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Measures of entropy have been widely used to characterize complexity, particularly in physiological dynamical
systems modeled in discrete time. Current approaches associate these measures to finite single values within an
observation window, thus not being able to characterize the system evolution at each moment in time. Here, we
propose a new definition of approximate and sample entropy based on the inhomogeneous point-process theory.
The discrete time series is modeled through probability density functions, which characterize and predict the
time until the next event occurs as a function of the past history. Laguerre expansions of the Wiener-Volterra
autoregressive terms account for the long-term nonlinear information. As the proposed measures of entropy
are instantaneously defined through probability functions, the novel indices are able to provide instantaneous
tracking of the system complexity. The new measures are tested on synthetic data, as well as on real data gathered
from heartbeat dynamics of healthy subjects and patients with cardiac heart failure and gait recordings from short
walks of young and elderly subjects. Results show that instantaneous complexity is able to effectively track the
system dynamics and is not affected by statistical noise properties.
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I. INTRODUCTION

Measures of entropy are primarily defined to address the
randomness and regularity of a dynamical system given the
analysis of time series originated by the observed system
[1–3]. As a primary definition, the entropy H (X) of a
monodimensional discrete random variable X is H (X) =
−∑

xi∈φ p(xi) log p(xi), where φ is the set of values and p(xi)
is the ith probability function. Other important definitions
include the Kolmogorov-Sinai entropy [4], the K2 entropy [5],
and the marginal redundancy algorithm given by Fraser [6].
To compute these theoretical entropy indices, a large number
of data points are needed to achieve convergence. This is true
even in the presence of low-dimensional space-state systems
[7]. To this extent, Pincus proposed a family of formulas
and statistics referred to as approximate entropy (AE) [7],
which is able to discern dynamical systems given finite, noisy
data. A further modification has been recently proposed to
overcome the dependency of AE on the time series length,
referred to as sample entropy (SE) [8]. A measure of multiscale
entropy has also been proposed [9] in order to take into ac-
count the inherent multiple-time-scale properties of dynamical
systems.

All of these measures have been successfully applied to real
and simulated data, with a special emphasis on physiological
systems [10–12,12–18]. It has been widely accepted, in fact,
that physiological systems are indeed “complex”; e.g., the
quantification of complexity provides relevant information
on psychophysiological and pathological states [19] being
modulated by external stimuli, aging, and the presence of
disease [14,16,17,19,20]. An exemplary application of these
methodological approaches is given by the computational
studies on cardiovascular control dynamics mediated by
the autonomic nervous system (ANS). This system is very
often investigated through analysis of the series obtained by
computing the time intervals between two consecutive R waves

detected from the Electrocardiogram, i.e., the R-R intervals,
whose variability is defined as heart rate variability (HRV)
[21,22].

Despite the considerable achievements obtained by study-
ing complexity changes through AE , SE , and multiscale
entropy, three major methodological and applicative issues
have not been satisfactorily addressed.

(i) Unevenly sampled observations: The intrinsic discrete
nature of experimental observations can lead to estimation
errors, especially in studying heartbeat dynamics. R-R in-
tervals, in fact, consist of unevenly spaced samples, thus
often requiring the application of preliminary interpolation
procedures that could affect complexity measures, whereas
considering series as interevents does not account for their
time occurrences and may miss intrinsic generative properties
as reflected in complex dynamics.

(ii) Estimation window: Even in the case of reliable
quantification of entropy and, more in general, of complexity,
traditional algorithms provide a single value (or a set of
values) within a predetermined time window. Therefore, given
the experimental time series, these values represent averaged
measures of the entire dynamics observed in that specific
time window. However, a single estimation could not be
sufficient to completely characterize system complexity in
the face of nonstationary behavior. It is well known, in
fact, that dynamical systems (particularly those associated to
physiological processes) evolve and change at each moment
in time.

