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Abstract

We study belief formation in social networks using a laboratory experiment. Participants in
our experiment observe an imperfect private signal on the state of the world and then simul-
taneously and repeatedly guess the state, observing the guesses of their network neighbours in
each period. Across treatments we vary the network structure and the amount of information
participants have about the network. Our �rst result shows that information about the network
structure matters and in particular a�ects the share of correct guesses in the network. This is
inconsistent with the widely used naive (deGroot) model. The naive model is, however, consis-
tent with a larger share of individual decisions than the competing Bayesian model, while both
models correctly predict only about 25 − 30% of consensus beliefs. We then estimate a larger
class of models and �nd that participants do indeed take network structure into account when
updating beliefs. In particular they discount information from neighbours if it is correlated, but
in a more rudimentary way than a Bayesian learner would.
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1 Introduction

Most social and economic interactions are shaped by beliefs and opinions. The most simple example
are everyday consumption choices, but also investment choices depend on beliefs about future returns
and political choices - like which candidate to vote for - are shaped by our beliefs and opinions about
the �right� course for policy or the �right� candidate. None of these beliefs are formed by decision
makers in isolation. Instead people typically communicate with others in their social network and
take their experiences and opinions into account. Models of belief di�usion in social networks have
been used to understand a wide range of phenomena across di�erent areas of economics (Gale and
Kariv, 2003; Golub and Jackson 2010, 2012; Mueller-Frank, 2013; Buechel et al, 2015). Among
others, these models have been used to explain the emergence of political polarization (Baldassari
and Bearman, 2007), but also consensus in political opinions (Katz and Lazarsfeld, 1955), to study
technology adoption (Banerjee et al, 2013), compliance with the law (Drago et al, 2014), formal and
informal insurance (Ambrus et al, 2014; Cai et al, 2015) or �nancial decisions (Hong et al, 2005;
Bursztyn et al, 2014).

Existing literature has mostly relied on either of two models: Bayesian learning (Gale and Kariv
(2003), Acemoglu et al (2011), Mueller-Frank (2013)) or a naive model due to deGroot (1974).1

One of the key properties of �naive learning� is that agents completely ignore the structure of the
underlying social network, while it is fully taken into account by Bayesians. Given the widespread
use of these two benchmark models in the social networks literature, surprisingly little is known
about how people actually form and update beliefs in networked communication and whether or not
the predictions of these models match actual outcomes well.2

In this paper we provide a comprehensive experimental study (using di�erent networks and in-
formation conditions) of social learning in networks. Our �rst aim is to test whether people use
information about the network structure when updating beliefs, as this is one of the key di�erences
between the naive model and more sophisticated models. We also compare how well outcomes are
predicted by the Bayesian and naive model. We are interested in whether either of these models is a
good predictor of behaviour in these environments in the usual �as if� sense. We are not interested
in whether people are Bayesian or naive in an epistemic sense.3 Finally, we study properties of
heuristics participants use to see which features of network structure participants pay attention to.

At the beginning of our experiment, participants observe an imperfect private signal about the
state of the world which could be either of two colours, say �black� or �white�, with equal probability.
They then simultaneously submit a binary guess about the state of the world. In all subsequent
periods they observe the guesses made by their network neighbours in the previous period and
submit another guess themselves. This process continues for 20 periods and is repeated 6 times with
di�erent colours (and new draws by nature).

The experiment involves a total of eleven treatments. In the initial experiment, we set up nine
treatments in a 3×3 design. The �rst dimension varied was the network structure: we used the circle,
the star, and a kite. Under the star information aggregation is centralized: one agent observes all
others. In the circle information aggregation is decentralized: all agents observe some others and

1In the literature, naive learning has also been referred to as average based updating (Golub and Jackson, 2012),
best response dynamics, boundedly rational learning (de Marzo, Vayanos and Zwiebel, 2003) or myopic learning
(Acemoglu and Ozdaglar, 2011). It is referred to as naive learning by e.g. Golub and Jackson (2010). We follow Golub
and Jackson (2010) and refer to the deGroot (1974) dynamics as �naive learning� or �naive updating�.

2Literature is surveyed in detail below.
3These are di�erent aims, since people might, for example, develop heuristics that induce behaviour �as if� they are

Bayesian, despite not reasoning in a Bayesian manner. Moreover, there is already quite some evidence on the latter
question in other environments including evidence showing that learning rules can di�er across di�erent environments
(Kovarik et al, 2017).
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all observe equally many agents. The kite is intermediate and was chosen because of the theoretical
predictions it generates. Theoretical predictions of the Bayesian and the naive model di�er across
these networks both in terms of whether a consensus is reached and whether the truth is learned.
The second treatment dimension varies information about the network structure. We study three
information conditions: No Information (NI), Incomplete Information (II) and Complete Information
(CI). The di�erent information conditions in our design provide a clean test of one of the key tenets
of the naive model: that agents ignore the network structure.

Our results show that this is not the case. The amount of information participants have about
the network does a�ect the share of correct guesses as well as other outcomes. More information
about the network structure also leads to lower consistency of individual choices (conditional on
signal realizations and the history of neighbours' guesses) with the predictions of the naive model.
Still, even with complete information about the network the naive model predicts individual choices
better than the Bayesian model. The picture is less clear when it comes to consensus predictions.
Both models predict around 25− 30% of consensus outcomes correctly.

We then estimate learning models from a larger class. The heuristics our participants use are not
too dissimilar from the naive model, but there are some crucial di�erences. In particular, participants
do react to network structure. They place higher weight on themselves the higher their clustering
coe�cient and lower weight on neighbours whose clustering coe�cient is high.4 This can be seen as
a simple way to discount information from neighbours if this information is likely to be correlated
(which is the case if the neighbours are neighbours themselves).

We derive an adjusted rule that deviates from the naive model in only one respect, namely in
that it accounts for an agent's clustering coe�cient. This rule can have fundamentally di�erent
implications than either Bayesian or naive learning. In particular, persistent disagreements are more
likely under the adjusted rule than under either of the other models.5 We generate new experimental
data in networks, where the naive, the Bayesian and the adjusted model all yield di�erent predictions.
The adjusted model is more consistent with the data than either the naive or Bayesian model.

This paper is organized as follows. In Section 2 we discuss related literature. In Section 3 we
explain the experimental design. We discuss the theory in more detail and develop conjectures in
Section 4. Sections 5-6 contain our results and Section 7 concludes.

2 Related Literature

We start by describing the two types of models that have been used in theoretical literature and then
discuss related experimental work.

Bayesian Learning One of the dominant paradigms for modeling social learning in networks is
Bayesian learning (Banerjee, 1992; Bikhchandani et al, 1992; Gale and Kariv, 2003; Acemoglu et al,
2011; Eyster and Rabin, 2010). Particularly relevant for our context are models where neighbours
in a network, after initially receiving a private signal about the state of the world, repeatedly and
simultaneously make guesses about the state observing their network neighbours guesses in each
round. This is the setting we consider in this paper. A number of authors have shown that, under
certain conditions, Bayesian learners will converge in their beliefs as to which state of the world they

4The clustering coe�cient of an agent is the share of her �rst order neighbours that are neighbours themselves.
5If beliefs are communicated on a �ne enough grid, then - as long as networks are connected - a consensus will be

reached under all models. If the grid is coarser, in particular also if only actions or binary guesses are observed, as in
this setting, then the adjusted model can lead to disagreement whenever clustering coe�cients are high. The reason
is simply that agents under the adjusted model will then place a very high weight on their own opinion.

3



are in and that furthermore, under additional conditions, these belief will be correct (Gale and Kariv,
2003; Mossel and Tamuz, 2010; Mueller-Frank, 2013; Mossel et al 2015).

The naive model A second class of models that has received increasing attention in recent years
is based on the naive model �rst proposed by de Groot (1974). Under the naive model agents update
beliefs in each period by taking weighted averages of their own and their network neighbours' past
beliefs. A key distinction between the naive and Bayesian models is that under naive learning agents
do not make use of information about the network structure. This is one of the features of the
naive model that we will test. A number of papers have established conditions under which beliefs
converge in the naive model (de Groot, 1974; deMarzo et al 2003). deMarzo et al (2003) also show,
under some assumptions on the updating process, that each agent's in�uence is proportional to the
number of direct neighbors she has, i.e. to her degree. Golub and Jackson (2010) ask not only
whether a consensus will be reached, but whether agents will converge to the truth. They show that
all opinions in a large society (n→∞) converge to the truth if and only if the in�uence of the most
in�uential agent vanishes as the society grows.6 Hence, in large networks and when continuous beliefs
are communicated the Bayesian and naive model tend to yield similar predictions. This is, however,
not the case in some of the small networks we consider and under binary beliefs (actions). Acemoglu
and Ozdaglar (2011) review some of the literature on both the Bayesian and the naive model.

Experimental Work Our paper contributes to an active experimental literature which tests this
and related theory in the laboratory.7

Maybe the �rst experiment conducted on these questions is Mobius, Phan and Szeidl (2015),
who study learning and belief formation in endogenous networks in a �eld experiment using the
Facebook connections of Harvard undergraduates. They compared the naive model and a Bayesian
model (based on Acemoglu, Bimpikis and Ozdaglar, 2014), where agents tag (link to) the source
of information. They �nd that there is social learning, but information transmission is noisy and
imperfect. When accounting for the fact that information transmission is stochastic in their setting
they �nd some evidence for the tagged model. It is not too surprising that they �nd more support
for the Bayesian model than we do given that the model predictions are much more straightforward
in the endogenous network setting they consider.

A number of authors have tested for either or both models on exogenous networks. Corrazzini et
al (2012) are focused on the naive model. They study a version of the naive model in an experiment
where agents' in-degree (how many people they observe) and out-degree (how many people they are
observed by) di�er. They �nd support for a variant of the naive model according to which social
in�uence is proportional to an agent's in-degree. In another study on directed networks Brandts et
al (2015), however, do not �nd evidence for the importance of in-degree. Both of these studies test
for the naive model indirectly by comparing theoretical consensus predictions to outcomes. Further,
in contrast to our setting, both these studies consider directed networks and they study only the
complete information case. Varying the amount of information about the network structure provides
arguably the cleanest test of the naive model.

