihood ratio l, and net congestion cost

∆ chooses action 1 if and only if p(b, l) ≥ p∗(∆; k) := 1/2 + k∆/2.

Proof. It suffices to compute

E [ui (ai = 1)− ui (ai = −1)] = p(b, l)
[
1− kc

(
ai−1, 1

)
−
(
0− kc

(
ai−1,−1

))]
+ (1− p(b, l))

[
0− kc

(
ai−1, 1

)
−
(
1− kc

(
ai−1,−1

))]
= 2p(b, l)− (1 + k∆),

which immediately implies the result. Q.E.D.

Using Lemma 1, we can derive the net congestion cost that renders an agent indifferent

between action 1 and action −1 given a public likelihood ratio l and the private belief most

favorable to action 1. Formally, for any l ∈ R+, define ∆(l; k) to be the unique solution to

p(b, l) = p∗(∆(l; k); k).12 Given a net congestion cost of ∆(l; k) and public likelihood l, an

agent is indifferent between choosing a = −1 and a = 1 when he receives the private belief

most favorable to action 1. For any b, l, and ∆ ≥ ∆(l; k), we have p(b, l) ≤ p∗(∆; k), which,

by Lemma 1, implies that the agent will choose a = −1 regardless of his private belief.

Similarly, for any l ∈ R+, define ∆(l; k) to be the unique solution to p(b, l) = p∗(∆(l; k); k),

which is well defined because b > 0. In this case, ∆(l; k) is the net congestion cost that renders

an agent indifferent between action 1 and action −1 given likelihood ratio l and the private

belief most favourable to action −1. Hence, for any b, l, and ∆ ≤ ∆(l; k), an agent will choose

a = 1 regardless of his private belief.

11Throughout the paper, we resolve agents’ indifference over actions in the manner most convenient for exposition.
Note that the choice of how to resolve indifference is irrelevant with continuous signals; with discrete signals, it is
generically irrelevant.

12Uniqueness is guaranteed because p∗(·; k) is strictly increasing and unbounded above and below.
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We call an agent’s action informative if it depends non-trivially upon his private beliefs,

or equivalently, if ∆ ∈ (∆(l; k),∆(l; k)). The next lemma provides a number of important

properties of the net congestion threshold functions.

Lemma 2. The net congestion threshold functions, ∆(·; ·) and ∆(·; ·), satisfy the following:

1. For any l > 0 and k > 0, ∆(l; k) > ∆(l; k). An agent’s action choice is informative

if and only if ∆ ∈ (∆(l; k),∆(l; k)); if ∆ ≥ ∆(l; k), he chooses a = −1 for any private

belief; if ∆ ≤ ∆(l; k), he chooses a = 1 for any private belief.

2. For any k > 0: (i) ∆(0; k) = ∆(0; k) = 1/k; (ii) as functions of l, both ∆(l; k) and

∆(l; k) are continuous, strictly decreasing, and converge to −1/k as l → ∞; and (iii)

∆(l; k)−∆(l; k) → 0 as l→∞ or as l→ 0 and is quasi-concave in l.

3. For any l > 0, ∆(l; k)−∆(l; k)→∞ as k → 0.

4. ∆(l; ·) is strictly decreasing (resp. increasing) for any l > 0 that is strictly smaller (resp.

larger) than b
1−b ; similarly ∆(l; ·) is strictly decreasing (resp. increasing) for any l > 0

that is strictly smaller (resp. larger) than b
1−b .

Proof. The definitions of ∆(·) and ∆(·) imply

1 + k∆(l; k) = 2p(b, l) and 1 + k∆(l; k) = 2p(b, l), (2)

into which we can substitute Equation 1 to derive

∆(l; k) =
b− (1− b)l

k(b+ (1− b)l)
and ∆(l; k) =

b− (1− b)l
k(b+ (1− b)l)

.

The lemma’s first two and fourth parts are straightforward to verify using these formulae and

Lemma 1. We next combine the two equations in (2) to derive

k(∆(l; k)−∆(l; k)) = 2(p(b, l)− p(b, l)).

The third part of the lemma follows from the observation that the right hand side above is

strictly positive. Q.E.D.

Figure 1(a) illustrates Lemma 2’s first two observations. For net congestion costs above

∆(l; k) (the bold line), agents choose action −1 regardless of their private belief; for net

congestion costs below ∆(l; k) (the dotted line), agents choose action 1 regardless of their

private belief; for net congestion costs that lie between the two lines, agents choose actions

that depend upon their private beliefs. Figure 1(b) illustrates how a change in k affects both

∆(l; k) and ∆(l; k), as described in parts 3 and 4 of Lemma 2. For a given l, when k decreases,

∆(l; k) rotates around b/(1− b): it increases when the likelihood ratio is below b/(1− b) and it

decreases in the complementary region. The change in ∆(l; k) is analogous. Furthermore, for

any l > 0, a decrease in k increases the difference between the two thresholds; this difference

gets arbitrarily large as k vanishes.
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(a) Parts 1 and 2 of Lemma 2
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Figure 1 – Net congestion threshold functions.

4 Asymptotic Learning

4.1 Concepts

Without loss of generality, assume the true state is θ = 1. By standard arguments, the

public-likelihood-ratio stochastic process, 〈lki 〉, is a (conditional) martingale. Thus, it almost

surely converges to a random variable lk∞ such that Supp[lk∞] ⊆ [0,∞).

We say there is complete learning if beliefs almost surely converge to the truth, i.e.

Pr(lk∞ = 0) = 1. We say there is bounded learning if there exists ε > 0 such that Pr(lk∞ >

ε) = 1, because then beliefs almost surely are bounded away from the truth. There is a herd

on a sample path if after some (finite) time, all subsequent agents choose the same action.

There is an information cascade on a sample path if after some (finite) time, no agent’s action

is informative.

In the benchmark no-congestion model of observational learning, the existing literature has

established the following results:

Remark 1. Assume k = 0. Since private beliefs are bounded, there is bounded learning. A

herd occurs almost surely; moreover, with positive probability, the herd forms on the inferior

action. Whether an information cascade can arise depends on the distributions of private

beliefs.13 ‖

13Regarding learning and herds, everything stated in Remark 1 except bounded learning follows from Theorem
1 in Smith and Sørensen (2000). To see that learning is bounded, define l ∈ (0, 1) by p(b, l) = 1/2. Note that on
any sample path, if l0i < l for some i, then ai = 1 independent of i’s private belief, hence l0i+1 = l0i . Now define

l̂ := 1−p(b,l)
p(b,l)

l, i.e. l̂ is the posterior likelihood ratio obtained from a public likelihood ratio of l and the most favorable

private belief; observe that l̂ ∈ (0, l). It follows that there is no sample path in which for some i, l0i < l̂. For a
characterization of when information cascades can and cannot arise under bounded private beliefs, see Herrera and
Hörner (2012).
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Note that in the standard model without congestion, an information cascade implies a

herd. As we will see, this need not be the case in the current setting.

Aside from studying asymptotic learning for a given k > 0, we are also interested in what

happens in the no-congestion limit, i.e. as k → 0. Say that there is complete learning in the

no-congestion limit if limk→0 Pr(lk∞ = 0) = 1. Say that there is learning with high probability

in the no-congestion limit if for all ε > 0, limk→0 Pr[lk∞ < ε] = 1. Finally, there is bounded

learning in the no-congestion limit if there exists ε > 0 such that limk→0 Pr(lk∞ > ε) = 1.

Complete learning in the no-congestion limit captures the notion that limit learning occurs

almost surely. In particular, if there is complete learning for all (small enough) k ≥ 0, then

there is complete learning in the no-congestion limit. Learning with high probability in the no-

congestion limit captures the weaker notion that the sequence of random variables lk∞ converges

in probability to 0 as k → 0. Notice that even this weaker notion of learning represents a

discontinuity with the standard model under bounded beliefs, where the asymptotic public

belief is bounded away from the truth (see Remark 1). Finally, a case of bounded learning in

the no-congestion limit resembles the standard model without congestion.

