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An invariant of scale-free graphs 
Alexei Vernitski 

Abstract—In many applications (including biology and the study of computer networks) graphs are found to be scale-free. It 

has been argued that this property alone does not tell us much about the structure of the graph. In this paper, we introduce a 

numerical characteristic of a graph, which we call the astral index, and which can be calculated efficiently. We demonstrate that 

the Barabási-Albert algorithm for generating scale-free graphs produces not just scale-free graphs, but only scale-free graphs 

with a constant astral index. On some examples of biological graphs, we see that they not only are scale-free, but also share 

the value of the astral index with Barabási-Albert graphs. For comparison, we demonstrate that the Erdős–Rényi model for 

generating random graphs also generates only graphs with a constant astral index, whose value significantly differs from that of 

graphs generated by the Barabási-Albert algorithm. 

 

1 TYPES OF GRAPHS IN APPLICATIONS

HIS paper contributes to the study of types of graphs 
occurring in real-life applications. It has been ob-
served that the same type of graphs occurs surpris-

ingly often, and a number of theoretical models character-
izing such graphs have been suggested.  

Before we consider such models, we should note that 
in this paper, we try to follow the standard graph-
theoretical terminology such as ‘graphs’, ‘vertices’ and 
‘edges’, even though some readers might be more used to 
the terminology from applied-sciences papers such as 
‘networks’, ‘nodes’ and ‘connections’. (At the same time, 
we shall avoid speaking about the ‘graph of a function’, 
so, the word ‘graph’ will mean only one thing within the 
paper.) 

The most important theoretical model in recent publi-
cations is that of scale-free graphs; see, for instance, [1] or 
any of many papers on this topic by Barabási and other 

researchers. To define this model, let us introduce the 
degree distribution function. The degree of a vertex is the 
number of vertices adjacent to it. The degree distribution 
function of a graph is defined at each positive integer 𝑑 as 
the number of vertices in the graph that have degree 𝑑.  

For instance, a star graph is a graph whose set of verti-
ces is 𝑉, and whose edges connect one fixed vertex 𝑢 ∈ 𝑉 
with every other vertex 𝑣 ∈ 𝑉\𝑢. The 9-vertex star graph 
presented on Figure 2 (a) has 8 vertices with degree 1 and 
1 vertex with degree 8.  

Another example is the graph on Figure 2 (b). It has 6 
vertices with degree 1 and 3 vertices with degree 4. Thus, 
in both graphs there are fewer vertices with a relatively 
large degree and more vertices with a relatively small 

degree.  
If we draw a diagram representing the degree distribu-

tion function of such a graph, we shall see that we have 
larger values of the function on the left of the diagram, 
and smaller values of the function on the right of the dia-
gram. For instance, the solid line on the diagram on Fig-
ure 2 is the degree distribution function of the 9-vertex 
star graph on Figure 2 (a). 

One can try to approximate the degree distribution 

function of a graph by a suitable smooth function, for 
instance, by a power function. For instance, the dashed 
line on this diagram is a function with the formula 
𝑦 = 8𝑥−1.2, and it could be considered as a rough approx-
imation of the degree distribution function.  

Generalizing this example, a scale-free graph is a graph 
whose degree distribution function can be approximated 
by a power function, that is, a function of the form 
𝑦 = 𝑘𝑥−𝑚, where 𝑘, 𝑚 are some positive numbers. Also, 
in this case one says that this graph demonstrates a power 
law distribution. 

It has been observed that a large number of graphs in 
various applications, ranging from biological graphs to 
the graphs of Internet connections, are scale-free. 

Let us introduce an informal concept. Suppose a graph 
is like a scale-free graph in the sense that it has ‘few’ ver-
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Figure 1: degree distribution function of a small scale-
free graph. The horizontal axis represents the degree of 
a vertex. The vertical axis represents the number of ver-
tices with this degree. The dashed line is an approxima-
tion by a power function. 