(iii) Noise properties: It has been shown that measures
of entropy are usually higher in the presence of uncorrelated
(e.g., white noise) rather than correlated (e.g., 1/f ) underlying
dynamics. This issue may lead to overestimation of complexity
in systems dynamics associated with uncorrelated noise.
Exemplary cases have been reported in the presence of certain
pathologies such as cardiac arrhythmias and atrial fibrillation
[9].
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To overcome these limitations, we propose a new def-
inition of approximate and sample instantaneous entropy
(AI and SI , respectively), as time-varying entropy measures
of discrete system complexity. As suggested by the name,
the AI and SI definitions are inspired by the already es-
tablished respective algorithms. The originality of the new
definitions relies in the fact that they are fully embed-
ded in the probabilistic framework of the inhomogeneous
point-process theory and introduce important differences to
the mathematical formulation of the phase-space vectors
and to the definition of the distance between phase-space
vectors.

It has been demonstrated that, by means of a point
process approach, it is possible to characterize the events’
probabilistic generative mechanism and to obtain continuous
estimates, even considering short recordings under nonstation-
ary conditions. In previous studies [23,24], we demonstrated
the application of these concepts to estimate instantaneous
linear and nonlinear heartbeat dynamics. The unevenly spaced
heartbeat intervals are represented as observations of a state-
space point process model defined at each moment in time, thus
allowing us to estimate instantaneous HR and HRV measures
[23] without using any interpolation method. In our latest
works [24,25], we focused on defining an ad-hoc framework
accounting for long-term memory and high-order nonlineari-
ties using a reduced set of model parameters. More specifically,
we combined the inhomogeneous inverse Gaussian point-
process framework previously defined in Ref. [23] with an
effective quadratic and cubic autoregressive structure linked
to input-output definitions based on Laguerre expansions of
the Volterra kernels [19], namely the nonlinear autoregressive
Laguerre (NARL) model.

In this study, besides testing the proposed AI and SI

measures on synthetic data, the general applicability is
further tested on heterogeneous stochastic series from three
experimental datasets of heartbeat human dynamics, as well
as two datasets from human gait dynamics from short walks
[26].

II. MATERIALS AND METHODS

The AI and SI estimation is performed through a
parametrized nonlinear combination of the time series using
the discrete Wiener-Volterra series and Laguerre expansion of
the autoregressive kernels. The nonlinear model is embedded
into the point-process framework in order to allow for instan-
taneous estimates of the AI and SI measures. Mathematical
and algorithmic details follow below.

A. Point-process framework and nonlinear models

As previously mentioned, the discrete time series is first
modeled as a combination of present and past interevent
intervals based on the Laguerre expansion of the autoregressive
Wiener-Volterra terms (NARL) [24,25]. In particular, given
Ñ (t) = N (t−) = limτ→ t− N (τ ) = max{k : uk < t} as the left
continuous sample path of the counting process associated to
the event-to-event (e) series, it is possible to write the expected
value of the next mean e interval as a function in continuous

time:

μe[t,Ht ,ξ (t)] = eÑ(t) + g0(t) +
p∑

i=0

g1(i,t) li(t
−)

+
q∑

i=0

q∑
j=0

g2(i,j,t) li(t
−) lj (t−), (1)

where Ht is the history given the part e intervals, ξ (t) =
[ξ0(t),g0(t),g1(0,t), . . . ,g1(p,t),g2(0,0,t), . . . ,g2(i,j,t)],
with ξ0(t) as the shape parameter of the inverse Gaussian (IG)
distribution, and

li(t
−) =

Ñ(t)∑
n=1

φi(n)[eÑ(t)−n − eÑ (t)−n−1] (2)

as the output of the Laguerre filters just before time t , where

φi(n) = α
n−i

2 (1 − α)
1
2

i∑
p=0

(−1)p
(

n

p

)(
i

p

)
αi−p(1 − α)p, (3)

with (n � 0), is the ith Laguerre function with 0 < α < 1,
which determines the rate of exponential asymptotic decline
of these functions, and g0,{g1(i)}, and {g2(i,j )} correspond to
the time-varying zero-, first-, second-order NARL coefficients,
respectively [19,24,25].