6Golub and Jackson (2012) show that homophily (a tendency of similar agents to be linked) slows down the speed
of learning and hence increases the time it takes to reach a consensus. Jadbabaie et al. (2012) study a model where
agents take their personal signals into account in a Bayesian way, but account for information from their neighbours
in a naive way. They show that in this case agents always learn the truth. Acemoglou, et al (2010) study a version
of the naive model where some �forceful� agents do not change their opinions. They study how misinformation can
spread in social networks in these cases.

7To allow the reader to better track the history of the di�erent experiments discussed below we provide some infor-
mation on when the di�erent experiments were conducted (whenever available). Mobius, Phan and Szeidl conducted
experiments in 2004, Corrazzini et al in 2009, Chandrasekhar et al in 2010 and Mueller-Frank and Neri in 2012.
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Chandrasekhar et al (2015) test the naive and the Bayesian model. They also study mixed
populations allowing agents to have incomplete information about whether others are Bayesian or
naive. Despite this �exibility, individuals are best described by the naive model with identical
weights in their experiment. Choi et al (2012) focus uniquely on the Bayesian model studied in Gale
and Kariv (2003) in three-player networks. They �nd that the Bayesian model �ts the data quite
well in these networks. Three-player networks however lack statistical power to distinguish between
the naive and Bayesian model. In fact, in all of the networks they consider there are virtually no
di�erences between the predictions of the two models (Chandrasekhar et al, 2015). Mueller-Frank
and Neri (2014) conduct an experiment and show that agents rarely reach a consensus. They provide
a theoretical explanation for this fact which emphasizes the role of heterogeneity.8 All these studies
only consider the case of complete information about the network structure. The introduction of
the incomplete and �no information� cases are one of the main contributions of this paper to the
existing literature. While other literature on exogenous networks (particularly Chandrasekhar et al,
2015) has shown that the naive model tends to explain behaviour better than the Bayesian model,
our evidence shows that one of the fundamental tenets of this model does not hold. Participants do
use information about the network structure.

3 The Experimental Design

In this section we describe our experimental design. In all treatments, participants interacted in a
network consisting of seven participants for six rounds of 20 periods each. The treatments di�ered in
two dimensions: we varied the network structure (circle, star, kite, rectangle and pentagon, see �gure
1) and the amount of information about the network structure that was available to participants (no
info, incomplete info, or complete info). Each group of seven participants interacted in the same
network structure during the six rounds of our experiment. However, participants' positions within
the network were randomized across rounds. Each round had the following structure:

(1) Participants received information on the number of neighbors and (depending on the treatment)
additional information about the network structure. In all treatments players were assigned
�labels� (anew at the beginning of every round) so that they could follow the history of guesses
of particular neighbors.

(2) Nature drew one of two possible states ω ∈ {B,W}, with commonly known probability 1
2
. Each

state of nature represented an urn. Urn B contained four black balls and three white balls.
Urn W contained four white balls and three black balls.9

(3) Participants observed a private signal. If urn B was drawn, four players received a black ball
and three players received a white ball. If urn W was drawn, four participants received a white
ball and three participants received a black ball. Thus, if participants knew all the signals,
they would know the urn for sure. In other words the distribution of signals always re�ected
the exact composition of the urn.10

8Somewhat less related are several experimental papers studying herding and informational cascades (see Anderson
and Holt (1997) or Weizsaecker, 2010 for a meta-study). These settings are very di�erent from the one studied here
in that in information cascades people choose once and sequentially, while in the setting studied here they choose
simultaneously and repeatedly. Also most of the cascades literature does not study networks other than the line.

9In the experiment we changed the colours of the urns across rounds (see Table 1). Throughout the paper we refer
to black and white urns for clarity of exposition.

10Hence, unlike in much of the theoretical literature, signals in our setting are dependent. Independence is often a
simplifying assumption in theory, but there is ample evidence that people don't understand independent draws very
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Figure 1: The Experimental Networks and Signal Distributions.

(4) Participants had to guess the correct urn repeatedly for 20 periods. Each of the 20 peri-
ods consisted of two steps: First, participants stated a binary guess, B or W .11 Second, all
participants observed the guesses of their direct network neighbors.

We chose 20 periods of communication since the theoretical models predict convergence after
at most 9 periods (see Section 4) and we wanted to give participants some more time than that. 6
rounds were chosen in order to observe mature behaviour after participants had some time to become
familiar with the task.

Networks Figure 1 shows the network architectures we used. We chose networks of 7 players,
because with fewer players learning about the correct urn becomes increasingly trivial and distin-
guishing between the naive and Bayesian model becomes impossible. Three-player networks, for
example, such as those used by Choi et al (2012), lack statistical power to distinguish between the

well (see e.g. Kahnemann and Tversky, 1972). One reason for using dependent signals is to avoid biases that result
from participants' incomprehension of the setting. Another advantage of using dependent signals is, as mentioned
above, that we can make sure that the realized draw re�ects exactly the urn composition. With independent draws
there is a chance that learning is not possible.

11Given that most of the theoretical literature on the Bayesian model has focused on the action (binary) setting,
while most of the literature on the naive model has focused on the belief (continuous) setting, we had to make a choice
here. There are four reasons we decided for a binary guess. First, in light of ample evidence that people have di�culty
in communicating and reasoning about probabilities (see the research summarized in Bazerman and Moore, 2009), we
decided to let participants state a binary guess instead of a probabilistic statement like �I believe the urn is white with
probability 0.85�. It was important to us to minimize confusion about the environment and the task of guessing the
right urn. Second, the setting with binary communication lends itself better to applications where only choices are
observable. Third, the theoretical predictions of the models di�er more often in this setting. (In fact with continuous
signals a consensus will always be reached under both models in all networks considered (see Mueller-Frank, 2013).)
And fourth, predicted convergence times are shorter.
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naive and Bayesian model (Chandrasekhar et al, 2014). Networks with even more than 7 players, on
the other hand, would have made learning unnecessarily hard. We chose these particular networks
because the star and circle capture benchmark situations. All information is aggregated in one player
in the star network, while it is evenly spread in the circle. We added the Kite network because it
generates di�erential theoretical predictions across signal distributions, treatments and theoretical
benchmark models (see Section 4). The Rectangle and Pentagon were only used in our second set of
experiments and were chosen because of the theoretical predictions they entail.

Information. Treatments also di�ered with respect to the information our participants received
about the network structure. Varying information conditions provides a clean test of the naive
model, as under this model it should not matter how much information about the network structure
participants have. We implemented three information conditions for each network, as follows:

(NI) �No Information�: Players knew that there are 7 players connected in a (single-component)
network as well as the number and �labels� of their �rst-order neighbors (i.e. their own degree).
They received no other information about the network structure.

(II) �Incomplete Information�: In addition to the information received in the NI treatments, players
knew the degree distribution of the network. That is, all players knew how many players had
how many neighbors. Note that this is equivalent to knowing the complete network structure
for the Circle and the Star network, but not for the Kite, Rectangle or Pentagon networks.

(CI) �Complete Information�: In addition to the information provided in the II treatments, players
were shown a complete graphical representation of the network both in the instructions and on
the screens.

Signal distributions and colours. Throughout the experiment each group (of seven players)
interacted within the same network, but signal distributions and network positions changed across
rounds. As network positions change across rounds, players don't interact with the same neighbours
too many times. One consequence of this is that it is less likely that they develop sophisticated
conventions on when to experiment etc (see also footnote 18).

Moreover, we used di�erent colors in every round in order to make it clear to participants that
observations from previous rounds are not informative with respect to the right guess in a current
round. We did also not tell them the true colour of the urns in previous rounds until the end of the
experiment. With these design features we hoped to get mature decisions in later rounds, while at
the same time minimizing the possibility of undesired spillovers across rounds.

For each network we used two �xed signal distributions, as illustrated in Figure 1. The reason
to do so was to generate enough �interesting� observations, i.e. observations where (i) the learning
problem is not completely trivial and (ii) where the theoretical predictions of the models di�er in
interesting ways, without having to run prohibitively many sessions. Participants did not know that
we used di�erent signal distributions across rounds, nor which they were. All they were told was
that each participant in the network would receive one ball from the urn w/o replacement. Using
the Laplace principle of insu�cient reason this would lead participants to believe that the signal
distribution is a random draw from a total of 35 permutations ( 7!

4!3!
).12 Table 1 provides details on

the assignment of signal distributions and ball colors in all main treatments.

12If we told them the two distributions, then the problem would be trivial for several network positions, as partici-
pants could infer the signal distribution and the colour of the urn from their own signal.
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Network Round and colors
1 2 3 4 5 6

red/blue green/orange black/white violett/yellow brown/turquoise grey/pink

1 1 2 2 1 2 1
2 1 1 2 1 2 2
3 2 1 2 2 1 1
4 2 2 1 2 1 1
5 1 2 1 2 1 2
6 2 1 1 1 2 2

Table 1: Signal distributions (1 or 2), urn colours and networks across rounds.

Payments. At the end of the experiment, for each player independently, we randomly selected
three periods from di�erent rounds. For each selected period the participant received Euro 6 if their
guess was correct and nothing otherwise. In addition to the performance�dependent payments they
received a show up fee of Euro 6. Hence participants could earn either Euro 6, 12, 18 or 24 in the
experiment. On average participants earned approximately Euro 17 (all included).

Questionnaire. After the experiment participants completed an extensive questionnaire, covering
emotional intelligence, cognitive re�ection, as well as numeracy skills.13 We did not provide material
incentives for correct answers in the questionnaire but emphasized that the relatively high show up
fee should compensate for the additional time.

New Experiments Based on the insights from the main treatments we derived an adjusted rule
that we then decided to test against new data. We hence conducted two additional treatments using
the Rectangle and Pentagon networks shown in Figure 1. Table 2 summarizes our eleven treatments.

No Info (NI) Incomplete Info (II) Complete Info (CI)
Star S_NI S_II S_CI
Circle C_NI C_II C_CI
Kite K_NI K_II K_CI
Rectangle R_CI
Pentagon P_CI

Table 2: Treatments. In each treatment we have 5040 observations, which stem from 42 individuals observed
across 120 rounds, and 6 independent observations (networks).