Figure 2: examples of small graphs 
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tices with ‘large’ degrees and ‘many’ vertices with ‘small’ 
degrees, but does not necessarily demonstrate a power 
law distribution; in this case, we shall say that the graph 
is a declining-degree graph. For example, star graphs are 
declining-degree graphs; in the next section, we shall in-
troduce astral graphs as an important generalization of 
star graphs, and they also are declining-degree graphs. 

Random graphs (in the Erdős–Rényi sense) are graphs 
in which for each two vertices, the probability of having 
an edge between them is the same and does not depend 
on the presence or absence of other edges. Random 
graphs are not declining-degree graphs: their degree dis-
tribution is the Poisson distribution. This is a classical 
model in graph theory. We shall use random graphs to 
compare how our model works on scale-free graphs and 
on random graphs.  

2 ASTRAL GRAPHS 

In this section we introduce astral graphs; in the follow-
ing sections, we shall see that they are a very convenient 
instrument for analyzing the structure of graphs, and es-
pecially the structure of declining-degree graphs. 

Table 1: the adjacency matrix of the astral graph shown on 
Figure 3 

 1 2 3 4 5 6 7 

1 0 1 1 1 1 1 1 

2 1 0 1 1 1 1 0 

3 1 1 0 1 0 0 0 

4 1 1 1 0 0 0 0 

5 1 1 0 0 0 0 0 

6 1 1 0 0 0 0 0 

7 1 0 0 0 0 0 0 

 
 
Note that in the model considered in this paper, all 

graphs are undirected without loops. If necessary, it is 
possible to generalize the model to directed graphs.   

We say that a graph is astral if there is a linear ordering 
of the set of its vertices such that whenever there is an 
edge between vertices 𝑎 and 𝑏, there is also an edge be-
tween all vertices 𝑐 and 𝑑 such that 𝑐 ≤ 𝑎 and 𝑑 ≤ 𝑏. For 
example, a small graph presented on Figure 3 is astral, as 
can be seen easily if we impose on it a numbering of ver-
tices as shown on the diagram.  

It is convenient to think about this definition in terms 
of the adjacency matrices of graphs. If vertices of the 
graph are in a suitable order, the adjacency matrix of an 
astral graph has a special form as shown in the example 

in Table 1. That is, whenever we have 1 in a certain cell of 
the table, we also have 1 in all cells to the left and above 
this cell. (Note that the matrix is symmetric because the 
graph is undirected, and it has 0s on the diagonal because 
the graph has no loops.) 

 
 
We call astral graphs this name because they are gen-

eralizations of star graphs. Indeed, every star graph is an 
astral graph. Let us consider a star graph whose set of 
vertices is 𝑉, and whose edges are the edges between a 
certain fixed vertex 𝑢 ∈ 𝑉 and every other vertex 𝑣 ∈ 𝑉\𝑢. 
To see that this star graph is an astral graph, it is suffi-
cient to consider a linear order on 𝑉 such that 𝑢 is the 
smallest vertex relative to this order. Alternatively, if we 
consider adjacency matrices, if we consider a star graph, 
its adjacency matrix, with a suitable ordering of vertices, 
contains 1s in the first row and the first column, and 0s 
everywhere else.  

3 DEGREE DISTRIBUTION IN ASTRAL GRAPHS 

Sparse connected astral graphs are declining-degree 
graphs. One way of looking at this fact is by looking at 
the first and the last vertices in the ordering in the defini-
tion of the astral graph. Indeed, a few vertices at the be-
ginning of the ordering are adjacent to every or almost 
every other vertex of the graph, and, on the other hand, 
comparatively many vertices at the end of the ordering 
have only one or a few neighbors. For example, suppose 
we consider any connected astral graph with 100 vertices 
and 300 edges. It can be calculated that in such a graph, 
between 3-10 vertices have degree 50 or greater, and be-
tween 84-96 vertices have degree 3 or less. 