4.2 An overview of the results

Before turning to the formal analysis, this subsection discusses the main intuitions for how

different forms of congestion costs affect learning. In conveying intuitively the ideas behind

the theorems of Sections 4.3–4.5, we deliberately ignore some subtleties in this subsection.

For a given k > 0, there are two potential reasons why complete learning may not occur.

The first is standard: it is possible that agents will eventually herd uninformatively. Whether

a herd can occur in the present context depends on the cumulative effect of agents’ actions

on net congestion costs. During a putative herd on action 1, say, agents’ net congestion cost

is increasing, i.e., it becomes increasingly more costly to choose action 1 relative to −1. If

the net congestion cost never becomes prohibitively high relative to the public likelihood ratio

(which remains unchanged while agents behave uninformatively), the herd persists. Figure

2(a) illustrates this possibility: the solid circles with arrows depict the evolution of (l,∆), i.e.

the public likelihood ratio and net congestion, during a herd on action 1.

Clearly, if the net congestion cost would eventually become sufficiently high (resp. suffi-

ciently low) should enough consecutive agents choose action 1 (resp. action−1), then eventually

some agent would break a putative herd on action 1 (resp. −1).14

The impossibility of uninformative herding is not sufficient for complete learning, however.

The second reason why learning can stop is that agents may perpetually switch between the two

actions while never conveying any information about private beliefs. Figure 2(b) illustrates this

possibility in a particularly stark fashion: eventually each agent just takes the opposite action of

14More precisely, there cannot be a herd on action 1 following the history ai if lim ∆((ai, 1, 1, . . .)) > 1/k, and
hence there can never be a herd on action 1 if infai lim ∆((ai, 1, 1, . . .)) > 1/k. Analogous statements hold for herds
on action −1.
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his predecessor, as depicted under parameter value k by the oscillation between the two hollow

circles. Such an outcome is only possible for certain net congestion cost functions; Theorem 3

below identifies a sufficient condition. Notice that for any k > 0, there is a gap between the ∆

and ∆ curves at any interior public likelihood ratio. Thus, perpetual uninformative oscillation

at any public likelihood ratio would be precluded for all k > 0 if the incremental effect of any

agent’s action on net congestion eventually became negligible, because this would ensure that

net congestion cannot perpetually “jump” across the thresholds. Theorem 2 below develops

this idea into a result on complete learning for all k > 0.

Even when uninformative oscillations between actions can occur at some public likelihood

ratio, say l, for a given value of k, they can only do so when (some) agents have incremental

effects on net congestion cost that is larger than ∆(l; k) − ∆(l; k). For example, in Figure

2(b), oscillation between the two hollow circles is uninformative under parameter value k, yet

for k′ < k, an oscillation of this size cannot be uninformative at the same public likelihood

ratio because the difference in the net congestion thresholds is larger. As k vanishes, the

difference between the threshold curves grows unboundedly at any interior public likelihood

ratio (Lemma 2); hence, for small k, uninformative oscillation cannot occur perpetually except

at very extreme public likelihood ratios given that incremental congestion effects are bounded

(Assumption 2). This is depicted in Figure 2(b) by an uninformative oscillation of the same

size occurring at a more extreme public likelihood ratio under k′ than under k. Theorem 1

below formalizes the idea into a result on learning with high probability at the no-congestion

limit.

l	  

Sup	  Δ	  

-‐1/k	  

0	  

Δ(l;k)	  

Δ(l;k)	  

1/k	  

Δ	  

(a) Uninformative herding.

1/k’	  

-‐1/k	  

-‐1/k’	  

l	  0	  

Δ(l;k)	  

Δ(l;k’)	  

Δ(l;k)	  

Δ(l;k’)	  

1/k	  

Δ	  

(b) Uninformative oscillations, k > k′.

Figure 2 – Net-congestion costs and learning.

To substantiate the above discussion, consider the linear versions of Example 1 and Exam-

ple 2. In the linear proportional-cost model, the incremental effect that any agent has on net

congestion eventually vanishes. Hence, for any k > 0, perpetual uninformative oscillation can-

not occur; the only reason that complete learning would not obtain is herding. When k < 1,

12



congestion costs can never become large enough to break a herd at sufficiently extreme public

likelihood ratios. When k ≥ 1, congestion costs eventually do become high enough to prevent

herds at any (interior) public likelihood ratio. In the linear absolute-cost model, congestion

costs can always get high enough to prevent a herd at any public likelihood ratio. In fact, since

each agent’s action has a constant incremental effect (in absolute value) on net congestion,

agents will eventually oscillate uninformatively between the two actions on any sample path.

Yet, as k vanishes, these uninformative oscillations can only occur at extreme public likelihood

ratios.

We summarize the properties of asymptotic learning in the leading examples as follows.

Proposition 1. Consider the leading examples.

1. In the linear proportional-costs model, there is (i) complete learning if k ≥ 1; (ii) bounded

learning if k < 1; and (iii) bounded learning in the no-congestion limit.

2. In the linear absolute-costs model, there is (i) bounded learning for any k > 0; but (ii)

learning with high probability in the no-congestion limit.

3. In a non-linear proportional-costs model with an f(·) function whose range is (−∞,∞),

there is complete learning for any k > 0, and hence in the no-congestion limit as well.

4. In a non-linear absolute-costs model with an f(·) function whose range is bounded, there

is bounded learning for all sufficiently small k and bounded learning in the no-congestion

limit.

(See the Appendix for a proof of this result and of all others not in the text.)

4.3 The no-congestion limit

We begin the formal analysis by studying learning in the no-congestion limit. As we will

see, when k → 0 the only reason that learning can stall is herding, which turns on properties

of total congestion.

Definition 1. Total congestion is bounded if

for any ai:−∞ < inf ∆(ai) and sup ∆(ai) < +∞.

Total congestion is unbounded if

for any ai : lim ∆((ai, 1, 1, . . .)) = +∞ and lim ∆((ai,−1,−1, . . .)) = −∞.

In the leading examples (Example 1 and Example 2), whether congestion is bounded or

unbounded depends in each case on the range of the function f(·). In particular, the lin-

ear proportional-costs model has bounded total congestion whereas the linear absolute-costs

model has unbounded total congestion. We note that although unbounded total congestion
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and bounded total congestion are exclusive, they are not exhaustive because each property is

required to hold for all action sequences.

Theorem 1. If total congestion is unbounded, then there is learning with high probability in

the no-congestion limit. If total congestion is bounded, then there is bounded learning in the

no-congestion limit.

Proof. The second statement of the theorem will be proved later as a consequence of Theorem 3

and Proposition 3 (see Corollary 1); we prove here the first statement of the theorem.