The nonlinear representation shown in Eq. (1) can be
embedded into the point-process framework as it is used to
model the first-order moment of the probability distribution
of the waiting time t until the next event occurs. We have
previously demonstrated that the IG probability distribution
[23] provides an optimal description of the data if an integrate-
and-fire model is assumed to initiate the events. Since the
IG distribution is characterized at each moment in time, it is
possible to obtain an instantaneous estimate of μe(t) at a very
fine timescale (with an arbitrarily small bin size �), which
requires no interpolation between the arrival times of two beats,
therefore addressing the problem of dealing with unevenly
sampled observations [issue (i)]. Moreover, Eq. (1) accounts
for long-term memory and a reduced number of parameters
needed for the linear and quadratic functions [24,27].

We propose to effectively estimate the parameter vector
ξ (t) using the Newton-Raphson procedure to compute the
local maximum-likelihood estimate [24]. Because there is
significant overlap between adjacent local likelihood intervals,
we start the Newton-Raphson procedure at t with the previous
local maximum-likelihood estimate at time t − �. Model
goodness-of-fit is based on the Kolmogorov-Smirnov (KS) test
and associated KS statistics [23,28], along with autocorrelation
plots testing the independence of the model-transformed
intervals [23].

B. Definition of the inhomogeneous point-process
entropy measures

The AI algorithm has its foundation in correlation dimen-
sion analysis [29] and in the AE computation [7]. Given a
distance measure d[.], let us define Cm

k [r(t),t] as the number
of points x(j ), such that

d[x(k),x(j )] � r(t)/(N − m + 1), ∀j, (4)
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where x(k)|k=1,2,...,N−m+1 are vectors of the phase space
defined as x(k) = [μe(tk),μe(tk+1), . . . ,μe(tk+m−1)] in Rm of
the time series μe(t1),μe(t2), . . . ,μe(tN ). In this formulation,
m and r(t) are the embedding dimension and time delay of
the phase space, respectively. The time-varying quantity r(t)
is instantaneously expressed as r(t) = 0.2σμe(t) , as suggested
by the current literature [9]. According to point-process
theory, it is possible to define the distance d[x(k),x(j )] as
the KS distance (i.e., the maximum value of the absolute
difference between two cumulative distribution functions)
between the IGk and IGj probability distributions of μe(tk+kn

)
and μe(tj+kn

) for kn = 0,1, . . . ,m − 1. Then, from the Cm
k (r,t),

it is possible to define

�m(r,t) = (N − m + 1)−1
N−m+1∑

i=1

ln Cm
k (r,t) (5)

and obtain

AI (m,r,N,t) = �m(r,t) − �m+1(r,t). (6)

As the definition of the proposed entropy measure is fully
embedded into the inhomogeneous point-process nonlinear
framework (IGs are defined at each moment in time), it
is possible to obtain instantaneous tracking of the system
complexity as AI (m,r,N,t), thus overcoming the need of
defining a single estimation window (issue (ii)).

To compute the SI (m,r,N,t) algorithm, Cm
k [r(t),t] is

defined as the number of j such that

d[x(k),x(j )] � r(t)/(N − m), ∀j �= k. (7)

Then, from Cm
k (r,t) it is possible to define

�m(r,t) = (N − m + 1)−1
N−m+1∑

i=1

Cm
k (r,t) (8)

and obtain

SI (m,r,N,t) = ln �m(r,t) − ln �m+1(r,t). (9)

1. Complexity variability indices using the inhomogeneous
point-process entropy measures

Our instantaneous assessment opens the possibility of
analyzing the proposed measures also in terms of variability
of their evolution along time, which we refer to as complexity
variability framework . Formally, let us consider AI (m,r,N )
and SI (m,r,N ) as the average measures of AI (m,r,N,t) and
SI (m,r,N,t) within the time window T = [t1,t2, . . . ,tN∗ ],
which is sampled with N∗ data points. The complexity vari-
ability measures, σAI

and σSI
, refer to the standard deviation

of the AI (m,r,N,t) and SI (m,r,N,t) series evaluated within
T as follows:

σAI
=

√∑N∗
i=1[AI (m,r,N,ti) − AI (m,r,N )]

N∗ − 1
(10)

σSI
=

√∑N∗
i=1[SI (m,r,N,ti) − SI (m,r,N )]

N∗ − 1
. (11)

III. EXPERIMENTAL RESULTS

In this section, results on synthetic data, as well as
on two experimental heartbeat dynamics [21,22] and two
gait recording datasets are reported. Given a generic index
variable X that can be associated to a specific measure
(i.e., AE , SE , AI , SI , σAI

, and σSI
), all results in this

study are referred to intersubject analyses and expressed as
median(X) ± median(|X − median(X)|).