Having said that sparse astral graphs are declining-
degree graphs, it is important to note that within this re-
striction, they can approximate any degree distribution. 
For instance, it is easy to construct astral graphs which 
are scale-free, or which have the exponential law distribu-
tion. Because astral graphs are independent from any par-
ticular degree distribution, they can be used to character-
ize graphs in applications in a way which is complemen-
tary to the ones which are used now and which are based 
on degree distributions.  

4 DECOMPOSING INTO ASTRAL GRAPHS 

Suppose we consider a graph with the set of vertices 𝑉 
and with the set of edges 𝐸. By decomposing the graph we 
mean that we find some graphs, say, 𝑚 graphs 𝐺1, … , 𝐺𝑚, 
whose sets of vertices are subsets of 𝑉, whose sets of edg-
es 𝐸1, … , 𝐸𝑚 are subsets of 𝐸, and such that 𝐸 = 𝐸1 ∪ …∪
𝐸𝑚. 

Decomposing a graph into simple graphs is a standard 
instrument of graph theory. Moreover, decomposing a 
graph into star graphs (or, to be more precise, star forests) 
has been considered; this topic in graph theory is known 
as star arboricity, see, for instance, [1]. However, to the 
best of our knowledge, decomposition of graphs has nev-
er been used for classification of scale-free graphs.  

5 6 7 4 

1 2 

3 

Figure 3: a small astral graph 
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The main new construction we are introducing is de-
composing a graph into astral graphs. There are many ways 
of decomposing a graph into astral graphs. For instance, 
one trivial way of doing this is to decompose a graph into 
a union of its edges, since every edge by itself is an astral 
graph. What we are interested in is decomposing a graph 
into a small number of large astral graphs. However, do-
ing this in an optimal way is a complicated and computa-
tionally infeasible task. Instead, we have developed a fast 
heuristic algorithm.  

The algorithm that we use for decomposing a graph in-
to astral graphs is presented as Algorithms 1 and 2 below. 
It is merely a greedy algorithm which tries to find a large 
astral subgraph of the graph (this part of the process is 
Algorithm 1), extracts it, and continues doing this again 
until a complete decomposition is achieved. 

Let us clarify some terminology. When we consider a 
star graph, we refer to its vertices with degree 1 as leaves. 
The word largest in relation to a subgraph refers to the 
number of vertices.  

Algorithm 1: finding a large astral subgraph 

Start with the original graph 𝐺. Find a largest substar 
𝑆1 of 𝐺. Then find a largest substar 𝑆2 of 𝐺 such that all 
vertices of 𝑆2 are leaves of 𝑆1. Working iteratively, find a 
largest substar 𝑆𝑖+1 of 𝑆𝑖  such that all vertices of 𝑆𝑖+1 are 
leaves of 𝑆𝑖 . Continue until you reach a graph 𝑆𝑖  such that 
there are no stars whose vertices are leaves of 𝑆𝑖 . Then 
consider the (necessarily astral) subgraph 𝐴 of 𝐺 which is 
the union of all stars 𝑆𝑖 . 

(For example, if we apply this algorithm to the graph 
on Figure 3, then first it will find a star connecting 1 to 
leaves 2, 3, 4, 5, 6, 7; then it will find a star that con con-
necting 2 to leaves 3, 4, 5, 6; then it will find a one-edge 
star  connecting 3 to 4; then it will stop.)   

Algorithm 2: decomposing into astral graphs 

Start with the original graph 𝐺. Find in it an astral sub-
graph 𝐴1, using Algorithm 1. Extract the edges of 𝐴1 from 
𝐺, thus producing a graph 𝐺1. Working iteratively, find in 
𝐺𝑖 an astral subgraph 𝐴𝑖+1, using Algorithm 1. Extract the 
edges of 𝐴𝑖+1 from 𝐺𝑖, thus producing a graph 𝐺𝑖+1. Con-
tinue until you reach a graph 𝐺𝑖 in which there are no 
edges.  