Further Details. The experiment took place in 2012-2013 (Star, Circle, Kite) and 2014 (Pentagon,
Rectangle) at the Laboratory for Experimental Research Nuremberg (LERN). In total, 462 students
from FAU Erlangen-Nuremberg participated in 22 sessions. Each session contained 3 networks of
the same treatment, which can be considered independent in the absence of �static session e�ects�
(Frechette, 2012).14 All experimental sessions were computerized.15 Written instructions were dis-
tributed at the beginning of the experiment.16 Sessions lasted between 67min-109min (including
reading the instructions and answering the post�experimental questionnaire).

13See Appendix F for the complete set of questions.
14In other words each session contained three groups of 7 participants organized in a network. Participants never

interacted across networks. Static session e�ects could lead to undesired within session correlation if e.g. experimenters
behave di�erently across sessions etc.

15The experiment was programmed and conducted with the software z�Tree (Fischbacher 2007). Subjects were
recruited using the Online Recruitment System ORSEE by Greiner (2004).

16The instructions for treatment K_CI, translated from German into English, can be found in Appendix I. Instruc-
tions for the remaining treatments are available upon request.
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4 Theoretical Background and Research Questions

This section contains the theoretical background and the research questions we want to address with
our experimental design. In Section 4.1 we derive theoretical predictions for all our networks and
signal distributions. In 4.2 we discuss our research questions.

4.1 The Bayesian and the Naive Model

We index agents i = 1, . . . , 7 and denote i's set of network neighbors by Ni. There are two states of
the world B and W according to whether the black or white urn was drawn. Agents have a common
prior of 1

2
on each of these states and this is common knowledge. The fact that each urn is drawn

with probability 1
2
is explained in the experimental Instructions which are common knowledge (read

aloud at the beginning of the experiment). At the beginning of the �rst period all agents receive a
signal si ∈ {0, 1}. If the state is W , then four agents receive signal si = 0 and three agents receive
signal si = 1. If the state is B, then four agents receive signal si = 1 and three agents receive signal
si = 0. Agents believe that - conditional on the state - who receives signal si = 0 and who receives
si = 1 is random (see the paragraph �Signal distributions and colours� in Section 3 for a discussion
of this assumption). In each period t all agents simultaneously submit guesses gti ∈ {0, 1} about the
correct urn. We denote the vector of guesses of all agents in the network by gt = (gt1, ..., g

t
7).

The Bayesian Model. The Bayesian model requires assumptions on agents' priors as well as on
their theory about how others behave. In line with the theoretical literature we assume that there is
common knowledge of Bayesian rationality. Without this (or a similar assumption) Bayesian learning
is ill-de�ned. Bayesian agents use their knowledge of the network, their private signal as well as the
history of their own and their neighbours' guesses to update their belief in each period using Bayes
rule. They choose gti = 1 whenever their posterior is strictly above 1

2
and gti = 0 if it is strictly below

1
2
. Indi�erences are resolved probabilistically. Note that Bayesian learning requires all agents in every

period to consider the set of possible information sets of all other agents and how communication
impacts the information sets of their neighbors in the subsequent period. Since in our networks
the history of beliefs is not common knowledge among neighbours this quickly becomes a complex
task. While this makes it seem unlikely that participants reason through the Bayesian model in its
full complexity, it seems plausible that participants adopt heuristics that lead to decisions that are
Bayesian in an �as if� sense. Our experiment is designed to evaluate the latter conjecture. Theoretical
predictions of the Bayesian model for the CI case are summarized in Table 3 and derived in Appendix
A.17,18

The Naive Model. Under the naive model agents simply follow the majority. More speci�cally

we denote by Gt
i(g

t−1) =
gt−1
i +

∑
j∈Ni

gt−1
j

|Ni|+1
the average of i's and i's neighbours past guesses. Agents

17While under CI participants observe the network structure, one may ask how participants account for the network
structure under II and NI. For the circle and star networks the degree distribution (communicated in the II treatments)
reveals the complete network structure, while the same is not true for the other networks. Hence, in these networks
as well as in the NI condition, some assumption is needed on agent's prior over networks. Since there is no �natural�
assumption for such priors we refrain from making theoretical predictions for the Bayesian model under the II and NI
conditions.

18One could also consider an alternative model where Bayesian learners are not myopic, but instead choose subop-
timal actions in a given round in order to extract more information from a neighbour (exploration). We do not study
this model here, but it should be noted that our setting by and large does not o�er incentives to explore. This is most
obvious in the Star network where it is clearly impossible to learn faster or more by choosing suboptimal actions, as -
under truthtelling - the center of the Star will know the truth for sure in period 2 (see consensus times in Table 3).
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then follow this rule

gti =

{
0 if Gt

i(g
t−1) < 1

2
,

1 if Gt
i(g

t−1) > 1
2
.

(1)

Here gti denotes player i's guess at time t and |Ni| the cardinality of player i's network neighbor-
hood, i.e. her degree or the number of other players i observes excluding herself. Indi�erence, i.e.
Gt
i(g

t−1) = 1
2
is resolved by the �ip of a fair coin. Naive agents hence completely ignore the network

structure when making their decisions and hence will ignore the fact that information received from
two di�erent neighbours might be correlated (see e.g. Enke and Zimmerman, 2015). Note that, as
it is irrelevant how much information naive learners have about the network, the prediction of this
model is the same across all three information treatments (CI, II and NI). Another property of the
naive model is its �forgetfulness�. Since it takes into account only current beliefs, errors made in the
past will not be recognized or accounted for. As a consequence few errors can potentially lead to
very di�erent learning outcomes in this model. Note also that Gt

i(g
t−1) attaches the same weight to

i's own past guess and i's neighbors' past guesses.19

Summary. Table 3 summarizes the theoretical predictions for the naive and Bayesian models,
respectively. We ask three questions: (i) is a consensus reached? (ii) if so, do agents agree on the
correct urn? and (iii) how many periods does it take to reach a steady state where no agents change
their guesses anymore (convergence time)?20

Naive Model
Circle1 Circle2 Star1 Star2 Kite1 Kite2

Consensus Reached? Yes No Yes Yes No No
Correct Urn? Yes - ? Yes - -
Convergence Time 4 2 ≥ 2 ≥ 3 2-3 1

Bayesian Model (CI)
Circle1 Circle2 Star1 Star2 Kite1 Kite2

Consensus Reached? Yes Yes Yes Yes Yes Yes
Correct Urn? Yes Yes Yes Yes No Yes
Convergence Time 3 ≥ 6 3 3 5 9

Table 3: Theoretical Predictions for all Treatments and all signal distributions. Note that the prediction
for the naive model is independent of the information condition while for the Bayesian model predictions
are given only for the CI case due to the multiplicity of admissible priors in the NI and II conditions. A ?
should be read to say that the prediction is open - consensus could be on the correct or on the wrong urn
with positive probability

4.2 Research Questions and Conjectures

In this subsection we state our research questions and outline how we will address them. Our �rst
question asks whether people use information about the network structure when updating beliefs.

19DeMarzo, Vayanos, and Zwiebel (2003) show that the same theoretical predictions regarding whether a consensus
is reached would hold as long as players attach symmetric weights to each other, but convergence time might be
di�erent. All exact derivations can be found in Appendix A.

20Readers familiar with the naive model (e.g. Theorem 1 in deMarzo, Vayanos and Zwiebel, 2003) might wonder
how it is possible that agents do not reach a consensus in some of our networks (Circle-2 and Kite). The di�erence
lies in our binary communication structure. Since in our setting agents only communicate choices (or binary beliefs)
it is possible that choices stop converging even if the network is connected.
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Q1: Information Do people use information about the network structure when updating beliefs?

To address this question we will use our treatment variations CI, II and NI and ask whether
outcomes di�er across these three variations. If people do not make use of information about the
network structure, as posited by the naive model, then how much information they have about the
network is irrelevant. In this case we would not expect to see any di�erences in outcomes across the
three information conditions. The outcomes we will focus on in addressing this question are (i) the
share of correct guesses and (ii) the frequency of switches as measures of the quality and speed of
learning.

Our second question focuses on the theoretical predictions derived in Section 4.1

Q2: Outcomes How consistent are outcomes with the predictions of the Bayesian/Naive models,
respectively?

The answer to this question will help us evaluate how useful either model is for predicting be-
haviour. Even if neither model describes well how participants reason, it is still possible that the
models yield quite accurate predictions. To assess this possibility we will focus on the following
outcomes: (i) the share of individual choices consistent with the model predictions, (ii) the consen-
sus beliefs contrasted with the predictions from Table 3 and (iii) the actual share of correct guesses
compared to the theoretically predicted share,

The share of individual choices consistent with model predictions evaluates the models' �t at the
greatest level of disaggregation. Conducting this analysis, however, requires additional assumptions
especially when it comes to the Bayesian model. Remember that the Bayesian model assumes
common knowledge of Bayesian rationality. In social learning environments one cannot dispense
with this assumption when testing the model's explanatory power, since without a theory about
how others reason Bayesian learning is not well de�ned. Since this assumption is used in theoretical
models used to predict behaviour it is also appropriate to maintain it.21 This assumption, however,
can lead to some problems when contrasting the model with data, because it might be contradicted
by observation. In the Star treatments, for example, if the center switches at any time t ≥ 3, then
either the center cannot be Bayesian or she must believe that one or several of the spokes are not
Bayesian. In either case the assumption of common knowledge of Bayesian rationality is violated. In
our analysis on individual choices we assume that the decision maker reacts to such probability zero
events by pretending the event did not happen.22

We focus on two additional outcomes. Consensus beliefs evaluate the model predictions at the
network level. Consensus beliefs can be seen as �long run� outcomes (in our case after 20 periods),
something that theory has been particularly interested in. Our third outcome - the share of correct
guesses over time also aggregates at the network level. One advantage of this measure compared to
the consensus beliefs is that it allows us to study the dynamics of beliefs over time as opposed to
focusing on just the last few periods.