A. Synthetic data

1. Instantaneous tracking and dependence on noise

In order to validate our indices, we generated 150 re-
alizations of synthetic e interval series by using known
autoregressive coefficients of a Yule-Walker model (estimated
from a series gathered from the postural changes experimental
protocol described below) and by generating the new series by
feeding the model with either white noise (ε1) or 1/f noise
(ε2). It is important to highlight that it is not straightforward
to simply add noise to an event series, as each value also
represents an occurrence in time, and samples added from
two separate series would not coincide in time. In fact,
validation through synthetic data was performed considering
either white noise or 1/f noise as process noise, i.e., the noise
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Time [s]

Phase 2Phase 1

FIG. 1. (Color online) Time series of synthetic e series, estimated
from known regressive coefficients, and related AI and SI track-
ing in the time domain. The coefficients are chosen so that the
dynamics change to a state with lower entropy at t = 220 s. In
panel (a), a representative realization of white process noise (ε1)
and its instantaneous A

ε1
I and A

ε1
I tracking are shown. In panel

(b), a representative realization of 1/f process noise series (ε2)
and its instantaneous A

ε2
I and S

ε1
I tracking are shown. Dotted (red)

lines indicate surrogate reference values computed considering two
stationary time windows having length equal to the entire duration
of phase 1 and phase 2, respectively. p values from nonparametric
Mann-Whitney tests. n.s. = not significant. ε1: white noise; ε2 : 1/f

noise.
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TABLE I. Results on synthetic data. Phase 1 for t < 220 s; Phase 2
for time >220 s. Comparison between standard approximate entropy
(AE) and our novel inhomogeneous point process approximate
entropy (AI ), and sample entropy (SE) and our novel inhomogeneous
point process sample entropy (SI ).

Phase 1 p value Phase 2 p value

AE
ε1 0.885 ± 0.029
ε2 0.914 ± 0.031

p < 10−8
∣∣∣ 0.948 ± 0.033

0.962 ± 0.032
p < 0.03

AI
ε1 0.416 ± 0.033
ε2 0.413 ± 0.037

n.s.
∣∣∣ 0.375 ± 0.029

0.368 ± 0.031
n.s.

SE
ε1 2.150 ± 0.143
ε2 2.021 ± 0.156

p < 10−8
∣∣∣ 1.872 ± 0.110

1.686 ± 0.135
p < 0.03

SI
ε1 0.299 ± 0.036
ε2 0.310 ± 0.037

n.s.
∣∣∣ 0.279 ± 0.034

0.283 ± 0.037
n.s.

that enters the autoregressive state evolution equation, which
is different from a simple additive observation noise. Two
series and the respective AI tracking are shown in Fig. 1.
Our instantaneous entropy estimation is able to track the
simulated decrease in entropy as modulated by either white
or 1/f noise. In order to perform a fair comparison of our
AI and SI against the standard AE and SE , we averaged
them along the two separate segments (phase 1 and phase 2)
within each realization. Results from a nonparametric Mann-
Whitney test with null hypothesis of equal medians showed
significant differences in standard entropy values between the
two series with different noise (Aε1

E versus A
ε2
E ), both in the

first phase (p < 10−8) and second phase (p < 0.03). Detailed
values are reported in Table I. On the other hand, we found
no statistically significant differences in median AI values
between series with correlated 1/f and uncorrelated white
noise (p > 0.05 for both rest and tilt phases). Therefore, AI is
able to characterize specific dynamic entropy levels in systems
with different underlying noise dynamics (as reported in the
presence of certain pathologies [9]). Importantly, the proposed
AI and SI indices do distinguish between events generated
by integrate-and-fire models driven by white and 1/f noise
(p < 10−8 given by nonparametric Mann-Whitney test for
150 realization). Of note, these events have different properties
than pure noise series in uniform time and, as such, they are
accompanied by expectedly different values of entropy. These
results suggest that our method is able to overcome the problem
of value dependency on noise properties (issue (iii)).