One characteristic of the algorithm might deserve dis-
cussion. As you see, this algorithm contains a certain de-
gree of randomness. Indeed, it relies on finding a largest 
subgraph with certain properties, and in principle, there 
might be more than one of such subgraphs. The choice 
between these subgraphs is merely a part of implementa-
tion of the algorithm and is a factor which is external and 
random with respect to the graph. Accordingly, it might 
be possible that the decompositions generated by the al-
gorithm might vary, and might not always contain the 
same number of astral graphs. However, fortunately, this 
variability is only minor; in our experiments, the follow-
ing situation is typical. If one considers a sparse graph 
with 1000 vertices (generated by the Barabási-Albert 
model with the edge/vertex ratio 1, see definitions in the 
following sections) then such a graph will be decomposed 

by our algorithm, on average, into 304.7 astral graphs, 
and the standard deviation of this number will be just 1.0.  

5 ASTRAL DECOMPOSITION NUMBER OF SCALE-FREE 

GRAPHS: A SMALL EXAMPLE 

For brevity, let us call the number of astral graphs into 
which a graph can be decomposed (by the algorithm in 
the previous section) the astral decomposition number of the 
graph. 
The main result of this paper is that the astral decomposi-
tion number of a graph turns out to be an important 
structural characteristic of a graph. We shall see this both 
on examples of graphs from theoretical models and on 
examples of graphs from applications.  

One typical example is the following (except that the 
graph in consideration is relatively small – only 106 verti-
ces and 96 edges). 

Let us consider a graph 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 (protein interac-
tion in yeast) studied in [3], see page 803; it can be found 
at the URL [4]. Suppose we consider 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 as an 
undirected graph without loops, as we do in the model 
described in this paper. Then 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 is a scale-free 
graph: indeed, its degree distribution can be approximat-
ed well by a function 𝑦 = 30𝑥−1.2.  

The astral decomposition number of 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 is 29 
(We have said above that there is a small degree of ran-
domness in the algorithm. However, this randomness 
does not have much effect; for example, 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 is 
always decomposed by our algorithm into exactly 29 
graphs.) 

Now let us compare the astral decomposition number 
of 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 with the astral decomposition numbers we 
get from theoretical models. 

The Barabási-Albert model (also known as the ‘prefer-
ential attachment’ model) is the best-known algorithm for 
producing scale-free graphs [1]; see Appendix A for a 
short description of the algorithm. Let us call graphs pro-
duced by this model Barabási-Albert graphs. Suppose we 
use the Barabási-Albert model to produce scale-free 
graphs with approximately the same number of vertices 
and the same number of edges as 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙, and then 
use our algorithm to decompose these graphs into astral 
graphs. Then we see that the astral decomposition num-
ber of Barabási-Albert graphs, is, on average, 29.3, with 
the standard deviation 2.7. Thus, surprisingly, we see that 
all Barabási-Albert graphs have approximately the same 
astral decomposition number. The astral decomposition 
number 29 of 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 is consistent with the astral de-
composition number 29.3 ± 2.7of Barabási-Albert graphs. 
Thus, not only the property of being scale-free, but also 
the astral decomposition number shows us that the graph 
𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 is similar to the graphs generated by the 
Barabási-Albert model. 

For comparison, suppose we use the Erdős–Rényi 
model (see Appendix B for its short description) to pro-
duce random graphs with the same number of vertices 
and the same number of edges as 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙, and then 
use our algorithm to decompose these graphs into astral 
graphs. Let us call graphs produced by the Erdős–Rényi 
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model Erdős–Rényi graphs.  Then we see that the astral 
decomposition number of Erdős–Rényi graphs, is, on av-
erage, 41.0, with the standard deviation 2.2. Thus, surpris-
ingly, we see that all Erdős–Rényi graphs have approxi-
mately the same astral decomposition number. The astral 
decomposition number 29 of 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 is four standard 
deviations away from the astral decomposition number 
41.0 ± 2.2 of Erdős–Rényi graphs. Thus, we can conclude 
that the graph 𝑌𝑒𝑎𝑠𝑡𝑆𝑚𝑎𝑙𝑙 is not a random graph. 