Step 1: We first claim that for any x > 0, x /∈ Supp[lk∞] once k is small enough. Suppose

not, per contra, for some x > 0. Then, for any ε > 0, there is a sequence of k → 0 such that

for each k, Pr[lk∞ ∈ Bε(x)] > 0, where Bε(x) := {y : |x − y| < ε}. For ε > 0 small enough,

there is an interval [b∗(x, ε), b
∗(x, ε)] with b > b∗(x, ε) > b∗(x, ε) > b such that if a sample

path has lki and lki+1 both in Bε(x), then i’s private belief threshold—i.e., the lowest private

belief that induces i to choose a = 1 (recall the monotonicity assured by Lemma 1)—cannot

fall within [b∗(x, ε), b
∗(x, ε)].15 Just as in the proof of Lemma 2, b∗(x, ε) can be mapped into

a net-congestion threshold, ∆∗(x, ε; k) < ∆(x; k), through

1 + k∆∗(x, ε; k) = 2p(b∗(x, ε), x), (3)

and analogously b∗(x, ε) maps into a threshold ∆∗(x, ε; k) > ∆(x; k) through

1 + k∆∗(x, ε; k) = 2p(b∗(x, ε), x). (4)

For lki and lki+1 to both lie in Bε(x), it must be that ∆(ai−1) /∈ [∆∗(x, ε; k),∆∗(x, ε; k)]; oth-

erwise i’s private belief threshold would fall within [b∗(x, ε), b
∗(x, ε)]. Combining (3) and (4)

yields

k (∆∗(x, ε; k)−∆∗(x, ε; k)) = 2(p(b∗(x, ε), x)− p(b∗(x, ε), x)),

and hence

as k → 0, ∆∗(x, ε; k)−∆∗(x, ε; k)→∞. (5)

Now, for any small enough ε > 0, let t be a time on some sample path such that

lki ∈ Bε(x) for all i ≥ t; this is well-defined because Pr[lk∞ ∈ Bε(x)] > 0. Since ∆(ai) /∈
[∆∗(x, ε; k),∆∗(x, ε; k)] for all i ≥ t, the fact that total congestion is unbounded implies

that there must be an infinite set of agents, I ⊆ {t, t + 1, . . .} such that for any i ∈ I,

∆
(
ai
)
≤ ∆∗(x, ε; k) whereas ∆((ai, 1)) ≥ ∆∗(x, ε; k). However, because of (5), bounded incre-

mental congestion (Assumption 2) implies that once k is small enough, if ∆
(
ai
)
≤ ∆∗(x, ε; k)

then ∆((ai, 1)) < ∆∗(x, ε; k), a contradiction.

15To confirm this, let b̂i denote i’s private belief threshold. If ai = 1, then lki+1 is derived through Bayesian-updating

using lki and the event bi > b̂i, hence for any b̂i > b, there is a δ > 0 such that lki+1 /∈ Bδ(x). Since ai = −1 works

mutatis mutandis, it follows that given any small enough ε > 0, lki+1 ∈ Bε(x) only if b̂i is sufficiently close to either

b (if ai = 1) or b (if ai = −1).
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Step 2: We next claim that for any ε > 0 and δ > 0, Pr[lk∞ > ε] < δ for all small enough

k. To prove this, fix any ε > 0 and δ > 0. Let L be any number strictly larger than 1/δ. By

Fatou’s Lemma, E[lk∞] ≤ lk1 = 1, where the equality is from the neutral prior. This implies

that Pr[lk∞ > L] < δ: if not, we would have E[lk∞] ≥ δL > 1, a contradiction. The claim now

follows from Step 1’s implication that Supp[lk∞] ⊆ [0, ε] ∪ [L,∞) once k is small enough.

For any ε > 0, by applying the above claim to a sequence of δ → 0, it holds that

limk→0 Pr[lk∞ ≤ ε] = 1; hence, there is learning with high probability in the no-congestion

limit. Q.E.D.

Theorem 1 shows that whether learning is likely to occur when k gets small turns on whether

total congestion is unbounded. The theorem can be interpreted as identifying a sense in which

the bounded learning conclusion of the standard model without congestion (recall Remark 1)

is fragile, but one should be clear in what sense our model does and does not converge to

the standard model as k → 0. To this end, let ũi(ai, θ) = 11{ai=θ} represent preferences in

the model without congestion and ũki (a
i, θ) = ui(a

i, θ) = 11{ai=θ}− kc(ai) represent preferences

under congestion factor k > 0. Then, for any i and ε > 0, there exists δ(i, ε) > 0 such that if

k < δ(i, ε) then for all θ and all ai: |ũki (ai, θ) − ũi(ai, θ)| < ε. In other words, as k → 0, our

model converges pointwise across agents to the model without congestion. The convergence

is not uniform, however, when total congestion is unbounded: the values of δ(i, ε) cannot be

chosen independently of i. By contrast, there is uniform convergence when total congestion

is bounded. Nevertheless, the case of unbounded total congestion seems pertinent for many

economic applications in which immense congestion causes immense distress.

4.4 Complete learning for any k > 0

We next turn to studying properties of congestion costs that assure complete learning for

an arbitrary k > 0. As suggested by the discussion in Subsection 4.2, one key condition is that

total congestion must get significant enough in magnitude to prevent herds.

Definition 2. For any k > 0, total congestion can get large or is large if

for any ai : lim ∆((ai, 1, 1, . . .)) ≥ 1/k and lim ∆((ai,−1,−1, . . .)) ≤ −1/k.

Plainly, if total congestion can get large for some k > 0, then it also can get large for k′ > k.

In particular, total congestion is unbounded if and only if it can get large for all k > 0.

In addition to precluding herds, complete learning also requires that agents must not per-

petually oscillate between actions without conveying information about their private beliefs.

Definition 3. Congestion has no gaps provided that for any ε > 0 and any non-convergent

infinite action sequence (a1, . . .): if S ⊆ R is a bounded interval and IS is an infinite set of agents

such that i ∈ IS ⇐⇒ ∆(ai) ∈ S, then there is some i∗S such that for any i, j > i∗S with i, j ∈ IS
and for any x ∈ (∆(ai),∆(aj)), there exists n > max{i, j} such that ∆(an) ∈ (x− ε, x+ ε).
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Note that the no gaps condition is independent of k. While the condition may appear

complicated, it has a fairly straightforward interpretation. To see this, assume that total

congestion is bounded and pick any non-convergent infinite sequence of actions. Roughly,

Definition 3 requires that if we choose any two agents, i and j, far enough down the sequence,

then the interval of net congestion costs (∆(ai),∆(aj)) can be arbitrarily finely “covered” by

subsequent net congestion cost levels, in the sense that
⋃

n>max{i,j}
∆(an) creates an arbitrarily

fine grid in that interval.16 The no-gaps condition is sufficient to ensure that agents cannot

oscillate forever between the two actions without conveying any information.

Theorem 2. If congestion has no gaps, then there is complete learning at any k > 0 for which

total congestion can get large. Therefore, if congestion has no gaps and total congestion is

unbounded, there is complete learning at the no-congestion limit.

Proof. Fix some k > 0 and assume that total congestion can get large and congestion has no

gaps. We will prove that Supp[lk∞] = {0}. Suppose, per contra, that x > 0 and x ∈ Supp[lk∞].

Following the logic developed in the proof of Theorem 1 and using the notation introduced

there for ∆∗(·) and ∆∗(·), we conclude that for any ε > 0 small enough, there must be a sample

path of actions (a1, . . .) and some time t such that

for all i ≥ t: either ∆(ai) ≤ ∆∗(x, ε; k) or ∆(ai) ≥ ∆∗(x, ε; k). (6)

Since large total congestion implies

lim ∆((ai,−1,−1, . . .)) ≤ −1/k ≤ ∆(x; k)

< ∆∗(x, ε; k)

< ∆∗(x, ε; k) < ∆(x, ε; k) ≤ 1/k ≤ lim ∆((ai, 1, 1, . . .)),

it follows that

|{i : i ≥ t and ∆(ai) ≤ ∆∗(x, ε; k)}| = |{i : i ≥ t and ∆(ai) ≥ ∆∗(x, ε; k)}| =∞.

Thus, given any i∗, we can find i, j > max{i∗, t} such that ∆(ai) ≤ ∆∗(x, ε; k) and ∆(aj) ≥ ∆∗(x, ε; k).

Furthermore, because of bounded increments (Assumption 2), (6) implies that there is some

bounded interval, S(x, ε; k) ⊇ [∆∗(x, ε; k),∆∗(x, ε; k)], such that ∆(ai) ∈ S(x, ε; k) for all i. It

then follows from the no-gaps property that for some n > t, ∆(an) ∈ (∆∗(x, ε; k),∆∗(x, ε; k));

but this contradicts (6). Q.E.D.

In terms of the no-congestion limit, Theorem 2 strengthens the positive conclusion of

Theorem 1 from learning with high probability to complete learning, but requires congestion

to have no gaps. More importantly, Theorem 2 can be applied to arbitrary k > 0.