We next present our experimental results. We start by addressing the questions above (Section
5). We then use a more explorative approach and try to understand the heuristics our participants

21We could come up with alternative theories of how agents reason. One might for example assume that agents are
Bayesian, but believe that all others are naive. Mueller-Frank (2013) has shown, though, that if a network consists
of Bayesian and non-Bayesian agents and if the updating function of each non-Bayesian agent is common knowledge,
then such a network is informationally equivalent to a network consisting only of Bayesian agents. This result hinges
on continuous beliefs being communicated, however.

22This could e.g. be interpreted as the decision-maker treating such events as mistakes (and assuming that everyone
one else does so as well). Hence if a neighbour should choose black under common knowledge of Bayesian rationality,
but chooses white, then this is treated as a mistake, i.e. as if the neighbour had chosen white.
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use and which network properties they react to when incorporating information from neighbours
(Section 6).

5 Main Results

In this section we present our main results. We �rst evaluate our �rst research question about the
e�ect of our di�erent information treatments on the share of correct guesses and the frequency of
switches (Section 5.1) as well as on individual consistency with the naive model (Section 5.2). We
then compare the explanatory power of the Bayesian and the naive model focusing on the outcomes
discussed above (Section 5.3.2).

5.1 Information about the Network

To address our �rst research question we use our treatment variations CI, II and NI and ask whether
outcomes di�er across these three variations. If people do not make use of information about the
network structure, as posited by the naive model, then how much information they have about
the network is irrelevant. In this case, hence, we should not see di�erences between these three
information conditions. We focus on two outcomes in this Section: (i) the share of correct guesses
and (ii) the frequency of switches as measures of the quality and speed of learning.

We start by comparing the share of correct guesses across our information conditions CI, II and
NI. Figure 2 shows the share of correct guesses over time in the Circle network (Panel (a)), the Star
(Panel (b)) and the Kite (Panel (c)). In all networks the information condition does a�ect the share
of correct guesses. In the Circle and Kite networks there are more correct guesses under CI compared
to II and NI, which appear not signi�cantly di�erent. By contrast, in the Star network there are
fewer correct guesses under CI compared to II and NI. Appendix D contains �gures showing the
share of correct guesses over time disaggregated for each combination of network type and signal
distribution as well as for each matching group.

(a) Circle (b) Star (c) Kite

Figure 2: Share of Correct Guesses over time. Black line indicates CI, dark grey line II and light grey line
NI. Error bars indicate standard errors of the mean.

To evaluate statistical signi�cance of mean di�erences, we the run the following random e�ects
OLS regressions

ytik = α + β1d(II)ik + β2d(CI)ik + εtik (2)

where ytik is a binary variable indicating whether participant i in network k guessed the state
correctly in t, d(II) is a dummy for the II and d(CI) for the CI information conditions. Standard
errors are clustered at the network level and we allow for autocorrelation at the individual level. Since
under the naive model the information condition should not matter we would expect β1 = β2 = 0.
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Table 4 shows these regressions separately for the two signal distributions shown in Figure 1 and
separately for the �rst and second half of the experiment (after some learning has taken place).

In the circle network, β1 and β2 are indeed not statistically di�erent from zero, despite some
period by period di�erence seen in Figure 2. This is the only network for which this is the case,
i.e. for which β1 = β2 = 0 can't be rejected. In the Star network both coe�cients are substantially
di�erent from zero. Interestingly the direction of the e�ect depends on the signal distribution. If
the center of the star receives an �incorrect� signal (Star 1), more information about the network
structure leads to fewer correct guesses. If the center receives a �correct� signal (Star 2), more
information leads to more correct guesses. Ex post we derive the following intuition for this e�ect.
We �nd evidence (in all networks) that, relative to the naive model, participants on average place
too much weight on their own information (see Table 9 below). This means that also the center
of a star with an �incorrect� signal will place too much weight on this signal. This overweighing
can lead to an incorrect guess despite the fact that the center should know the state from round 2
onwards. Complete information in this case hurts, because spokes - knowing that the center should
know the state - trust the center too much. Finally, in the Kite network β2 > 0. Hence in this
network there are more correct guesses when there is complete information about the network. This
e�ect is particularly strong and statistically signi�cant under signal distribution Kite2.

Share of Correct Guesses - First Half of the Experiment
(1) (2) (3) (4) (5) (6)

Circle1 Circle2 Star1 Star2 Kite1 Kite2

d(II) 0.011 -0.015 -0.084 0.166*** 0.048 -0.012
(0.072) (0.069) (0.075) (0.054) (0.066) (0.080)

d(CI) 0.003 0.108 -0.217*** 0.160*** 0.021 0.159**
(0.072) (0.069) (0.075) (0.054) (0.066) (0.080)

Constant 0.599*** 0.564*** 0.730*** 0.608*** 0.334*** 0.580***
(0.051) (0.048) (0.053) (0.038) (0.047) (0.056)

Observations 3,780 3,780 3,780 3,780 3,780 3,780
Groups 126 126 126 126 126 126

Share of Correct Guesses - Second Half of the Experiment
(1b) (2b) (3b) (4b) (5b) (6b)

Circle1 Circle2 Star1 Star2 Kite1 Kite2

d(II) 0.095 -0.064 -0.116* 0.145** 0.068 -0.039
(0.074) (0.060) (0.060) (0.072) (0.067) (0.078)

d(CI) 0.023 0.046 -0.213*** 0.196*** 0.074* 0.082**
(0.074) (0.060) (0.060) (0.072) (0.047) (0.028)

Constant 0.559*** 0.753*** 0.881*** 0.618*** 0.304*** 0.629***
(0.052) (0.042) (0.042) (0.051) (0.047) (0.055)

Observations 3,780 3,780 3,780 3,780 3,780 3,780
Groups 126 126 126 126 126 126

Robust Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Random E�ects regression of correct guesses on dummy variables indicating information treatments.
Standard errors account for auto-correlation at the individual level and are clustered at the network (matching
group) level.

As an alternative outcome and indicator of learning, we also studied the frequency of switches,
i.e. how likely participants are to switch their guess between two rounds. Figure 3 does not show a
visible di�erence in switching frequencies over time across the three information conditions. It does
show, however that switching decreases over time in all networks.23 Table 5 shows the results of
regressions analogous to those presented in Table 4, but with switching as main outcome. The table
shows some statistically signi�cant di�erences between the NI and II (CI) cases and in each of these

23Appendix D contains a �gure showing the share of correct guesses over time disaggregated for each combination
of network type and signal distribution.
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β1 > 0 (β2 > 0). More information about the network structure seems to lead to somewhat more
switching.

(a) Circle (b) Star (c) Kite

Figure 3: Share of Switches over time. Error bars indicate standard errors of the mean.

Frequency of Switching - First Half of the Experiment
(1) (2) (3) (4) (5) (6)

Circle1 Circle2 Star1 Star2 Kite1 Kite2

d(II) 0.067* -0.001 0.070*** -0.025 0.044* -0.010
(0.038) (0.029) (0.025) (0.030) (0.025) (0.024)

d(CI) -0.009 0.023 0.019 0.029 0.046* 0.014
(0.038) (0.029) (0.025) (0.030) (0.025) (0.024)

Constant 0.160*** 0.122*** 0.054*** 0.109*** 0.070*** 0.063***
(0.027) (0.021) (0.018) (0.021) (0.017) (0.017)

Observations 3,591 3,591 3,591 3,591 3,591 3,591
Number Participants 126 126 126 126 126 126

Frequency of Switching - Second Half of the Experiment
(1b) (2b) (3b) (4b) (5b) (6b)

Circle1 Circle2 Star1 Star2 Kite1 Kite2

d(II) 0.018 0.004 0.032 0.011 0.051** -0.009
(0.030) (0.036) (0.023) (0.027) (0.024) (0.020)

d(CI) -0.010 0.063* 0.016 0.044* 0.025 0.025
(0.030) (0.036) (0.023) (0.027) (0.024) (0.020)

Constant 0.098*** 0.110*** 0.063*** 0.068*** 0.067*** 0.043***
(0.021) (0.026) (0.016) (0.019) (0.017) (0.014)

Observations 3,591 3,591 3,591 3,591 3,591 3,591
Number of Participants 126 126 126 126 126 126

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 5: Random E�ects regression of switches on dummy variables indicating information treatments.
Standard errors account for auto-correlation and are clustered at the network (matching group) level.

Result 1 Information about the network structure a�ects behaviour and in particular the share of
correct guesses.

5.2 Information and Consistency with the Naive Model

We next ask how consistent individual choices are with the naive model. Table 6 shows how consistent
participants are with the naive model depending on the information treatment. The table shows that
the amount of information does not a�ect the share of decisions consistent with the naive model in the
Circle networks. This is di�erent in the Star and Kite networks. Here we do see a substantial drop in
the share of choices consistent with the naive model particularly under CI. Regression Analysis can
be found in Table 7. The regression is analogous that that in equation (2), except that outcome y
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Consistency with Naive Model
Circle Star Kite

NI 0.90 (n =4788) 0.90 (n =4788) 0.92 (n =4788)
II 0.91 (n =4788) 0.88 (n =4788) 0.91 (n =4788)
CI 0.88 (n =4788) 0.87 (n =4788) 0.86 (n =4788)

Table 6: Percentage of individual decisions (across periods t = 2, ..., 20 and all rounds) consistent with
the predictions of the naive model conditional on the history of guesses (g1, ...,gt−1) and depending on
information conditions and network type. Indi�erence (Gti(g

t−1) = 1
2) is coded as 50% success.

now indicates consistency with the naive model. The table shows that complete information leads to
lower consistency with the naive model (compared to NI) under all treatments and signal distributions
across the second half of the experiment (β2 < 0). The di�erence is statistically signi�cant at the
5% level in Star-2, Kite-1 and Kite-2. This is hence another way in which information about the
network structure a�ects play.