6 ASTRAL INDEX 

Whereas the number of astral graphs in the decompo-
sition of a graph is a valid research instrument, as shown 
in the previous section, we can improve this characteristic 
further. Let us define the astral index of a graph 𝐺 as the 
number of astral graphs in its decomposition into astral 
graphs, divided by the number of vertices in 𝐺. By the 
edge/vertex ratio we shall mean the ratio of the number of 
edges to the number of vertices in a graph.  

The introduction of the astral index is justified by a 
surprising fact that the astral index of Barabási-Albert 
graphs does not depend on the size of graphs, but only on 
the edge/vertex ratio. This fact makes the astral index a 
very convenient instrument when we want to decide 
whether graphs in applications are or are not like Bara-
bási-Albert graphs. 
 This observation is presented on Figure 4. 

The nearly horizontal line at the height 0.3 [at the 
height 0.42, at the height 0.5] shows the average astral 
index of Barabási-Albert graphs with the number of verti-
ces ranging from 100 to 1000, and the edge/vertex ratio 
equal to 1 [equal to 2, equal to 3].  

(It should be noted that to generate Barabási-Albert 
graphs, we use the Barabási-Albert model in its original 
form, and this algorithm has a degree of randomness and 
does not allow one to generate graphs with precisely a 
given number of edges. We approximate a desired 
edge/vertex ratio by using the model with parameters 

𝑚 = 1,2,3 and 𝑚0 = 𝑚 + 1. This is a good approximation, 
but the edge/vertex ratio of the graphs in consideration 
is, in fact, slightly less than stated in the previous para-
graph.)  
For comparison, the nearly horizontal line at the height 
0.4 [at the height 0.54, at the height 0.62] shows the aver-
age astral index of Erdős–Rényi graphs with the number 
of vertices ranging from 100 to 1000, and the edge/vertex 
ratio equal to 1 [equal to 2, equal to 3]. Thus, the astral 
index of Erdős–Rényi graphs also does not depend on the 
size of graphs, but only on the edge/vertex ratio. 

Comparing graphs with edge/vertex ratio equal to 1, 2 
and 3, we see that as the edge/vertex ratio becomes high-
er, the astral index grows. This trend would continue if 
we increased the edge/vertex ratio further. However, one 
is not likely to meet graphs with high edge/vertex ratio in 
applications.  

It is useful to have in mind that astral index cannot 
take arbitrary values; one can prove that the astral index 
of every graph lies in the range between 0 and 1.  

7 ASTRAL INDEX OF SCALE-FREE GRAPHS: LARGER 

EXAMPLES  

In this section we consider examples of one biological 
graph and two non-biological graphs and discover that 
only the biological graph has a value of astral index coin-
ciding with that predicted by the Barabási-Albert model. 
Let us consider a graph 𝑌𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒 (protein interaction 
in yeast), available at the URL [5]. This graph is scale-free 
and is studied as a scale-free graph in [6]. The graph 
𝑌𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒 has 1870 vertices and 2845 edges, and its 
edge/vertex ratio is 1.52. Its astral index is 0.36. The Bara-
bási-Albert model in its original form does not allow one 
to generate Barabási-Albert graphs with this ratio. How-
ever, looking at the results in the previous section, it does 
not seem unreasonable if we approximate the dependen-
cy of the astral index on the edge/vertex ratio between 1 
and 2 by a linear function. Then we can suppose that the 
hypothetical Barabási-Albert graphs with the edge/vertex 
ratio approximately 1.5 should have the astral index ap-
proximately 0.36. This number is consistent with the as-
tral index of the graph 𝑌𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒. 