16Since we are concerned with what happens far enough in the action sequence, it would be more accurate to call
the property “eventually no gaps”, but we omit the “eventually” qualifier for brevity.
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While congestion having no gaps is the essence of what drives complete learning, Defi-

nition 3 is not always easy to verify directly in applications. Accordingly, we introduce the

following stronger condition:

Definition 4. There is vanishing incremental congestion if for any ε > 0, any infinite sequence

of actions (a1, . . .), and any bounded interval S ⊆ R, there exists an i′ such that if i > i′ and

∆(ai) ∈ S, then
∣∣∆(ai+1)−∆(ai)

∣∣ < ε.

Intuitively, vanishing incremental congestion requires that in any infinite action sequence,

eventually any two successive agents, i and i+ 1, face net congestion costs that are arbitrarily

similar. For this to hold, not only should agent i’s own action not affect net congestion by

much, but moreover, the manner by which the actions of agents 1, . . . , i − 1 affect i’s net

congestion cost must be similar to how they affect agent i + 1’s. Thus, although reasonable

in many contexts, vanishing incremental congestion rules out certain kinds of time-varying

congestion costs that may nevertheless satisfy no gaps.

Proposition 2. Vanishing incremental congestion implies that congestion has no gaps.

The following observations show how Proposition 2 can be used to apply Theorem 2 to

our leading examples. The proportional-cost model with a continuous f(·) satisfies vanishing

incremental congestion: intuitively, eventually any one agent’s action has a negligible effect

on the fraction of agents who have chosen either action.17 Moreover, total congestion is large

in this model if and only if sup f(·) ≥ 1/k. In particular, total congestion gets large in the

linear proportional-cost model if and only if k ≥ 1. Similarly, total congestion is large in

the absolute-cost model if and only if f(·) is unbounded above; hence, the linear version has

large total congestion costs for all k > 0. However, the no gaps condition fails in the linear

absolute-cost model because ∆((ai, 1)) −∆(ai) = ∆(ai) −∆((ai,−1)) = 1 for all ai. On the

other hand, it is straightforward to show that when f(·) is bounded, the absolute-cost model

satisfies vanishing incremental congestion.

4.5 Bounded learning for any k > 0

Our final set of results on asymptotic learning derive sufficient conditions for bounded

learning for arbitrary k > 0.

Definition 5. For any k > 0, congestion has gaps if there exists C(k) > 0 such that for

any infinite action sequence (a1, . . .), there is some i∗ such that for all i > i∗, ∆(ai) /∈
(1/k − C(k), 1/k) ∪ (−1/k,−1/k + C(k)).

17If the continuous function f(·) is unbounded, negligible changes in ρ(·), the fraction of agents who have chosen
action 1, can still have a non-negligible effect on net congestion as ρ(·) approaches 0 or 1. However, Definition 4
only requires incremental congestion to vanish along a sequence in which net congestion stays bounded. Formally,
given any interval [y1, y2] ⊆ [0, 1] (with y1 > 0 if limy→0 f(y) = −∞ and y2 < 1 if limy→1 f(y) = ∞), any infinite
sequence of actions (a1, . . .) along which ρ(ai) stays within [y1, y2] has the following property: given any ε > 0, there
is i′ such that for any ai with i > i′, max{f(ρ((ai, 1)))− f(ρ(ai)), f(ρ(ai))− f(ρ((a1,−1)))} < ε. This follows from
the continuity of f(·) and that eventually any one agent’s choice has negligible effect on ρ(·).
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Figure 3 – A sample path along which there is learning.

In words, the gaps condition precludes any infinite sequence of net congestion cost from con-

verging to 1/k from below or to −1/k from above. To see the intuition for why this implies

bounded learning, consider Figure 3, which depicts a sample path along which there is learn-

ing. As the figure suggests, any sample path with learning requires that there be a sequence

of agents for whom net congestion cost converges to 1/k from below, contrary to the gaps

condition. We will see momentarily how the gaps condition subsumes the intuitions provided

in Subsection 4.2 about bounded learning when either congestion costs on one action never

get large enough (Proposition 3 below) or when the incremental effect of an agent’s action on

successors’ net congestion costs is never negligible (Theorem 3 below).

Remark 2. Except in degenerate cases—such as when there are no congestion effects—the gaps

condition and the no gaps condition are incompatible. In particular, if total congestion can

get large, then both conditions cannot hold simultaneously. ‖

A simple sufficient condition for congestion to have gaps for all k > 0 is that

the range of ∆(·) has no finite limit point. (7)

Clearly, the linear absolute-cost model satisfies (7) because in this case ∆(·) ∈ Z.

Theorem 3. For any k > 0, if congestion has gaps then there is bounded learning. Further-

more, if for all k > 0 small enough it holds that congestion has gaps and the constant C(k)

in Definition 5 can be chosen such that 1/k − C(k) is bounded above, then there is bounded

learning in the no-congestion limit.

Proof. For the first statement, fix any k > 0 and assume that congestion has gaps. Let l̂ be
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defined by ∆(l̂; k) = 1/k − C(k), where C(k) > 0 is from Definition 5; without loss, we may

take 1/k − C(k) > 0. Since ∆(·; k) is strictly decreasing from 1/k to −1/k (Lemma 2), l̂ is

well defined. Pick an arbitrary sample path of actions (a1, . . .). Since 1/k > ∆(l; k) > ∆(l; k)

for all l > 0, it follows that if lki < l̂ then i plays uninformatively; hence there cannot be an i

such that lki <
1−p(b,l̂)
p(b,l̂)

l̂, where the latter term is strictly larger than 0. Since the sample path

was arbitrary, it follows that there is bounded learning.

For the second statement, assume there is some z ∈ (0,∞) such that 1/k − C(k) < z for

all small enough k > 0. Define l̂ by ∆(l̂; k) = z. The same argument as above can be used

to conclude that for any k > 0 small enough, min Supp[lk∞] ≥ 1−p(b,l̂)
p(b,l̂)

l̂, which implies bounded

learning in the no-congestion limit. Q.E.D.

Remark 3. For a given k > 0, the gaps condition yields bounded learning because Definition 5

requires the same constant, C(k), to apply to all infinite action sequences. If, instead, the

constant could depend on the action sequence, then we would only have the weaker conclusion

that beliefs almost surely do not converge to the truth, i.e. Pr(lk∞ = 0) = 0. ‖

Theorem 3 can be used to deduce what happens when total congestion cost is small in the

following sense:

Definition 6. For any k > 0, total congestion is small if −1/k < inf ∆(·) and sup ∆(·) < 1/k.

Proposition 3. For any k > 0, if total congestion is small then congestion has gaps. If total

congestion is bounded then congestion has gaps for all k > 0 small enough; furthermore, the

constant C(k) in Definition 5 can be chosen such that 1/k − C(k) is bounded above.

Combining Theorem 3 and Proposition 3 yields:

Corollary 1. For any k > 0, if total congestion is small then there is bounded learning. If

total congestion is bounded then there is bounded learning in the no-congestion limit.

Recall from Remark 1 that in the benchmark model with no congestion, although herds occur

almost surely, information cascades need not. In other words, bounded learning does not imply

information cascades. Moreover, at any point where a cascade arises, so too does a herd. By

contrast, with congestion costs, information cascades need not usher in herds. The next result

describes properties of the net congestion cost that guarantee the onset of an information

cascade and simultaneously rule out herding.

Proposition 4. If total congestion is unbounded and (7) holds, then for any k > 0 there is

almost surely an information cascade without a herd.