2. The effect of window size

As described in Sec. II, previous samples have to be
considered to perform the maximum log-likelihood estimation
through the Newton-Raphson procedure in order to obtain
instantaneous AI and SI estimates. In theory, if the model is
correct, changing window length W , i.e., changing the number
of past events retained for the prediction of the next event, does
not affect the AI and SI measures because of the following
reasons.

The use of the Laguerre expansion on the autoregressive
Wiener-Volterra terms [see Eq. (1)] allows for the prediction
of the next event as a function of all the past events, i.e.,

long-term memory [24]:

μe[t,Ht ,ξ (t)] = eÑ (t) + γ0 +
∞∑
i=1

γ1(i,t) [eÑ(t)−i − eÑ (t)−i−1]

+
∞∑
i=1

∞∑
j=1

γ2(i,j,t) [eÑ(t)−i − eÑ (t)−i−1]

× [eÑ (t)−j − eÑ (t)−j−1]. (12)

As there is an infinite regression of the past events, the
AI and SI estimates are theoretically not affected by the
number of past events included within the length of the time
window W . Of course, the window size is still important
when estimating the kernels, and a window of sufficient length
has to be considered to provide accurate results as measured
by goodness-of-fit. Moreover, within this time window, we
considered an exponential weighting function for the local
likelihood whose constant value modulates the degree of
influence of previous observations on the local likelihood
and determines the trade-off between the accuracy of the
estimation of the regression parameters (small constant) and
the responsiveness to nonstationarities (large constant).

Figure 2 shows the effects of window size on the AI and
SI estimates when using several lengths of W . It is possible
to notice that the estimates corresponding to W = 50 and
W = 70 are different, whereas estimates from larger windows
tend to converge to similar signatures. This is due to the fact
that W = 70 s is not sufficient to perform a reliable parameter
estimation through the local log-likelihood procedure, as
confirmed by the evaluation of the model goodness-of-fit
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FIG. 2. (Color online) Effect of the window size on AI and SI .
Instantaneous heartbeat statistics computed from a representative
subject of the tilt-table protocol using a NARL point-process model
with different size of W . From top to bottom, the recorded R-R series,
the instantaneous AI and SI complexity tracking, and the legend
related to the instantaneous measures obtained for each time window
are shown.
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through KS plots, according to which a window of at least
W > 90 s is required [24].

B. Experimental data

1. Postural changes

In order to demonstrate the applicability to real cases, we
performed the instantaneous analysis in a R-R-interval time
series recorded from ten healthy subjects undergoing a tilt-
table protocol, where each subject, initially lying horizontally
in a supine position, is then passively tilted to the vertical
position. The study, fully described in Refs. [23,30], was
conducted at the Massachusetts Institute of Technology (MIT)
General Clinical Research Center (GCRC) and was approved
by the MIT Institutional Review Board and the GCRC
Scientific Advisory Committee.

The first-order moment μRR(t) and AI and SI instantaneous
dynamics are shown for one representative subject in Fig. 3,
whereas the averaged AI and SI for all ten subjects are shown
in Fig. 4, providing a clear portrayal of how the postural
stimulus elicits the expected changes in the dynamic signatures
of complexity. On average (see Table II), a significant statistical
difference was found between median AI and SI values of
resting and tilt phases (p < 10−6 and p < 0.01, respectively,
given by nonparametric Wilcoxon test for paired data with null
hypothesis of equal medians). In this case, also the traditional
AE and SE measures are able to discern between rest and
tilted phases (p < 10−3 given by nonparametric Wilcoxon
test for paired data with null hypothesis of equal medians).
However, it is important to note that traditional measures are

800

1000

μ e [m
s]

0.2

0.4

0.6

A
I

0 200 600 1000 1400

0.2

0.4

0.6

Time [s]

S
I

(a) (a) (a)(b) (b)

FIG. 3. Instantaneous heartbeat statistics computed from a repre-
sentative subject of the tilt-table protocol using a NARL point-process
model. In the first panel, the estimated μe(t) (top, continuous line)
is superimposed on the recorded R-R series (gray asterisks). Below,
the instantaneous AI and SI complexity tracking are shown in gray
continuous lines along with their low-pass (two-order Butterworth
FIR Filter with cutoff 0.05 Hz) derived signal (dotted line). Resting
phases (a) alternate with the gravitational changes (b).