For comparison, let us consider two graph having a 
completely different, non-biological nature – a graph 
𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑖𝑑 (a part of the USA power grid) in [7] and 
𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 (a snapshot of the Internet) accessible on [8]. The 
graph 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑖𝑑 has 4941 vertices and 6594 edges. The 
edge/vertex ratio of 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑖𝑑 is 1.33, which is similar to 
the edge/vertex ratio of 𝑌𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒. The degree distribu-
tion function of the graph 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑖𝑑 is similar to the de-
gree distribution function of the graph 𝑌𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒: in-
deed, both can be approximated by a function with a 
form 𝑦 = 𝑘𝑥−2.3, with different values of 𝑘. The graph 
𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 has 22963 vertices and 48436 edges, thus, its 
edge/vertex ratio is 2.11; this is somewhat higher than for 
the other two graphs, and, as discussed in the previous 
section, if 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 was like a Barabási-Albert graph, one 
would expect a slightly larger astral index for this graph 
than for the other two. The degree distribution of 
𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 can be approximated well by a function 

Figure 4: astral indices of graphs of varying size generated 
by two models. The horizontal axis shows the number of 
vertices in a graph. The vertical axis shows the astral index. 
Solid lines correspond to Barabási-Albert graphs with the 
edge/vertex ratio 1 [or 2, 3]. Dashed lines correspond to 
Erdős–Rényi graphs with the edge/vertex ratio 1 [or 2, 3]. 
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𝑦 = 𝑘𝑥−2.18, for some 𝑘. Thus, from the point of view of 
being scale-free, these graphs have approximately the 
same structure. However, let us look at their astral indi-
ces. The astral index of 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑖𝑑 is 0.44, significantly 
higher than approximately 0.36, which is the astral index  
of 𝑌𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒 and what could be expected from the 
Barabási-Albert model. As to 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡, its astral index is 
0.14. This is abnormally small compared with approxi-
mately 0.42, as could be expected from the Barabási-
Albert model for graphs with the edge/vertex approxi-
mately 2. Thus, we need to conclude that despite being 
scale-free, graphs 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑖𝑑 and 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡  differ consid-
erably from Barabási-Albert graphs. 

8 SCALE-FREE VS ASTRAL INDEX 

What is shown on real-life examples in the previous sec-
tion can be reinforced by some theoretical examples. It is 
tempting to misinterpret the main results of this paper in 
the following way. “Suppose 𝐺 is a graph with the 

edge/vertex ratio 1 [or 2, or 3]. Then 𝐺 is scale-free if and 
only if its astral index is approximately 0.3 [or 0.42, or 
0.5].” Such a statement would be wrong in both direc-
tions. Indeed, there are scale-free graphs with the 
edge/vertex ratio 1 whose astral index is far from 0.3, 
and, on the other hand, there are graphs with the 
edge/vertex ratio 1 and the astral index is 0.3 which are 
far from being scale-free.  

Indeed, for instance, it is easy to construct examples of 
astral graphs which are scale-free. The astral decomposi-
tion number of such graphs is, obviously, 1, hence, their 
astral index is close to 0. Thus, there are examples of 
scale-free graphs with ‘atypical’ values of the astral index. 

On the other hand, let us consider graphs which con-
sist entirely or almost entirely of small complete graphs 
𝐾3 and 𝐾4, like the graph on Figure 5.  

Such graphs have the astral index close to 0.3, but they 
are not scale-free; they are not even declining-degree 
graphs. 

So, we have to conclude that, on the one hand, in gen-
eral, the properties of being scale-free and of having a 
particular value of astral index are not necessarily related; 
on the other hand, it would not be unreasonable to con-
jecture that graphs in a particular type of applications 
might be all scale-free and also all have a particular value 
of astral index.  

9 SUMMARY OF RESULTS 

It is well-known that very often graphs in applications are 
scale-free (or, at least, declining-degree graphs).  