Suppose (7) holds and total congestion is unbounded—as is true, for example, in the linear

absolute-cost model. Then, Theorem 3 and Proposition 4 imply that for any k > 0, learning

is bounded and an information cascade will almost surely arise. It is important to recognize,

however, that as k → 0, the set of public beliefs at which learning stalls and cascades arise

changes. Since there is learning with high probability in the no-congestion limit (Theorem 1),

the public belief can only settle when it is arbitrarily confident as k vanishes.
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4.6 The strength of public beliefs with large total congestion

In the introduction, we mentioned how in the linear-absolute cost model even small incre-

mental congestion costs can substantially affect asymptotic public beliefs in comparison to the

standard no-congestion model. We now further illustrate how congestion improves learning

for a broader class of congestion costs as well as different distributions of private beliefs. Say

that b ≥ 1/2 is an upper (resp. lower) bound on the strength of the asymptotic public belief

if the asymptotic public belief must lie in (resp. outside) [1 − b, b]. It is straightforward that

when k = 0, an upper bound on the strength of the public belief is p
(
b, 1−b

b

)
.

Let C > 0 denote a bound on eventual incremental congestion cost:18

for any (a1, . . .): there exists an i′ such that if i > i′, then
∣∣∆(ai+1)−∆(ai)

∣∣ ≤ C, (8)

and assume that total congestion can get large. In order for learning to stall at a public

likelihood ratio l, an infinite subsequence of players must switch uninformatively between

a = 1 and a = −1; (8) implies that this can only happen if ∆(l; k)−∆(l; k) ≤ C. As discussed

in Lemma 2 and its proof, ∆(l; k) −∆(l; k) is simply a multiple of 1/k and ∆(l; k) −∆(l; k)

is quasi-concave in l. Consequently, so long as k × C is sufficiently small, there will be two

public likelihood ratios at which

∆(l; k)−∆(l; k) = C, (9)

and the solutions only depend on k × C. Furthermore, for any l that lies in between the two

solutions, ∆(l; k) − ∆(l; k) > C. It can be verified that if b = 1 − b, the two solutions to

Equation 9 are symmetric in the sense that the corresponding public beliefs add up to one.

Consequently, when b = 1 − b and k × C is sufficiently small, a lower bound on the strength

of the asymptotic public belief is the public belief corresponding to the smaller solution of

Equation 9; the distribution of private beliefs does not matter beyond the value of b = 1− b.

Table 1 illustrates these lower bounds for some parameter values, and the corresponding

upper bounds on the strength of public beliefs in the no-congestion model. We see that the

smaller are incremental congestion costs in the sense of k×C, the sharper is the lower bound on

the strength of the asymptotic public belief (so long as total congestion can still get large, e.g. it

is unbounded). The discrepancy between the no-congestion and small-incremental-congestion

models is starker when private beliefs are weaker, which are cases generally viewed as more

relevant for observational learning. Consider b = 5
9 : the strength of the asymptotic public

belief in the no-congestion model is bounded from above by approximately 0.61. By contrast,

with C = 1, tiny incremental congestion costs of k = 0.001—an agent in the linear absolute-

cost model, for instance, is deterred from choosing an action known to be good only once its

queue is 1,000-people longer—ensure that limiting public beliefs must exceed approximately

18By Assumption 2, incremental congestion is bounded. What matters for the current exercise is only a (possibly
tighter) bound on eventual incremental congestion. In the linear absolute-cost model, C = 1.
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b = 2
3

b = 3
5

b = 4
7

b = 5
9

k = 0 0.8 0.6923 0.64 0.6098

k × C = 0.1 0.9649 0.9352 0.9046 0.8718

k × C = 0.01 0.9967 0.9940 0.9913 0.9888

k × C = 0.001 0.9997 0.9994 0.9991 0.9989

Table 1 – Lower bounds on strength of asymptotic public belief when b = 1− b and eventual
incremental congestion is bounded by C. Upper bounds for k = 0.

0.999 (or lie below 0.001) if total congestion can get large. In this sense, even in cases where

learning is incomplete for small k, congestion costs may substantially improve the accuracy of

asymptotic public beliefs. It bears repeating, however, that this analysis ignores the speed of

convergence, which may be slower with lower k.

5 Applications

5.1 Congestion through transfers

Having addressed the question of asymptotic learning, it is natural to next ask what fraction

of agents asymptotically choose the superior action, i.e. the action that matches the state.

Aside from being intrinsically interesting and potentially empirically observable, this statistic

is generally relevant for any reasonable measure of welfare.19 Moreover, we will see that it has

useful application.

Proposition 5. Assume (i) total congestion can get large; (ii) there is vanishing incremental

congestion; and (iii) ∆(ai) = g(ρ(ai)) for some continuous and injective function g : [0, 1]→ R.

Then, ex-ante, the proportion of agents who asymptotically choose the superior action almost

surely is 1/2 + (1/2)[g−1(1/k)− g−1(−1/k)].

Recall that the first two hypotheses of Proposition 5 imply that there is complete learning

for any k > 0. This does not guarantee that ρ, the proportion of agents choosing action 1 or

the action frequency, converges almost surely. Augmenting the proposition’s third hypothesis

does ensure this, as established in the proof.20 It is then straightforward to see that, almost

19This statistic can also be compared with its counterpart in the standard model without congestion. Comparing
equilibrium utilities (even asymptotically) across the two settings is less compelling. If one views agents’ utility
functions as just representing their preferences, then the comparison is not very meaningful since preferences differ.
Furthermore, congestion costs affect an agent’s behavior entirely through the difference in congestion cost an agent
faces between the two actions. This means that behavior in our model is isomorphic to behavior in a model with
congestion “benefits” where the history-dependent benefit of taking action a is the cost we subtract from taking
action −a. Framing congestion as a cost or as a benefit will clearly affect any welfare conclusion drawn by comparing
utilities across models.

20Even though the gaps condition would suffice for complete learning (given large total congestion), the stronger
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surely, ρ → g−1(1/k) when θ = 1 and 1 − ρ → 1 − g−1(−1/k) when θ = −1, which explains

the formula in the proposition.

Proposition 5 implies that the proportion of agents who choose the superior action converges

to one in some environments. Consider, for instance, the linear proportional-cost model when

total congestion is large, i.e. k ≥ 1. Applying the expressions mentioned above, the proportion

of agents choosing the superior action in this example is (1 + k)/2k regardless of the state.

Thus, when k = 1, the fraction of agents who eventually choose the superior action is one. The

higher is k, the lower is the proportion of agents who eventually choose the superior action,

and this proportion converges to 1/2 as k →∞.21

An interesting corollary is that in the canonical observational learning model without con-

gestion, a social planner could use a simple transfer scheme to ensure that, asymptotically, all

agents will choose the superior action. This can be achieved by using transfers to induce con-

gestion costs that take the form of the linear proportional-cost model with k = 1. Specifically,

a social planner could require agent i to pay an amount ρ(ai−1) to take action ai = 1 and pay

1 − ρ(ai−1) to take action ai = −1. Agent i’s transfer could be redistributed arbitrarily as a

form of subsidy to subsequent agents independent of their choices.22 By Proposition 5, this

simple transfer scheme causes agents to internalize their information externality in such a way

that leads to asymptotic efficiency.

5.2 Congestion through market prices

A simple application of our results is to a market setting where congestion cost is induced

by a price mechanism. There are two products, A and B. It is known that one product

is of high quality and the other of low quality, but consumers do not know which is which.

We represent A (resp. B) being the high-quality product by the state θ = 1 (resp. θ = −1).

Gross of price, the value of the high-quality product to any consumer is 1 while the low-quality

product is 0. Denote the decision to purchase product A by ai = 1 and the decision to purchase

product B by ai = −1. Consumers make purchase decisions sequentially and each consumer

observes the history of purchase decisions.

Assume that product pricing is as follows: after any history of consumer purchases, the

price of each product equals a constant k ≤ 1 times its expected value conditional on the

public information. When k = 1, this model is similar to the leading example of Avery and

requirement of vanishing incremental congestion is used in the argument establishing almost-sure convergence of the
action frequency. Note that action-frequency convergence is not an issue in the standard model without congestion,
because there a herd ensues almost surely.