FIG. 4. (Color online) Averaged SI and AI trends during resting
(a) and tilting (c) phases, through slow-transitioning tilt (b). Con-
sidering data from all subjects, the plot shows the median(X) ±
median[|X − median(X)|].

not able to follow changes in complexity. Remarkably, the
averaged instantaneous measures provided by AI resulted in a
more discriminant statistical significance (AI : p < 10−6; AE :
p < 10−3). These results are in agreement with the current
literature [31,32], providing more evidences for the observed
progressive decrease of complexity as a function of tilt table
inclination, thus indicating that the degree of complexity is
highly correlated with sympathovagal response.

2. Cardiac heart failure

We further validated our novel indices by analyzing the
averaged AI and its variability σAI

to study the differences
between healthy subjects and patients with severe congestive
heart failure [33]. The dataset consists of R-R time series
recorded from 14 CHF patients (from BIDMC-CHF Database)
and 16 healthy subjects (from MIT-BIH Normal Sinus Rhythm
Database). Each time series was artifact-free and lasted about
50 minutes. The first-order moment μRR(t) and AI and SI

TABLE II. Results from the experimental dataset related to
postural changes. Comparison between standard and novel indices.
Of note, the new instantaneous formulation allows for definition of the
variance of AI (σAI

) and SI (σSI
) as indices of complexity variability.

p values from nonparametric Wilcoxon test for paired data with null
hypothesis of equal medians. n.s. = not significant.

Rest Tilt p value

AE 1.1671 ± 0.0912 0.9274 ± 0.1255, p < 10−3

AI 0.3062 ± 0.0422 0.2545 ± 0.0348 p < 10−6

σAI
0.0709 ± 0.0145 0.0722 ± 0.0115 n.s.

SE 1.4949 ± 0.1731 0.8998 ± 0.2471 p < 10−3

SI 0.3062 ± 0.0483 0.2514 ± 0.0543 p < 10−3

σSI
0.081 ± 0.0196 0.0883 ± 0.0141 n.s.
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FIG. 5. Instantaneous statistics computed from a representative
healthy subject (a) and a CHF patient (b), computed using a NARL
model. From the top, given the heartbeat interval R-R (gray asterisks),
the estimated μe(t) (continuous line) superimposed on the recorded
R-R series. Below, the instantaneous AI and SI complexity tracking
are shown in gray continuous lines along with their low-pass derived
signal (dotted line).

instantaneous dynamics are shown for one representative
healthy subject and one CHF patient in Fig. 5. Table III shows
lower values of both AI and SI in averaging the respective
indices computed from time series gathered from CHF
patients rather than healthy subjects (both p < 10−3 given
by nonparametric Mann-Whitney test with null hypothesis of
equal medians). This result is in agreement with the significant
difference found in multiscale entropy higher scales [9].

In this case, the traditional AE and SE measures are not able
to discern between healthy and pathological subjects (p > 0.05
given by nonparametric Mann-Whitney test with null hypoth-
esis of equal medians), in agreement with the current literature
[9] pointing out no complexity changes between healthy and
CHF heartbeat dynamics (at least referring to traditional AE

TABLE III. Results from the experimental healthy subjects and
cardiac heart failure datasets. Comparison between standard AE and
novel AI and standard SE and novel SI . p values from nonpara-
metric Mann-Whitney tests with null hypothesis of equal medians.
n.s. = not significant.