Consistency with Naive Model - First Half of the Experiment
(1) (2) (3) (4) (5) (6)

Circle1 Circle2 Star1 Star2 Kite1 Kite2

d(II) 0.049 0.004 -0.054* 0.038 -0.009 0.014
(0.033) (0.026) (0.032) (0.028) (0.032) (0.031)

d(CI) -0.024 -0.020 -0.009 -0.007 -0.034 -0.010
(0.033) (0.026) (0.032) (0.028) (0.032) (0.031)

Constant 0.859*** 0.879*** 0.875*** 0.836*** 0.883*** 0.893***
(0.023) (0.018) (0.023) (0.019) (0.023) (0.022)

Observations 3,780 3,780 3,780 3,780 3,780 3,780
Number Participants 126 126 126 126 126 126

Consistency with Naive Model - Second Half of the Experiment
(1b) (2b) (3b) (4b) (5b) (6b)

Circle1 Circle2 Star1 Star2 Kite1 Kite2

d(II) -0.000 0.006 -0.030 0.010 -0.033 -0.003
(0.030) (0.031) (0.026) (0.025) (0.033) (0.023)

d(CI) -0.003 -0.058* -0.041 -0.060** -0.075** -0.048**
(0.030) (0.031) (0.026) (0.025) (0.033) (0.023)

Constant 0.883*** 0.892*** 0.895*** 0.898*** 0.898*** 0.837***
(0.021) (0.021) (0.018) (0.018) (0.023) (0.016)

Observations 3,780 3,780 3,780 3,780 3,780 3,780
Number of Participants 126 126 126 126 126 126

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Random E�ects regression of dummy indicating consistency with naive model on dummy variables
indicating information treatments. Standard errors account for auto-correlation and are clustered at the
network (matching group) level.

Result 2 Complete information about the network structure leads to lower consistency with the naive
model in the Star and Kite networks compared to �no information� (NI).

5.3 The Naive vs the Bayesian Model

This subsection compares consistency of the data with the naive model and the bayesian model
outlined in Section 4. This section only uses data from the complete information (CI) treatments.

5.3.1 Individual Decisions

We start by comparing the share of individual choices explained by the Bayesian and naive models.
The percentage of decisions consistent with the Bayesian model ranges from just below 70% to 85%
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across treatments. The percentage of decisions consistent with the naive model is even above 85% in
most treatments. Note that, since choices are binary, random (uniform) choice would be consistent
with a given model 50 % of the time. To distinguish the two models we should be most interested in
what happens when the predictions of the two models di�er. Depending on the network, this happens
about 20-40 % of the time (least often in the Circle, most often in the Star). If predictions di�er,
then decisions are consistent with the naive model in more than 78% of all cases in all treatments,
but consistent with the Bayesian model in less than 22% of all cases.24

5.3.2 Network Level Results

Next we study to which extent aggregate outcomes, in particular consensus beliefs and the share of
correct guesses, are in line with theoretical predictions.

Consensus Beliefs Table 8 shows the share of networks consistent with the consensus predictions
of the Bayesian and Naive model in the last period of each round. Overall 28 % of networks are
consistent with the Bayesian model and 26% with the naive model. If either model predicts consensus
on the right urn, then this happens in about a third of the time in the experiment (27% for the
Bayesian model and 32% for the naive model). If we allow for a mistake by one participant out of
seven, i.e. we require at least 6 participants to agree on the correct urn (right panel), then about half
the networks are in line with the theoretical prediction (44% in the cases where the Bayesian model
predicts a consensus on the correct urn and 53% in the case of the naive model). The di�erence
between the two models is not statistically signi�cant in any of these cases (two-sided ranksum test,
p > 0.1). If the Bayesian model predicts a consensus on the wrong urn, this happens in 33% of the
cases (56% if we allow for one mistake).

Consistent with... Bayes Naive Bayes Naive

Overall 0.28 0.26 Allowing 1 mistake 0.47 0.54

Conditional on model predictions Conditional on model predictions
Cons. Right Urn 0.27 0.32 Cons. Right Urn 0.44 0.53
(7 correct) (0.29,0.30,0.27) (0.38,0.30,-) (6-7 correct) (0.41,0.49,0.39) (0.61,0.49,-)
No Consensus - 0.24 No Consensus - 0.69
(4 correct) (0.17,-,0.31) (3-5 correct) (0.73,-,0.61)
No Consensus - 0.08 No Consensus - 0.33
(2 correct) (-,-,0.08) (1-3 correct) (-,-,0.33)
Cons. Wrong Urn 0.33 - Cons. Wrong Urn 0.56 -
(0 correct) (-,-,0.33) (0-1 correct) (-,-,0.56)

Table 8: Share of Networks consistent with consensus predictions of Bayesian and Naive model overall and
conditional on model predictions. Hence each entry shows which percent of those networks where a model
predicts x agents to guess correctly (x = 0, 2, 4, 7) reach a state in which this is the case in period 20. In
brackets below separate shares for the three networks (circle, star, kite). Three rightmost columns allow for
one mistake, i.e. require only 6 agents to agree for a consensus. Data from the last period of each round.

Share of correct guesses Figure 4 contrasts the share of correct guesses over time observed in
the data with theoretical predictions. The �gure yields a similar insight as the consensus analysis.
The theoretical models seem to have something to say about the data, but neither model is a very
good predictor of behaviour in all treatments. In the Kite treatments, for example, data points are

24Indi�erence (Gti(g
t−1) = 1

2 ) is not very common in the data. The naive model is indi�erent for 5.2% of observations
and the Bayesian model for 3.8% of observations.
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(a) Circle 1, Complete Info (b) Circle 2, Complete Info

(c) Star 1, Complete Info (d) Star 2, Complete Info

(e) Kite 1, Complete Info (f) Kite 2, Complete Info

Figure 4: Share of Correct Guesses over time. The solid lines indicate the predicted share of correct guesses
in the Bayesian Model, the dashed lines in the naive model and data points are scattered.

clustered around high shares of corrected guesses in Kite-2 and around low shares of correct guesses
in Kite-1 as predicted by both models, but the dynamics is quite di�erent and a substantial gap
between theoretical predictions and data averages remains. In the Star and Circle networks, data
points are very close to theory in some rounds (e.g. round 5 in Circle-2, round 4-5 in Star-1 or rounds
5-6 in Star-2), but they seem disconnected from theory in other rounds (round 3 in Circle-1, round
1 in Circle-2, round 2 in Star-1 etc.). Generally data seem closer to theory in the second half of
the experiment, i.e. after some learning has occurred. In terms of model comparison neither model
seems to clearly outperform the other.

Summary To sum up, we have seen that while the naive model seems to be able to explain
individual choices well, it does far worse at predicting network level outcomes, such as consensus
beliefs or the share of correct guesses. In fact, at the network level both models seem to predict
about equally well. How can we explain these patterns? First, these �ndings suggest a substantial
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impact of few deviations from the model on aggregate properties. Note that the naive model in
particular is vulnerable to such deviations because of its �forgetfulness�. For example in Circle-1
one mistake in period 2 (a player with a white signal communicating white) will imply the network
fails to reach a consensus. Hence, in this example consensus predictions of the naive model would
fail despite 99.2% individual consistency (only one mistake). Second, comparison of our information
treatments suggest that participants might be using rules of thumb that, while not Bayesian, are less
�naive� than the naive model would suggest. One possible explanation, hence is that the instances
where agents fail to be consistent with the naive model are �crucial� instances where opinions are
divided. Indeed, if we focus on early periods, where such disagreements tend to be more likely, then
individual-level consistency with the naive model drops (Table 6). If we focus on instances where
consistency with the naive model requires switching, consistency even drops to below 60% under CI,
i.e. about 2-3 out of 7 participants make decisions which are inconsistent with the naive model in
these cases (though note that this is a selected sample).25

Result 3 Both models correctly predict a consensus in about 25− 30% of the cases, which increases
to ≈ 50% under a relaxed de�nition of consensus. The naive model is a better predictor of
individual choices than the Bayesian model.

6 Results: Empirical Properties of Learning

We now move a step beyond our two benchmark models to understand what are the properties of
heuristics participants use in our experiment. We study this questions within the following class of
updating processes.

gti =

{
0 if Gt

i(g
t−1, λ) < 1

2
,

1 if Gt
i(g

t−1, λ) > 1
2
,

(3)

where Gt
i(g

t−1, λ) = λii(t)g
t−1
i +

∑
j∈Ni

λij(t)g
t−1
j . As before gti denotes player i's guess at time

t and Ni is player i's network neighborhood, i.e. the set of other participants i observes. λtii is the
weight player i attaches to her own past guess at time t and λtij the weight player i assigns to the
guess of neighbour j at time t, where λtii +

∑
j λ

t
ij = 1, ∀t. Equation (3), hence, describes a more

general class of models, where participants could ignore information from others (λij = 0), overweigh
their own information, change weights over time or have di�erent weights for di�erent neighbours
depending on the network structure. Equation (3) nests the naive model (λtij = 1

|Ni|+1
∀i, j, t). It

does not nest the Bayesian model, since the weights λ are not history dependent. However, time
dependent weights allow us to pick values of λtij such that the path of a Bayesian learner is simulated.
Hence, while given our results above we certainly don't expect participants to be Bayesian, the class
of models (3) precludes neither very naive learners (as in the naive model) nor very sophisticated
learners (as in the Bayesian model).26

In the following we will try to understand how the weights λ depend on participants' network
positions. To this end we estimate the following linear OLS model for each network position i in
network k at each time t = 2, ..., 20.

25Population heterogeneity (between Bayesian and naive learners) cannot by itself explain these results. In fact,
Mueller-Frank (2013) has shown for the case with continuous signals that if a network consists of Bayesian and non-
Bayesian agents and if the updating function of each non-Bayesian agent is common knowledge, then such a network
is informationally equivalent to a network consisting only of Bayesian agents. Population heterogeneity which allows
for other types could potentially explain some of these results (see also Mueller Frank and Neri, 2014).

26It should be noted that - as above - we refer to the Bayesian model with common knowledge of Bayesian rationality
(see Section 4.1).

18



gtik = λtii;kg
t−1
ik +

∑
j∈Ni

λtij;kg
t−1
jk + εtik. (4)

Since we estimate λtij;k separately for each time period, network and network position this means
that some estimates (in particular those for the hub in the star and most kite positions) would be
based on only few observations. For these positions only we estimate instead λτij;k for three or four
adjacent time periods, where τ = 1 for t = 2, 3, 4 (τ = 2 for t = 5, 6, 7,.., τ = 6 for t = 17, 18, 19, 20).
As a consequence each λtij;k is estimated based on between 18 to 48 observations.