21The linear absolute-cost model is not covered by Proposition 5, because it does not lead to complete learning.
However, it is easy to reason directly in this case that the action frequency converges almost surely to 1/2, because
agents eventually oscillate in succession between the two actions. Interested readers may refer to earlier versions of
this paper that contain a more detailed analysis of action-frequency convergence when there is incomplete learning.

22Redistribution to preceding agents is not straightforward because it would introduce strategic forward-looking
considerations into all agents’ choices.
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Zemsky (1998), but with an arbitrary distribution of signals of bounded informativeness. The

parameter range k < 1 can be interpreted as a reduced-form representation of competition

between sellers who face zero marginal costs of production. At the extreme, the case of k = 0

corresponds to perfect or Bertrand competition.

Using our notation for public beliefs, the price of good A after history ai is kq(ai), while

the price of product B is k
(
1− q(ai)

)
. Thus, ignoring indifference as usual, consumer i + 1

with private beliefs b chooses ai+1 = 1 (i.e. buy A) if and only if p(b, q(ai)) − kq(ai) >

1− p(b, q(ai))− k
(
1− q(ai)

)
, or equivalently,

p(b, q(ai)) >
1

2
+
k

2

(
2q(ai)− 1

)
. (10)

Even though there is no explicit congestion cost, the (endogenous) price has a similar effect.

Indeed, for arbitrary k ≤ 1, we can define the net congestion cost

∆(ai) := 2q(ai)− 1 =
1− l(ai)
1 + l(ai)

, (11)

so that the posterior belief threshold of our general model (Lemma 1), p∗(·) = 1/2 + k∆(·)/2,

coincides with threshold implied by (10).23 Note that ∆(·) defined by (11) satisfies Assump-

tion 1 and Assumption 2. We now consider two cases:

First consider k = 1. Plainly, for any ai, there is ε > 0 such that p(b, l(ai)) > q(ai) + ε

and p(b, l(ai)) < q(ai) + ε. Alternatively, according to (11), for any l > 0 there is ε > 0 such

that if l(ai) = l then ∆(l; 1) + ε < ∆(ai) < ∆(l; 1)− ε. This implies that at any interior public

likelihood ratio, the informative content of an agent’s action is always bounded away from

zero: for any l > 0 there is ε > 0 such that if l(ai) = l then for any ai+1, |l(ai+1)− l(ai)| > ε.

Consequently, there is complete learning: the asymptotic public likelihood ratio can never

settle at an interior point.

Now consider k < 1. Since (11) implies ∆(ai) ∈ (−1, 1) for any ai, the setting satisfies

small total congestion for all k < 1. Hence, Corollary 1 implies that there is bounded learning

for all k < 1 (and bounded learning in the limit of k → 0). It is not hard to verify that on any

sample path, there will be a herd in finite time.

Although we do not pursue it formally here, we could modify Avery and Zemsky (1998)

in a different direction by assuming that the price updates after every N > 1 trades instead

of after every trade, perhaps because some technological constraint prevents instant price-

updating. This does not alter the aforementioned properties of asymptotic learning for either

k = 1 or k < 1. However, even when k = 1, although there is complete learning, it holds that

for sufficiently large N > 1, there is a strictly positive probability that an infinite number of

agents behave uninformatively; this contrasts with N = 1 wherein every agent behaves infor-

23Even though the function ∆(·) defined by (11) depends indirectly on the strategies of the agents (because they
affect the public belief), one can proceed recursively from agent one onward and just substitute this out.
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matively.24 Intuitively, within every block of N agents after a price update, the environment

is analogous to the standard model without congestion: the first agent will act informatively

because of the price update preceding him, whereas with sufficiently many agents in the block,

there is a positive probability of a “temporary information cascade” within that block.

Another natural variation is to limit prices to lie on a grid, e.g. pounds and pence. As this

restriction satisfies gaps, Theorem 3 implies that there is bounded learning in this setting.

5.3 Congestion through queuing

As a final application, we modify Example 2 to study a queuing problem with stochastic

service. In the queuing model with constant unobservable service rate δ ∈ [0, 1), c(a1) = 0 and

for each i ≥ 2,

c
(
ai
)

=
i−1∑
j=1

11{aj=ai}δ
i−j−1. (12)

Thus, congestion depends more strongly upon the choices made by recent predecessors than

those made by more distant predecessors. If δ = 0, every agent cares only about his immediate

predecessor’s action.25 This cost function naturally arises when agents suffer disutility from

waiting for service under the constant service rate, where in every period, each previously

un-served agent is served with probability δ. When actual service to preceding agents is

unobservable, each agent computes the expectation over the number of predecessors who chose

his action but have not yet been served. For instance, agent i may have observed whether each

agent j < i entered restaurant a = −1 or restaurant a = 1 through the front door. However,

he may not know whether j was served and exited through the restaurant’s unobservable back

door or remains in the restaurant. If agents are risk neutral and believe that in every period

t, any agent who has entered a restaurant prior to t exits with probability 1 − δ, then each i

faces a congestion cost given by (12).

From (12), one computes that for any ai, ∆((ai, 1)) = 1 + δ∆(ai) and ∆((ai,−1)) =

δ∆(ai) − 1. Furthermore, for any ai, lim ∆(ai, 1, 1, . . .) = 1
1−δ , and lim ∆(ai,−1,−1, . . .) =

− 1
1−δ . Hence, total congestion is bounded. Total congestion can get large when k ≥ 1 − δ,

whereas it is small when k < 1− δ. It follows immediately from Theorem 1 that:

Corollary 2. In the queuing model with constant unobservable service rate δ ∈ [0, 1), there is

bounded learning in the no-congestion limit.

One can also deduce properties of asymptotic learning when k ≥ 1− δ. For example, since

∆(·) ∈ {−1, 1} when δ = 0, congestion has gaps in this case; hence, Theorem 3 implies that

there is bounded learning no matter the value of k > 0 when δ = 0.

24In fact, given any x < 1, N can be chosen large enough to make the probability of an infinite number of agents
behaving uninformatively be strictly larger than x.

25If δ were equal to one, this would be the linear absolute-cost model.

24



We next turn to a variation of the problem where service is observable. In the restaurant

context, whereas above diners departed through an unobservable back door, here they depart

through the observable front door. Define the Bernoulli random variable Sj(t) to equal 1 with

probability 1 when t = j + 1, and for each t ≥ j + 1,

Pr[Sj(t+ 1) = 1 | Sj(t) = 1] = δ, Pr[Sj(t+ 1) = 1 | Sj(t) = 0] = 0.

In words, Sj(t) = 1 indicates that agent j remains unserved through period t, while Sj(t) = 0

indicates that he has been served. Agent i faces the congestion cost

c
(
ai
)

=

i−1∑
j=1

11{aj=ai}Sj(i).

In words, agent i pays 1 for every unserved predecessor who chose the same action as i. Note

that the cost faced by any agent is now stochastic.

Observe that for any δ > 0 and any k > 0, congestion costs get arbitrarily large with

probability one (e.g., when Sj(·) = 1 for sufficiently many periods in a row). Using this fact,

one can show that:

Corollary 3. In the queuing model with constant observable service rate δ ∈ (0, 1), there is

learning with high probability in the no-congestion limit.

We omit the proof because it follows the same logic as that of Theorem 1, with straightfor-

ward modifications to account for the stochastic costs. The contrast between Corollary 2 and

Corollary 3 reiterates the theme that what is important for learning is not that every agent

must play informatively, but rather that it is always inevitable that some agent in the future

will do so.