An algorithm known as the Barabási-Albert model 
generates examples of scale-free graphs.  

In this paper we introduce a numerical characteristic of 
graphs which we call astral index; an astral index can 
range from 0 to 1 (in sparse graphs in applications, we are 
likely to see values of astral index between approximately 
0 and 0.5). The astral index can be calculated efficiently, 
even for large graphs. 

We see that all graphs generated by the Barabási-
Albert model share approximately the same value of as-
tral index. To be more precise, graphs generated by the 
Barabási-Albert model with a given number of vertices 
and a given number of edges share approximately the 
same value of astral index. 

Moreover, we notice that the value of astral index of 
Barabási-Albert graphs does not depend on their size, but 
only on their edge/vertex ratio. Namely, Barabási-Albert 
graphs with the edge/vertex ratio equal to approximately 
1 [or 2, or 3] have the value of astral index equal to ap-
proximately 0.3 [or 0.42, or 0.5]. 

On both theoretical and real-life examples, we see that 
scale-free graphs don’t have to have a particular value of 
astral index. Therefore, we have to conclude that the 
Barabási-Albert model is not good at generating arbitrary 
scale-free graphs, but it only generates scale-free graphs 
with a certain constant value of astral index. We conjec-
ture that the Barabási-Albert model is ‘natural’ in the bio-
logical context, because the value of astral index of graphs 
generated by this model coincides with the value of astral 
index we observe in examples of scale-free graphs in 
some biological applications.  

For comparison, we consider graphs generated by the 
Erdős–Rényi model. We see that graphs generated by the 
Erdős–Rényi model with a given number of vertices and 
the same number of edges share approximately the same 
value of astral index. 

Moreover, we notice that the value of astral index of 
Erdős–Rényi graphs does not depend on their size, but 
only on their edge/vertex ratio. Namely, Erdős–Rényi 
graphs with the edge/vertex ratio equal to approximately 
1 [or 2, or 3] have the value of astral index equal to ap-
proximately 0.4 [or 0.54, or 0.62]. 

Comparing these two models, we see that the astral 
index of Barabási-Albert graphs is considerably different 
from that of Erdős–Rényi graphs. 

As to scale-free graphs in applications, we see that for 
some of them, the astral index is consistent with the Bara-
bási-Albert model, whereas for some others, it might be 
considerably smaller. 

Overall, we see that the astral index of graphs might be 
a useful additional characteristic when analyzing the 
structure of graphs in biological and other applications:  

 It provides a simple numerical measure of 
whether a graph is more like a scale-free 
graph or like a random graph. 

 It can reveal whether a scale-free graph is like 
a graph generated by the Barabási-Albert 
model or not. 

Figure 5: a non-scale-free graph with a typical astral 
index of Barabási-Albert graphs 
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10 NOVELTY 

Our approach is novel: we introduce astral graphs, which 
are a new concept, and use decomposition into astral 
graphs as a method of understanding the structure of the 
graph.  
Our approach might be more convenient than other tech-
niques suggested recently to improve our understanding 
of the structure of graphs in applications.  

For instance, motifs are small subgraphs (e.g. triangles) 
of a graph. When a particular motif is found in a graph 
more often than would be expected if the graph was ran-
dom, this tells us something about the structure of the 
graph. Developments in this direction of research include 
considering larger motifs, see, for instance, [9]. However, 
motifs remain very small graphs, whereas we can consid-
er astral graphs of an arbitrarily large size, if necessary. 

Subgraphs with certain properties are found in graphs, 
for example, cliques; see, for instance, [10]. Finding such 
subgraphs is computationally intractable. 

Clusters are found in graphs using various methods; 
see, for instance, [10]. However, declining-degree graphs, 
due to their nature, don’t necessarily decompose into 
clusters. 