6.1 Network Properties

In Section 5 we have seen that information about the network structure matters. We now ask which
information about the network structure participants use and how.

To do so, we �rst ask how the weight participants attach to themselves depends on their network
position. To do this we estimate the following random e�ects OLS regression, where the coe�cients
estimated from the equation above are now the endogenous variable.27 We start by focusing on the
diagonal weights λii estimating regressions of the following form

relλtii,k = α + βrelXik + zk + εtik, (5)

where relλtii=
λtii

λ
t
ij

is the weight an agent places on herself (λtii) relative to the weight she places

on her neighbours on average (λ
t

ij). X are network characteristics of interest (degree, clustering,

eigenvector centrality) with relXik =
Xik
Xjk

the corresponding �relative network characteristics�.28 The

advantage of using a formulation based on relative weights is that the theoretical predictions of the
naive model do not depend on the network structure. In particular under the identical weights model
we should expect α = 1 and β = 0 in all our networks. We standardize all relative variables relXik
to mean zero and standard deviation one and we include network-type (circle, star, kite) �xed e�ects
zk in all regressions.

Table 9 (top panel) shows the results of this regression focusing on the second half of the experi-
ment.29 Column (1) simultaneously includes relative degree, eigenvector centrality and clustering in
the regression. Degree measures how many neighbours a node has, eigenvector centrality is a measure
of how �central� a node is in the network and clustering measures how many of a node's neighbours
are neighbours themselves.30 Columns (2)-(4) include the three network characteristics separately.
Columns (5)-(7) include interactions with the star and kite networks. Note that within the circle
there is no variation in any of these characteristics. As a consequence columns (5)-(7) include only

27We assume random e�ects as this model permits consistent estimation also of coe�cients on time-invariant re-
gressors, such as the network characteristics of di�erent nodes. Most of the time the weights estimated in equation
(4) add up to one. If this does not come out of the regressions automatically, then we normalize the estimated weights
s.t. they do sum to one.

28Tables C.2 and C.3 in Appendix C also show regressions with Xik as exogenous variable with very similar results.
29Table C.1 in Appendix C shows results for the �rst half. There we detect few statistically signi�cant e�ects. The

clearest e�ect is that participants seem to increase the weight on themselves the higher their degree. This e�ect seems
to come predominantly from the Kite network, as column (5) in Table C.1 illustrates.

30We de�ne A = [aij] as the adjacency matrix of a network, where aij = 1 if there is a link between agents i and

j and zero otherwise. The clustering coe�cient ci of agent i is de�ned as follows: ci =
∑

j<k aijaikajk∑
j<k aijaik

. Eigenvector

Centrality is de�ned as ECi = 1
λ

∑
j∈Ni

ECj = 1
λ

∑
j∈G aijECj . These network characteristics are explained in more

detail in Appendix B.
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interactions with the Star and Kite, respectively. All regressions allow for autocorrelation at the
individual level. Standard errors are clustered at the network level.

The �rst thing to notice is that α 6= 1. Participants place substantially higher weight on them-
selves compared to their average neighbour. This is inconsistent with the identical weights version
of the naive model, but would still be in line with some of the modi�cations used in the literature
(see e.g DeMarzo et al (2003)). More fundamentally, however, we also see that β 6= 0 in a number of
cases, i.e. that relative weights depend on network positions. This cannot be accommodated by any
of the standard versions of the naive model.

Degree, clustering and eigenvector centrality all have a positive in�uence on the weight i places
on herself when considered separately, as in columns (2)-(4). When entered together, though, the
e�ect of clustering and possibly eigenvector centrality seem to dominate, though the latter is very
imprecisely estimated and not statistically signi�cant (column (1)). An F-test fails to reject the
hypothesis that degree and eigenvector centrality are simultaneously equal to zero at the 5% level
(F = 2.39; p = 0.0928). A one standard deviation increase in clustering, though seems to lead to an
≈ 10% increase in the weight i places on herself.

We next ask how o�-diagonal weights λij, (j 6= i, j ∈ Ni) depend on network characteristics. To
answer this question we run the following regression

relλtij,k = α + βrelXjk + zk + εtik, (6)

where relλtij=
λtij

λ
t
i(−j)

is the weight an agent places on neighbour j relative to the average weight

placed on other neighbours (including herself). relXjk =
Xj

X(−j)k
is the relative value of network

characteristic X for neighbour j compared to all neighbours of i on average. Under the (identical
weights) naive model we would again expect α = 1 and β = 0.

We now �nd that α < 1 which is again due to the fact that participants place more weight on
themselves compared to their neighbours. For the �rst half of the experiment (Table C.1, bottom
panel) we cannot reject the hypothesis that β = 0. All coe�cients are relatively small and statistically
not signi�cant.

This changes when we study data from the second half of the experiment (Table 9, bottom panel).
Here neighbour j's clustering coe�cient has a negative impact on how much weight i places on j.
In particular, one standard deviation increase in j's relative clustering leads to an ≈ 22% decrease
in the weight i places on j. An F-test cannot reject the hypothesis that degree and eigenvector
centrality are simultaneously equal to zero (F = 0.20; p = 0.8175) in column (1). If we focus on the
star network, where there is no variation in clustering, we �nd a marginally signi�cant e�ect of degree
(column (5)). Agents tend to place higher relative weight on the center (compared to themselves)
than the center places on spokes (relative to other neighbours). This is in line with the information
e�ect identi�ed in Section 5.1, where we argued that a higher weight on the center under complete
information can lead to more or less correct guesses depending on the signal the center receives.

Result 4 The weights participants place on neighbours' guesses depend on their and their neighbours'
network characteristics.

This analysis con�rms our earlier result (Section 5.1) that participants do take network structure
into account when forming beliefs. In particular, we found that a higher clustering coe�cient induces
participants to increase the weight on themselves, while a higher clustering coe�cient of a neighbour
decreases the relative weight placed on that neighbour. Both of these e�ects have an intuitive
interpretation. Remember that an agent's clustering coe�cient measures the share of her �rst-
order neighbours who are neighbours themselves. It can hence be seen as a crude measure of how
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Relative Diagonal Weights λii
(1) (2) (3) (4) (5) (6) (7)

rel degree -0.073 0.330*
(0.458) (0.190)

rel clustering 0.364** 0.320**
(0.158) (0.157)

rel centrality 0.448 0.336*
(0.425) (0.176)

kite×rel degree 1.110
(0.728)

star×rel degree 0.273
(0.197)

kite×rel centrality 0.419
(0.310)

star×rel centrality 0.296
(0.214)

kite×rel clustering 0.320**
(0.157)

Constant 3.303*** 3.302*** 3.187*** 3.305*** 4.635*** 4.635*** 4.635***
(0.205) (0.206) (0.197) (0.205) (0.496) (0.496) (0.495)

Observations 404 404 404 404 404 404 404
NW type �xed e�ects YES YES YES YES YES YES YES
R-squared 0.046 0.032 0.035 0.034 0.035 0.034 0.035

Relative O�-Diagonal Weights λij
(1) (2) (3) (4) (5) (6) (7)

rel degree 0.030 -0.069
(0.127) (0.080)

rel clustering -0.177*** -0.185***
(0.040) (0.038)

rel centrality 0.056 -0.115*
(0.101) (0.061)

kite×rel degree -0.130
(0.242)

star×rel degree 0.062*
(0.035)

kite×rel centrality -0.176*
(0.089)

star×rel centrality 0.061
(0.084)

kite×rel clustering -0.185***
(0.038)

Constant 0.796*** 0.731*** 0.801*** 0.727*** 0.291* 0.291* 0.291*
(0.078) (0.077) (0.075) (0.075) (0.161) (0.161) (0.160)

Observations 1,423 1,423 1,423 1,423 1,423 1,423 1,423
NW type �xed e�ects YES YES YES YES YES YES YES
R-squared 0.021 0.005 0.021 0.007 0.005 0.008 0.021

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 9: Relative Weights regressed on relative network positions and network-type interactions. Second
Half of the Experiment. The top panel focuses on diagonal weights, the bottom panel on o�-diagonal
weights. 540 observations (9 positions across 10 rounds (11,...,20) and 6 repetitions) for diagonal weights and
1440 for o�-diagonal weights, respectively. Missing observations are due to the average weight on neighbours
being zero.

21



correlated an agent's neighbours' opinions are among each other (ignoring correlation caused by
having more distant neighbours in common).31 Participants then decrease the weight on neighbours
whose information is correlated (and in turn increase the weight on themselves).

6.2 An adjusted Rule

In the previous subsection we have seen that the weight participants attach on information from
neighbours re�ects their own as well as their neighbours' network positions. In particular clustering
seems to matter. While the e�ect of clustering is intuitive, one downside is that it is only identi�ed
o� the Kite network, as both the Circle and Star networks have zero clustering.

In this section we augment the naive model to allow weights to vary with clustering and then
generate new data (from networks with variation in clustering) to test whether the augmented rule
can indeed explain these new data better than the naive (or the Bayesian) model.

To de�ne the adjusted rule we build on the naive model. We denote by ci the clustering coe�cient
of agent i and, as above, by |Ni| the number of neighbours of i, i.e. the cardinality of her �rst-order
neighborhood. The following rule corresponds to the naive rule, but modi�es it in one important
manner: agents increase the weight placed on themselves proportionally to their clustering coe�cient
ci.

gi(t) =

{
0 if Gt

i(g
t−1, c) < 1

2
,

1 if Gt
i(g

t−1, c) > 1
2
,

(7)

where Gt
i(g

t−1, c) =
(

1+ψci
(|Ni|+1)

)
gt−1
i +|Ni|−1∑

j∈Ni

(
1−

(
1+ψci

(|Ni|+1)

))
gt−1
j , i.e. where agents increase

or decrease the weight on themselves with their own clustering coe�cient. We hence opted for a
minimal change of the naive model. Alternative models could account for clustering of i as well as
of neighbours or include other network properties as well.