Healthy CHF p value

AE 1.2177 ± 0.1066 1.2130 ± 0.1032 n.s.
AI 0.3476 ± 0.032 0.1674 ± 0.0483 p < 10−4

σAI 0.0655 ± 0.007 0.0462 ± 0.0148. p < 0.02
SE 1.4092 ± 0.1522 1.5670 ± 0.2690 n.s.
SI 0.2876 ± 0.0353 0.1092 ± 0.0675 p < 5 ∗ 10−4

σSI 0.08 ± 0.0064 0.0679 ± 0.0082. p < 0.05
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FIG. 6. (Color online) Box plots of the averaged variable AI and
σAI

showing differences between healthy subjects and CHF patients.
Each plot shows the median(AI ) ± median[|AI − median(AI )|].

which corresponds to multiscale entropy of scale 1). Also,
the proposed complexity variability measures, σAI

and σSI
,

are able to provide discrimination power between the two
mentioned populations (p < 0.02 and p < 0.05, respectively).
Summary box plots of AI and σAI

are shown in Fig. 6.

3. Gait dynamics from short walks

In order to further demonstrate the potential and wide
applicability of the proposed instantaneous entropy measures
in a more general context, we considered stochastic series
associated to gait from short walks [26]. Gait data from five
young and five elderly people were gathered from the online
available Physionet database and analyzed in order to perform
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FIG. 7. Instantaneous statistics computed from a representative
healthy (a) and elderly (b) subject of the gait dynamics dataset, com-
puted using a NARL model. From the top, given the interevent interval
e (gray asterisks), the estimated μe(t) (continuous line), superimposed
on the recorded e series is shown. Below, the instantaneous AI and
SI complexity tracking are shown.
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TABLE IV. Results from the experimental young-elderly subjects
datasets of gait dynamics from short walks. Comparison between
standard AE and SE and novel AI and SI . p values from nonpara-
metric Mann-Whitney tests with null hypothesis of equal medians.
n.s. = not significant.

Young Elderly p value

AE 1.3722 ± 0.0165 1.4769 ± 0.0078 n.s.
AI 0.2930 ± 0.0163 0.3745 ± 0.0472 p < 0.05
σAI 0.0673 ± 0.0026 0.0632 ± 0.0025. n.s.
SE 1.3963 ± 0.0912 1.5921 ± 0.0271 n.s.
SI 0.2743 ± 0.0121 0.3409 ± 0.0358 p < 0.03
σSI 0.0905 ± 0.0035 0.0752 ± 0.0076. p < 0.02

statistical comparison between groups. All of these series of
events are suitable to be modeled using the point-process
methodology whose performance can be quantified in terms
of KS goodness-of-fit.

Instantaneous tracking of the gait dynamics data and
estimated SI measures on representative young and elderly
subjects are shown in Fig. 7.

Experimental results on the traditional entropy measures
AE and SE as well as the proposed instantaneous entropy
measures AI and SI are reported in Table IV. Remarkably, the
Mann-Whitney nonparametric test gave significant p values
only for measures coming from the proposed methodology and
nonsignificant p values otherwise (p > 0.05). In particular,
both AI and SI were able to discern gait dynamics from
young and elderly subjects (p < 0.05) as well as the variability
evaluated of σSI

(p < 0.02). Our results suggest that gait
dynamics of elderly people are characterized by a higher
level of instantaneous complexity along with a reduced
instantaneous complexity variability.

IV. CONCLUSION AND DISCUSSION

We have proposed a novel definition of instantaneous
approximate and sample entropy based on the inhomoge-
neous point-process theory. The new measures are tested
on synthetic data as well as on real data gathered from
heartbeat dynamics of healthy subjects and patients with
cardiac heart failure together with gait recordings from short
walks of young and elderly subjects. Results demonstrate
that instantaneous complexity is able to effectively track
the system dynamics and is not affected by statistical noise
properties. The proposed methodology and findings are of
novel interest for the following reasons. The mathematical
definition of inhomogeneous entropy completely relies on
stochastic point processes, thus ensuring continuous estimates
in time without the use of any interpolation procedure. In this
sense, the proposed indices could provide a more meaningful
quantification than traditional entropy measures. Of note,
although the nonlinear model using the Laguerre expansion
of the Wiener-Volterra autoregressive terms to describe the
IG mean is based on our previous work in Ref. [34], the
AI and SI definitions are not derivable from any previous
achievement. Goodness-of-fit measures such as KS distance
and autocorrelation plots quantitatively allow us to verify the

model fit and to choose the proper model order, thus addressing
another open issue of current parametric approaches.