6 Outside Options

Up until this point, we have modeled agents as necessarily having to choose between actions

with uncertain payoffs that each suffers from congestion costs. In some applications, agents

may also have some outside option, which provides a known payoff that is not affected by

congestion—“dine at home”, so to speak, or “balk both queues”. If the congestion cost that

agent i faces on both action −1 and action 1 is sufficiently large—as it necessarily is eventually,

for example, in the linear absolute-cost model for any k > 0—then regardless of i’s posterior

belief, he will prefer to take the outside option. This raises a question of whether our positive

results on asymptotic learning rely on the absence of an un-congested outside option (or the

violation of individual rationality). In this section, we show that this is not the case, under

reasonable conditions. The logic of the analysis will also suggest how our results can be

extended to an arbitrary number of actions with state-dependent payoffs and congestion costs.
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We augment the model of Section 2 by adding an outside action, denoted a = 0, that

delivers a fixed payoff of zero to all agents who choose it: ui((a
i−1, 0), θ) = 0 for all i, ai−1, and

θ. Setting the outside option’s payoff to zero entails a substantive assumption that if there were

no congestion costs on either action −1 or 1, then the outside option would be dominated; this

is consistent with ignoring outside options in the standard model without congestion. Recall

that without an outside option, the net congestion cost, ∆(ai), was all that mattered to agent

i besides his posterior belief. With the outside option, the actual level of congestion cost on

each action ai ∈ {−1, 1}, c(ai), also matters. Indeed, c(ai) is the analog of ∆(ai) vis-à-vis the

choice between action ai ∈ {−1, 1} and the outside option.

We will maintain the following generalization of bounded increments (Assumption 2):

Assumption 3 (Strengthened bounded increments). sup
ai,a,a′

|c((ai, a))− c((ai, a, a′))| <∞.

In words, this requires that there is a bound on how much any agent’s action can affect his

successor’s congestion cost, no matter the history.26

Recall that our result of learning with high probability in the no-congestion limit (Theo-

rem 1) relied on unbounded total congestion (Definition 1). Such a result in the presence of

the outside option requires, in addition, the analogous property to also hold for c(·). To state

the property, let ¬a ∈ {−1, 0, 1} \ {a} denote an action different from a.

Definition 7. There is full decay if for any ai and any a ∈ {−1, 1}: lim
N→∞

c((ai,¬a,¬a, . . . ,¬a︸ ︷︷ ︸
N times

, a)) =

0.27

Full decay captures the notion that, eventually, if no one ever takes an action a ∈ {−1, 1},
then congestion on action a vanishes. It implies that there can never be a herd on the outside

option, for if all agents start choosing the outside option at any point, then eventually an agent

would find a different action strictly preferable, no matter his belief about the state. When

combined, full decay and unbounded total congestion imply that if all agents start taking

some action a ∈ {−1, 0, 1} then, eventually, action a becomes dominated by another action no

matter an agent’s belief.

Theorem 4. In the model with the outside option, if total congestion is unbounded and there

is full decay, then there is learning with high probability in the no-congestion limit.

Although the analysis with the outside option is more intricate than in the baseline model,

the intuition underlying Theorem 4 is similar to that of Theorem 1: for small k, given that in-

cremental congestion is bounded, the conjunction of full decay and unbounded total congestion

imply that learning can only stall at very extreme public likelihood ratios. Theorem 4 points

26It would be natural to also assume a generalization of monotonicity (Assumption 1), but we do not need it for
the formal result we will prove in this section.

27It bears emphasis that the actions within the subsequence that occurs “N times” are not assumed to be the
same; rather, the subsequence just cannot contain a.
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out that to obtain learning with high probability in the no-congestion limit, it is sufficient that

the congestion cost on any action, in the sense of k × c, be able to grow above 1 (the normal-

ization of the maximum gross payoff from taking action 1 or −1). This requirement certainly

does not imply that expected payoffs become arbitrarily poor on the equilibrium path; rather,

they are always non-negative in the presence of the outside option.

We view full decay as a reasonable economic requirement. It is satisfied by any version of

the proportional-cost model in which f(0) = 0. While the linear absolute-cost model violates

the condition—and indeed, it is intuitive in this case that herding on the outside option is

an obstacle to asymptotic learning even as k vanishes—a number of natural variants of this

specification would satisfy full decay. For example, motivated by the queuing application with

constant observable service rate, suppose that consumers are served in first-in-first-out order,

but it takes T ≥ 1 periods to process each consumer. The congestion cost to a consumer from

joining queue a ∈ {−1, 1} is equal to the amount of time before he finishes being served. This

setting satisfies both bounded increments (per Assumption 3) and full decay. If T = 1, then

c(ai) = 1 for all i and ai, hence ∆(ai) = 0 for all ai, and there is bounded total congestion. On

the other hand, for any T > 1, there is unbounded total congestion, hence Theorem 4 applies.

While we have focussed above only on the no-congestion limit, it is also possible to derive

analogous results to those of Theorem 2 and Theorem 3 for arbitrary k > 0 under analogous

assumptions.

7 Conclusion

This paper has studied the role of congestion costs in an otherwise standard model of

observational learning. Congestion costs capture situations in which an agent’s payoff from

choosing an option deceases when more of his predecessors choose that option. This feature

arises naturally in markets either through changing prices or market-share effects, and in other

environments where, for example, costs may stem from delays in service or reduced benefits

to conformists.

Our analysis sheds light on how different forms of congestion costs impact long-run learning.

By parameterizing the marginal rate of substitution between the benefits from choosing the

superior action and incurring congestion costs by k > 0, we have provided results for both

arbitrary k and the no-congestion limit when k vanishes. While one might conjecture that

the lessons from the literature without congestion costs would carry over to a model where

each agent has only an infinitesimal effect on congestion costs, our results emphasize that

this depends crucially on whether total congestion costs remain bounded or not. In many

applications, one would posit that no matter the value of k, agents would eventually be willing

to choose an action that is known to be inferior if there is enough congestion on the other

actions. In such cases, asymptotic learning essentially obtains as k vanishes, in contrast to the

case of k = 0 (with bounded private beliefs).
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While we have focussed on settings where an agent finds an action more attractive when it

has heretofore been rare, our methods can also be used to analyze situations where the direction

of the externality is reversed, such as when agents have a taste for conformity. Formally, this

just requires reversing the inequalities in the monotonicity assumption (Assumption 1). It

is not hard to check that in this case, given bounded private beliefs, for any k > 0 there is

bounded learning and almost surely a herd.28

We have focussed on the case of bounded private beliefs, but the analysis can also be

extended to unbounded private beliefs. In that case, complete learning obtains under small

total congestion, just as in the standard model without congestion (Smith and Sørensen,

2000).29 On the other hand, with large total congestion, complete learning may fail. For

example, in the linear absolute-cost model (which has large total congestion, no matter the

value of k > 0), there is bounded learning when k is sufficiently large, even when private beliefs

are unbounded. Nevertheless, there is still learning with high probability in the no-congestion

limit, just as under bounded private beliefs.

A key assumption in this paper is that only past actions affect the payoff of an agent. There

are, of course, situations where future actions also matter. Consider the case of betting, where

each bettor i bets on which of two teams will win a game. In some fixed-odds systems used

by bookmakers, each bettor receives odds that depend on how many prior bettors have bet on

each team, consistent with the backward-looking congestion costs of our model. In parimutuel

betting, however, each bettor receives odds that depend on how many agents have chosen each

team by the close of the betting pool. In this system, a bettor must consider not only his

beliefs about the superior action and his predecessors’ choices, but potentially also how his

action influences the bets of his successors. Extending our analysis to such environments is a

challenging but promising area of further research.30

28Under mild conditions one can also show that there is almost surely an information cascade. For example, the
following condition would be sufficient: there exists ε > 0 such that for any (ai, 1, 1, . . .) and any j > i, ∆(aj) > ε
(and analogously if there is a herd on action −1), where ∆(aj) is now the net benefit that individual j derives from
taking action 1 rather than −1.

29If private beliefs are unbounded we have that ∆(l; k) = 1/k and ∆(l; k) = −1/k for all l, and hence an agent’s
action is always informative under small total congestion.