If ψ = 0, then this rule corresponds exactly to the naive rule. The higher ψ, the more strongly
agents react to correlated information from their neighbours by increasing the weight on themselves.
This rule can have fundamentally di�erent implications than either Bayesian or naive learning. In
particular, persistent disagreements are more likely under the adjusted rule than under either of the
other models. Note also that under the adjusted rule agents will discount neighbour's opinions both
in the cases where it does not re�ect new information, but also in the cases where it does. In that
sense it is a very rudimentary way to account for correlated information. Below we will assume
ψ > 1

2
which will ensure that the adjusted rule makes di�erent predictions from the naive rule in the

networks we consider.
In our existing networks (circle, star, kite) the adjusted rule o�ers di�ering predictions only in the

Kite, where clustering coe�cients are not all zero. Here, it predicts no consensus just as the naive
model. The adjusted rule, however, predicts a higher share of correct guesses than the naive model
in both Kite networks. Figure E.1 in Appendix E.2 compares the three models in the Kite network.
In the existing data the adjusted rule seems to do somewhat better than either the Bayesian or naive
models. Since, however, we have derived this rule by using these data, we will compare all three
models in data generated from two new networks to test the adjusted rule out of sample.

Our new networks are the �Rectangle� and �Pentagon� networks with signal distributions as
illustrated in Figure 1. In the �Rectangle� network all models converge to a consensus. The Bayesian
and Adjusted Model (equation (7)) agree that agents should learn the truth. Under the naive model,

31This is somewhat similar in spirit to the idea behind the Newey-West estimator of the covariance matrix (Newey
and West, 1987), where in this case correlation decreases with network distance (estimated by the clustering coe�cient
for �rst-order neighbours and assumed zero for larger network distances).
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however, agents are predicted to agree on the wrong urn. To be fair to the naive model, the latter
prediction hinges on the fact that agents stick to their own signal in case of indi�erence, which seems
not unreasonable given the evidence seen above. In the �Pentagon� network the naive and Bayesian
models agree. Both predict that a consensus will be reached and that agents will learn the truth.
The adjusted model (with ψ > 1

2
), however, predicts that no consensus will be reached.

Consistent with... Bayes Naive Adjusted Bayes Naive Adjusted

Overall 0.44 0.21 0.33 Allowing 1 mistake 0.51 0.25 0.53

Conditional on model predictions Conditional on model predictions
Cons. Right Urn 0.44 0.33 0.55 Cons. Right Urn 0.51 0.36 0.66
(7 correct) (0.55,0.33) (-,0.33) (0.55, -) (6-7 correct) (0.66,0.36) (-,0.36) (0.66,-)
No Consensus - - 0.11 No Consensus - - 0.39
(4 correct) (-, 0.11) (3-5 correct) (-,0.39)
Cons. Wrong Urn - 0.08 - Cons. Wrong Urn - 0.13
(0 correct) (0.08, -) (0-1 correct) (0.13, -)

Table 10: Share of Networks consistent with consensus predictions of Bayesian and Naive model conditional
on model predictions. Hence each entry shows which percent of those networks where a model predicts x
agents to guess correctly x = 0, 2, 4, 7 reach a state in which this is the case in period 20. In brackets below
separate shares for the two networks (rectangle, pentagon). Three rightmost columns allow for one mistake,
i.e. require only 6 agents to agree for a consensus. By de�nition, in this case, all networks are consistent
with �no consensus�. Data from the last period of each round.

Table 10 shows the share of networks that did reach a consensus in the last period of each round.
In the �Rectangle� network, the naive model does very poorly with only 8 % of networks (13% under
a relaxed de�nition of consensus) converging to a consensus on the wrong urn as the model would
predict. Around 55 % of networks (66% under a relaxed de�nition) reach a consensus on the truth
as the adjusted and Bayesian model would predict. In the �Pentagon� network only a third of the
networks end up agreeing on the truth, which increases to 36% under the relaxed de�nition.

(a) Rectangle (b) Pentagon

Figure 5: The share of correct guesses over time according to the Bayesian model (solid line), the naive
model (dashed line) and the adjusted rule (mixed dashes) as well as data points.

Figure 5 shows the share of correct guesses over time in the two networks. In the �Rectangle�
network, behaviour looks most in line with the naive model in round 1. Starting from round 2,
however, the data track the theoretical prediction of the Bayesian and adjusted model remarkably
well and in fact almost perfectly by the last round. A round by round t-test rejects the hypothesis
that shares equal theoretical predictions (at the 5% level) in all six rounds for the naive model and in
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three out six rounds for the adjusted and the Bayesian model. In the �Pentagon� the share of correct
guess doesn't track any of the three models perfectly. It oscillates between 0.2 and 0.8. In rounds 1,
3, 5 and 6 the share remains quite close to the predicted share of the adjusted model (0.57), but in
round 2 it seems well below and in round 4 well above that share. A round by round t-test rejects
the hypothesis that shares equal theoretical predictions (at the 5% level) in all six rounds for the
naive and the Bayesian model and in two out six rounds for the adjusted model.

To sum up, the model adjusting for clustering is more consistent with the data in terms of its
consensus predictions and the share of correct guesses across the two networks than either the naive
or the Bayesian model. Accounting for more network characteristics (with more degrees of freedom)
has the potential to improve the model's �t and prediction power.

Result 5 A model adjusting for network characteristics explains the share of correct guesses and
consensus predictions in new data better than the naive or Bayesian models.

In the previous two subsections we analyzed whether and how participants take network position
into account in the CI treatments. Network position can presumably explain less in the II and
especially also NI treatments, where participants are only partially aware of network structure. In
Appendix E.3 we explore the possibility that participants react to the frequency with which their
neighbours switched in the past between two guesses. There we regress weights on past frequency of
switches with the strong caveat that switching is an endogenous outcome as switching of j can depend
on how much weight i places on j. Table E.4 in Appendix E.3 shows the results of these regressions.
Across all information conditions, weights are positively related to neighbours' switching. This e�ect
is particularly strong and only statistically signi�cant in treatment NI, where a one standard deviation
increase in the frequency of switching is associated with an ≈ 38 percentage point increase in the
weight.

7 Conclusions

We performed two di�erent, but complementary exercises in this paper. First we confronted the two
main theories of belief formation in networks (Bayesian learning and naive learning) with experi-
mental data. Varying the amount of information available about the network structure, we found
that a key tenet of the naive model does not hold: participants do make use of information about
the network structure when forming and updating beliefs. Still, the naive model outperforms the
Bayesian model in explaining individual decisions, while both models are only partially successful in
explaining aggregate patterns.

We then estimated a larger class of updating rules and found that heuristics our participants use
have properties that the naive model does not capture. In particular participants increase or decrease
the weight placed on neighbours depending on their network position as well as their past frequency
of switching. We derive a new updating rule that allows for weights to depend on network position
(in particular on clustering) and �nd that it does somewhat better than the two existing models in
explaining a di�erent set of data.

Future experimental work could augment the naive rule with a variety of network characteristics
and contrast the performance of rules accounting in more or less sophisticated ways for various
network characteristics. Future research in theory is needed to see what are the properties of the
long run dynamics if agents use rules that do well in the laboratory. Another important direction for
future research is to understand the role of heterogeneity in these models and to see which rules are
successful in the presence of naive types in the population, if these types cannot easily be identi�ed.
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A Proofs of the Theoretical Predictions

This appendix contains the derivations of our theoretical predictions. Recall from section 4 that at the
beginning of each round (consisting of 20 periods) the correct urn (BLACK or WHITE) is determined by
a random draw. If urn Black is drawn, four participants receive a black signal (B) and three participants
receive a white signal (W), if urn WHITE is drawn, four participants receive a white signal (W) and three
participants receive a black signal (B). Conditional on the state who receives a black and who receives a
white signal is random. We denote a player's signal by si ∈ {B,W} and label network positions i = 1, . . . , 7
as illustrated in Figure A.1.

We denote by Ni the set of neighbors of player i, by k = (ki)i=1,...,7 the degree distribution and by
gt = (gt1, ...g

t
7) the vector of guesses made at time t by the 7 participants.

Note �rst, that � since agents get paid for three randomly drawn periods from di�erent rounds and since
their payo�s are independent of what their neighbours communicate � all agents should only be interested
in communicating the correct colour in as many periods as possible. This implies that all agents have and
incentive to communicate their signal at t = 1. In later periods, the agents' perception about the correct
colour depends on the way they update their beliefs. We start by discussing the results of the Bayesian
model and then afterwards prove the results relating to the naive model as outlined in Section 4.
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Figure A.1: Labelled Network Positions in the Kite network. In the Star the center is labelled number 1 and
the spokes are 2,..7. In the circle all network positions are the same and are labelled 1,...,7 consecutively.

A.1 Bayesian Learning

In the Bayesian model, given a uniform prior on the two urns and common knowledge of rationality, agents
only need to ask whether they have more evidence of four black or four white balls in the network. The
answer to this question, then determines their guess.

A.1.1 Star

Note that in the star network complete and incomplete information are the same, since the star network can
be uniquely deduced from its degree distribution.

Star � Bayesian Model: (i) Star1. Under Initial Condition (s1, ..s7) = (W,B,B,B,W,B,W ) there

is consensus on B after 3 rounds.

(ii) Star2. Under Initial Condition (s1, ..s7) = (B,B,W,B,W,B,W ) there is consensus on B after

3 rounds of communication.

Proof. It is common knowledge that the center of the star has all the information at t = 2. Hence starting
from t = 3 everybody should communicate what the center communicated at t = 2. The center on the other
hand will know B starting from t = 2.

A.1.2 Circle

In the circle, as in the star, the network can be deduced uniquely from the degree distribution and hence
complete and incomplete information are the same.

Circle � Bayesian Model: (i) Circle1. Under Initial Condition (s1, ..s7) = (W,B,W,B,W,B,B)
there is consensus on B after 3 rounds of communication.

(ii) Circle2. Under Initial Condition (s1, ..s7) = (W,B,W,W,B,B,B) there is consensus on B after

6 or more rounds.