To this extent, it is worth mentioning a pragmatic case
in which traditional complexity measures do not allow a
reliable assessment. Let us consider a generic experimental
protocol comprising a 5-minute resting state and, then, 5 s
of stimuli. Standard measures such as AE and SE are not
able to provide reliable quantifiers distinguishing between
the two conditions, as they cannot be estimated on the latter
experimental session (i.e., the 5 s of stimuli). However, the
proposed AI and SI indices can be reliably used to perform
instantaneous estimates starting from the length W (of 90 s
for instance) on, thus proving an instantaneous complexity
assessment also during the last 5 s.

The limitations of our methodology can be related to the
need of a preliminary calibration phase before it can be ef-
fectively used to estimate the instantaneous entropy measures.
Moreover, concerning noise dependency, it is important to
remark that the proposed AI and SI entropy measures do not
follow the traditional and intuitive interpretation of entropy
(which implies that such a measure has to vary with the
underlying system noise). Nevertheless, referring to a gener-
alization of the definition of entropy, i.e., measures addressing
the randomness and regularity of a dynamical system, it is
proper to say that our indices simply have different properties
than traditional entropy measures. Following this philosophy,
it seems reasonable to present two novel entropy measures that
also show different and specific properties when applied to any
system described by uneven observations (not only to study
physiological systems). We demonstrated, in fact, that the pro-
posed AI and SI entropy measures are able to instantaneously
perform the complexity assessment of any stochastic time
series of discrete events. In addition, the behavior of the AI and
SI indices on the study of nonstationary, dynamical systems
having different kinds of noise as an input reflect an important
property that could be useful for characterizing physical
systems. In summary, if the traditional noise-dependent com-
plexity indices are preferred in some instances where additive
noise properties are relevant, there are many other cases where
the use of a complexity measure that follows only the dynamics
of the autoregressive system regardless of the observation time
and the input modulating noise are recommended.

We have shown that AI and SI promisingly provide helpful
time-varying and adaptive indices for real-time monitoring
of sympathovagal dynamics, which have also been proven
in agreement with the current literature [31,32]. In fact, our
studies on healthy subjects undergoing postural changes
confirm previous results [31,32] and demonstrate that the
instantaneous complexity measures appropriately reflect
changes of ANS control on cardiovascular dynamics, thus
improving the sympathovagal assessment in a nonstationary
environment. We also found that pathological heartbeat
dynamics are associated with decreased instantaneous
complexity, confirming the common experimental experiences
of reduced regularity, predictability, and sensitivity to initial
conditions in pathological states.

We have presented further results from two additional
datasets of gait recordings from short walks [26]. We have
achieved significantly better performance in discerning gait
dynamics gathered from young and elderly subjects by
using the proposed instantaneous complexity measures. Such
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positive results confirm the theoretical construction of the
proposed entropy measures and enlarge the potential wide
spectrum of applicability.

The proposed entropy measures also allow for the study
of complexity variability, i.e., the analysis of complex systems
referring to the fluctuations in complexity instead of analysis of
central tendency, which has been recently explored in disease
assessment of patients with severe congestive heart failure
[34]. We report that AI dynamical values are not seriously
affected by the kind of noise underlying the complex system,
thus ensuring truly instantaneous tracking of the dynamic
system complexity. These observations suggest that absolute
values of our entropy measures, significantly different from
values of standard estimates, might be closer to a more
objective measure of entropy. Reasonably, the independence
from noise is related to the measure of distance between pairs
of phase-space points AI and SI . In fact, they take advantage
of both the Laguerre expansion and KS distance, rather than
the Takens distance [7], allowing for consideration of long-
term dynamical information (as achievable with multiscale
entropy). Thus, the instantaneous entropy framework could

open promising perspectives in understanding the actual
underlying dynamical complexity changes despite intrinsic
variations of physiological noise.

To conclude, the proposed methodology offers a promising
mathematical tool for the dynamic analysis of a wide range of
applications and to potentially study any physical and natural
stochastic discrete process (e.g., Ref. [24]).
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