30Koessler et al. (2008) make some progress with characterizing equilibrium behavior for sequential parimutuel
betting with a very small number of bettors.
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A Appendix

Proof of Proposition 1. Part 1(i) follows from Theorem 2; Part 1(ii) from Corollary 1; Part

1(iii) from Theorem 1; Part 2(i) from Theorem 3; Part 2(ii) from Theorem 1; Part 3 from

Theorem 2; and Part 4 from Corollary 1. Q.E.D.

Proof of Proposition 2. Fix any non-convergent infinite sequence of actions (a1, . . .) and any

ε > 0. Pick any bounded interval S ⊆ R and any infinite set of agents IS = {n1, n2, . . .}
such that i ∈ IS ⇐⇒ ∆(ai) ∈ S; if such an S and IS do not exist then we are trivially

done. From the definition of vanishing incremental congestion, there are two exclusive and

exhaustive possibilities: either (i) x∗ = limk→∞∆(ank) exists, or (ii) there is a non-singleton

closed interval S′ ⊆ S such that for any S̃ ( S′ and any j, there is some i > j such that

∆(ai) ∈ S′ \ S̃, i.e. S′ is the minimal set such that among agents in IS , ∆(·) is eventually in

S′.

Assume case (i). This implies that there is some i∗ such that ∆
(
ai
)
∈ (x∗ − ε/2, x∗ + ε/2)

for all i > i∗ with i ∈ IS . This implies that for any i, j > i∗ with i, j ∈ IS , and any

x ∈ (∆(ai),∆(aj)), it holds that for all n > max{i, j} with n ∈ IS , ∆(xn) ∈ (x− ε, x+ ε).

This satisfies the requirement of no gaps.

Now consider case (ii). Let i∗ be any time such that ∆(ai) ∈ S′ for all i > i∗ and i ∈ IS .

By definition of S′, vanishing incremental congestion implies that for any x ∈ S′, there must

be an infinite set of agents, I ′ ⊆ IS , such that for all i ∈ I ′, ∆(ai) ∈ (x−ε, x+ε). This implies

that the requirement of no gaps is satisfied because for any i, j > i∗ with i, j ∈ IS , ∆(ai) ∈ S′

and ∆(aj) ∈ S′. Q.E.D.

Proof of Proposition 3. For the first statement, observe that for any k > 0, C(k) = 1/k −
sup ∆(ai) verifies Definition 5 when sup ∆(ai) < 1/k. The second statement follows because

under bounded total congestion, the same construction works for all k > 0 small enough, and

in this case 1/k − C(k) is bounded above. Q.E.D.

Proof of Proposition 4. Fix k > 0 and pick any sample path (a1, . . .); let z be public likelihood

ratio limit on this sample path, which exists a.s. As total congestion is unbounded, the sample

path includes an infinite number of each action. Assume, to contradiction, that there is no

cascade. Then there is an infinite set of agents, I ′, who all take the same action and whose

actions are informative. Without loss, assume that i ∈ I ′ =⇒ ai = 1; the argument

proceeds mutatis mutandis in the other case. By the same logic used in proving Theorem 1,

it follows that for all small enough ε > 0, there exists iε such that for all i > iε, ∆(ai) /∈
(∆(z; k) + ε,∆(z; k) − ε). By the continuity of ∆(·; k) and ∆(·; k), it further follows that for

all small enough ε > 0,

there is iε such that [i > iε and i ∈ I ′] =⇒ ∆(ai−1) ∈ (∆(z; k)− ε,∆(z; k) + ε).
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In view of (7), the above condition can hold for ε > 0 small enough only if

there is i′ such that [i > i′ and i ∈ I ′] =⇒ ∆(ai−1) = ∆(z; k).

But this implies that eventually agents in I ′ behave uninformatively, a contradiction with the

definition of I ′. Q.E.D.

Proof of Proposition 5. Since total congestion can get large and there is vanishing incremental

congestion, Proposition 2 and Theorem 2 apply to deduce complete learning. Given complete

learning, it is straightforward that vanishing incremental congestion implies that asymptotic

net congestion must equal 1/k (resp. −1/k) a.s. when the state is θ = 1 (resp. θ = −1).31 From

the hypothesis that ∆(ai) = g(ρ(ai)) for some continuous and injective function g : [0, 1]→ R,

it follows that whenever ∆ converges, so must the action frequency, ρ. Plainly, if ∆ → 1/k,

then ρ → g−1(1/k) whereas if ∆ → −1/k then ρ → g−1(−1/k). Noting that the fraction of

agents choosing the superior action in state −1 is 1− ρ and using the neutral prior yields the

expression stated in the proposition. Q.E.D.

Proof of Theorem 4. As portions of this proof proceed quite similarly to the proof of Theo-

rem 1, we only sketch the argument.

First, note that instead of depending upon only one posterior threshold (the p∗ of Lemma 1),

individual decision-making now depends upon two posterior thresholds, denoted by pH ≥ pL:

an agent chooses a = 1 if p > pH ; a = 0 if p ∈ (pL, pH); and a = −1 if p < pL. This threshold

structure owes to the state-independent payoff of the outside option. Consequently, in addition

to the ∆ and ∆ functions, we will also have for each a ∈ {−1, 1}, two additional threshold

functions, say ca(l; k) and ca(l; k), satisfying ca(·) ≥ ca(·) such that c((ai−1, a)) > ca (resp.

< ca) implies ai 6= a (resp. ai 6= 0) because the outside option is preferred to a (resp. is worse

than a) action a no matter i’s private belief.32

Now, towards a contradiction, fix a public likelihood ratio x > 0 such that for all ε > 0,

lk∞ ∈ Bε(x) with positive probability for a sequence of k → 0, just as in the proof of Theorem 1.

Consider any ai ∈ {−1, 1}. Just like in the proof of Theorem 1, we can show that that lki , l
k
i+1 ∈

Bε(x) implies that c((ai−1, ai)) /∈ [c∗(ai, x, ε; k), c∗(ai, x, ε; k)], where ca(x; k) > c∗(ai, x, ε; k) >

c∗(ai, x, ε; k) > ca(x; k). Analogous to (5) in the proof of Theorem 1, the “exclusion interval”

c∗(ai, x, ε; k) − c∗(ai, x, ε; k) → ∞ as k → 0. Note that this is in addition to retaining the

[∆∗(x, ε; k),∆∗(x, ε; k)] exclusion interval as in the proof of Theorem 1; the point is that now,

ai not only reveals that the other uncertain-payoff action is undesirable to i, but moreover

that the outside option is also undesirable.

31Note that while complete learning would be implied by large total congestion and gaps (which is weaker than
vanishing incremental congestion), gaps is not sufficient to deduce that asymptotic net congestion must converge a.s.

32For example, c1(l; k) = p(b, l)/k and c1(l; k) = p(b, l)/k. Note also that the interpretation of the ∆ and ∆
functions is now different than without the outside option: for example, ∆ ≥ ∆ does not imply that an agent
necessarily takes action −1, rather, it only implies that the agent will not take action 1.
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On any sample path, unbounded total congestion and full decay imply that at least two

actions in {−1, 0, 1} must be played infinitely often. Given small ε, let t be a time on some

sample path such that lki ∈ Bε(x) for all i ≥ t. There are two exhaustive possibilities:

1. If there is an infinite number of consecutive pairs of agents such that the first agent takes

action 1 and the second action −1, then the argument in the proof of Theorem 1 applies

due to the existence of the set I described there.

2. If the above fails, then for some a 6= 0, there is an infinite number of consecutive actions

(0, a).33 Now we just apply the same argument as in the proof of Theorem 1 to ca rather

than ∆: i.e., c((ai, a)) ≥ c∗(·) and c((ai, 0, a)) ≤ c∗(·), but since we established above

c∗(a, ·)− c∗(a, ·)→∞ as k → 0, this contradicts bounded increments. Q.E.D.

33To confirm this, suppose there is only a finite number of consecutive action pairs (0,−1) and (0, 1). Then there
is only a finite number of action 0’s; hence, given that two actions are played infinitely often, the first case applies.
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