A semi-bipartite graph is a graph whose set of vertices 
is 𝑉 ∪𝑊, and such that all (or almost all) pairs of vertices 
from 𝑉 are connected with an edge, whereas no vertices 
from 𝑊 are connected with an edge [12]. Astral graphs 
are semi-bipartite; thus, semi-bipartite graphs could be 
considered as a partial step in the direction of research 
considered in this paper. However, the model of semi-
bipartite graphs is too general and does not immediately 
provide us with any useful characteristics of the graph. 

None of these approaches aims at developing a unified 
numerical characteristic which can be calculated efficient-
ly and which can tell between graphs coming from vari-
ous applications or generated by various models. This is 
what we have achieved in this paper. 

11 REPRESENTING GRAPHS IN THE COMPUTER 

It might be useful to describe how we represented graphs 
in the computer to achieve the optimal time-memory 
trade-off when calculating the astral index of graphs.  

Since these graphs are sparce, it is not reasonable to 
represent them by the adjacency matrix; instead of this, it 
is natural to represent a graph as a set of its vertices, and 
with each vertex, to store the set of vertices adjacent to 
this vertex. (The word ‘set’ is used here informally and 
does not imply a particular implementation.) Let us look 
at the specific data types used. 

How adjacency sets are stored 

Let 𝑁 be the number of vertices in the graph. We assume 
that vertices are labeled by binary strings of length up to 
log 𝑁. This is a suitable situation for using a special data 
type known as trie; see, for instance, [13] or [14]. 
The adjacency set of a given vertex 𝑣 (that is, the set of 
vertices adjacent to 𝑣) is represented as a trie.  

Let 𝑑 be the degree of 𝑣. Thus, the adjacency set of 𝑣 
has size up to 𝑂(𝑑 log𝑁), and deciding whether a vertex 

is adjacent to 𝑣 takes time up to 𝑂(log𝑁). More im-
portantly, finding the degree of a vertex is fast and takes 
time up to 𝑂(𝑑 log𝑁). Note that we cannot pre-calculate 
and store degrees of vertices because as a part of Algo-
rithm 1, we need to be able to calculate degrees of vertices 
not only within the whole graph, but also within any giv-
en subgraph. 

How vertices are stored 

The set of all vertices is also represented as a trie, which 
has the same structure as the adjacency list of an individ-
ual vertex. Thanks to this, the adjacency set of a given 
vertex has the same data type as the set of all vertices; this 
arrangement considerably simplifies the implementation 
of Algorithm 1.   
Thus, the whole graph is implemented as ‘a trie of tries’. 
Namely, the set of vertices is a trie such that with each 
vertex (represented by a node of the trie), a trie can be 
stored which represents the adjacency set of the vertex. 
To our knowledge, this implementation of sparse graphs 
is new. 

Let 𝑎 be the average degree of a vertex in the graph. 
Thus, the whole representation of the graph has size up to 
𝑂(𝑎𝑁 log𝑁). Deciding whether two vertices are adjacent 
takes time up to 𝑂(log𝑁). Adding or removing an edge 
also takes time up to 𝑂(log𝑁).  

APPENDIX A: BARABÁSI-ALBERT MODEL 

Start with a small complete graph of size 𝑚0. Acting re-
cursively, add a new vertex 𝑢 and connect it to up to 𝑚 
existing vertices, using the following probabilistic rule: 
the probability of creating an edge between 𝑢 and one of 
existing vertices 𝑣 should be directly proportional to the 
current degree of 𝑣. Continue adding new vertices, as 
described above, until the desired number of vertices is 
reached.  
(The edge/vertex ratio of the obtained graph will be ap-
proximately equal to 𝑚.) 

APPENDIX B: ERDŐS–RÉNYI MODEL 

Start with an empty graph with as many vertices as re-
quired. Acting recursively, choose two vertices at random 
and connect them with an edge. Continue adding new 
edges, as described above, until the desired number of 
edges is reached. 
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