Proof. (i) Circle1. At t = 2 all agents will follow the majority of guesses they observed at t = 1. Hence
at t = 2 agents communicate g2 = (B,W,B,W,B,B,B). At t = 3 participants 6 and 7 have evidence
of three B-signals (their own, their neighbour's observed at t = 1 and one they can infer from the fact
that their neighbour with a W-signal switched at t = 2), but only evidence of one W-signal (the one
observed at t = 1). Hence they will guess B. Participants 2 and 4 have evidence of two W-signals and
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three B-signals (since they can infer that each of their neighbours must have observed two B-guesses at
t = 1 (one of them being themselves)). Hence participants 2 and 4 will choose B. Likewise participants
1 and 5 have evidence of three B-signals (two observed at t = 1 and one inferred from the fact that
one of their neighbours did not swap at t = 2), but only evidence of two W-signals. Hence at t = 3 all
agents will guess B.

(ii) Circle2. At t = 2 all agents will communicate their signal, except for agents 1 and 2. At t = 3 all
agents communicate again the same as at t = 2. (Agent 1 knows (W,B,W, ., ., B,B), since she saw
player 2 switch and player 7 not switch. Agent 2 knows (W,B,W,W, ., ., B) since she saw Player 1
switch and Player 3 not switch.) At t = 4 player 2 knows (W,B,W,W, ., B,B) since she saw Player
1 stick at t = 3. Player 1 has now the same knowledge. All other participants know less. The only
person participants 1 and 2 do not know about is player 5. However they know that player 5 has one
neighbour choosing W and one choosing B. But both player 5 choosing W or B at t = 2 is consistent
with everything observed so far. Hence participants 1 and 2 are now indi�erent.

If player 2 resolves indi�erence by choosing B then we get consensus to B. The reason is as follows.
Player 3 knows (W,B,W,W, ., ., .) and she knows that player 2 knows (W,B,W,W, ., ., ., ). Now if
Player 2 resolves the indi�erence by choosing B, then Player 3 will deem it more likely that she has
evidence for four B rather than 3 and will switch to B. Because player 4 subsequently switches to B,
player 3 knows that player 4 must have one B neighbour and hence sticks. Because player 3 sticks,
player 2 knows that Player 5 had signal B and hence will stick forever to B.

The reverse logic doesn't work. If player 1 resolves indi�erence towards W, then player 6 will not
switch to W even if player 7 switches. The reason is player 6 knows that if player 7 switches only
after t = 3 it is not possible that all four other participants are W. Hence at least one of participants
1, 2, 3, 4 must have had a B signal, but player 6 knows three B signals for sure and hence will stick.
But then player 7 can infer that 5 must be B etc. At this point consensus to B will be reached. (Note
that, since our experiment has 20 rounds only, there is a small probability ((1

2)20) that no consensus
will be reached.)

A.1.3 Kite

Kite � Bayesian Model :

(i) Kite1. Under Initial Condition (s1, ..s7) = (W,B,B,W,W,B,B) there is consensus on W after

5 rounds.

(ii) Kite2. Under Initial Condition (s1, ..s7) = (B,B,B,B,W,W,W ) there is consensus on B after

9 rounds of communication.

Proof. (i) Kite1. At t = 2 agents will communicate (?,W,W,W,W,B,B). At t = 3 agent 1 won't be
indi�erent anymore, because s/he knows that player 5 must have communicated W at t = 1. (Else 4
would have communicated B instead ofW ). Hence all participants 1,2,3,4 have evidence for 3W and 2
B (the signals of participants 1,...,5). Player 5 has evidence of 2B and 2W (the signals of participants
4,5,6 and the signal of player 7 inferred from the fact that player 6 communicated W at t = 2). From
the fact that 4 chose W at t = 2 player 5 can make inference on the eight possible signal combinations
among participants 1,2 and 3, where a higher expected number of W signals are consistent with player
4 communicating W at t = 2. Hence at t = 3 participants communicate g3 = (W,W,W,W,W,B,B).
From the fact that Player 5 did not switch at t = 3 and knowing that player 5 must know at least 2B,
player 6 infers that player 5 must know of at more than three W signals in expected terms. Hence at
t = 4 participants communicate g4 = (W,W,W,W,W,W,B) and at t = 5 g5 = (W,W,W,W,W,W,W ).

(ii) Kite2. Player 4 knows that the true urn is B, because s/he observes four B at t = 1. Hence player
4 will never switch. From the fact that player 4 does not switch at t = 2 player 5 infers that she can
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have observed at most one W apart from player 5 herself. Player 5 hence has evidence for 3B and 2W.
Player 7 can be W or B with equal probability. Hence the overall evidence of player 5 is in favour of
B and at t = 3 we have the following communication pattern (B,B,B,B,B,W,W ). At t = 4 player
6 can infer that player 5 must have evidence of at least three B. However s/he also has evidence of
three W. Overall the probability that participants 1,2,3,4 are all B is lower than the probability that
three of them are B and one W. Hence player 6 has more evidence of W and sticks. At t = 4 the
following is communicated (B,B,B,B,B,W,W ). Now at t = 5 player 5 observes that player 6 did not
switch, from which she can infer that player 7 must be W. Hence now player 5 has the same evidence
as Player 6 in the previous round and switches back to W. At t = 5 the following is communicated
(B,B,B,B,W,W,W ). At t = 6 player 4 does not switch because s/he knows that there are 4B. Now
at t = 7 player 5 knows that player 4 saw him switch at t = 5 and did still not switch at t = 6. Hence
player 5 knows that player 4 knows that 5 must have evidence of 3W. Given that 4 did not switch
in light of this evidence player 5 knows now that player 4 must know 4W. Hence at t = 7 player 5
switches again and we observe (B,B,B,B,B,W,W ). Now the process unravels and at t = 9 we will
have consensus on B.

A.1.4 Pentagon

Pentagon � Bayesian Model Under the initial condition depicted in �gure 1 there is consensus on B

after 4 rounds.

Proof. Note that the player with degree 5 (call him player 5) knows the truth and will hence always stick
to B. In period one the W player linked to one W and three B signals (say player 3) will switch from W
and B. Her W-neighbour knows that player 3 does not have any information she does not have herself, but
she knows that player 5 observes a player she does not observe. From the fact that player 5 did not switch
in period 2 she infers that that player must have communicated B in period 1. Hence she has observed 4
B signals and hence knows the truth. She will switch to B. In period 4 her neighbour (with degree 1) will
switch to B as well.

A.1.5 Rectangle

Rectangle � Bayesian Model Under the initial condition depicted in �gure 1 there is consensus on B

after 5 rounds.

Proof. The rightmost player with a W-signal in Figure 1 knows the truth after 2 periods of communication.
She observes two B signals herself and knows that her neighbour on the left observes two W signals. Upon
seeing that neighbour switch to B, she knows that she must have observed 3 B signals out of which she
herself only sees one. Hence she has evidence of four B signals after 2 rounds of communication. Her direct
neighbours will learn the truth in period 3, her second-order neighbours in period 4 and her third-order
neighbours in period 5 by which time the process will have converged to all B.

A.2 The Naive Model

In this section we derive the predictions for the naive agents as described in Section 4.

A.2.1 Star

(Star � The naive model) :

(i) Star1. Under Initial Condition (s1, ..s7) = (W,B,B,B,W,B,W ) there is consensus on B or W

after 3 or more rounds of communication.
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(ii) Star2. Under Initial Condition (s1, ..s7) = (B,B,W,B,W,B,W ) there is consensus on B after

4 or more rounds of communication.

Proof. (i) Consensus can be on either B or W since all agents that have a �true signal� are indi�erent in
period 2. Whether or not agents converge to the truth or not depends on how indi�erences are resolved. (ii)
The center of the star will know the truth and choose it from t = 2 (since always at least 3 of the spokes will
choose B). All other agents either choose B or are indi�erent. How long convergence takes depends on how
indi�erences are resolved.

A.2.2 Circle

(Circle � The naive model) :

(i) Circle1. Under Initial Condition (s1, ..s7) = (W,B,W,B,W,B,B) there is consensus on B after

4 rounds of communication.

(ii) Circle2. Under Initial Condition (s1, ..s7) = (W,B,W,W,B,B,B) there is no consensus.

Proof. (i) Circle1. At t = 2 all W agents communicate B. All B agents communicate B except for
participants 2 and 4 (that had two W neighbours at t = 1). At t = 3 all agents communicate B except
for player 3, both of whose neighbours communicated W at t = 2. Hence at t = 3 all agents have both
of their neighbours communicating B. There is consensus at t = 4 with everyone communicating B.

(ii) Circle2. At t = 2 player 1 will communicate B and Player 2 will communicate W. All other partici-
pants will communicate again their signal. Hence communication at t = 2 has the following structure:
(B,W,W,W,B,B,B) which is the same structure (up to permutation of player labels) as under (i).
Hence there is no consensus.

A.2.3 Kite

(Kite � The naive model) :

(i) Kite1. Under Initial Condition (s1, ..s7) = (W,B,B,W,W,B,B) there is no consensus.

(ii) Kite2. Under Initial Condition (s1, ..s7) = (B,B,B,B,W,W,W ) there is no consensus.

Proof. (i) Kite1. At t = 2 agents will communicate g2 = (?,W,W,W,W,B,B) and at t = 3 they will
communicate (W,W,W,W,W,B,B) which is what the communication process converges to.

(ii) Kite2. All agents will keep communicating their signals.

A.2.4 Pentagon

Pentagon � The naive Model Under the initial condition depicted in �gure 1 there is consensus on B

after 4 or more rounds.

Proof. In period 2 all participants stick to their signals except for the player with a W-signal with three
B-neighbours who switches to B. In period 3 her neighbour with a W-signal then observes 4 neighbours
communicating B and switches from W to B. In period 4 or later the remaining W player switches to B (she
is indi�erent between B and W).
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A.2.5 Rectangle

Rectangle � The naive Model Under the initial condition depicted in �gure 1 there is consensus on W

after 5 or more rounds.

Proof. Label the participants with W signals 1,2,3 from left to right and those with B signals 4,5,6,7 also from
left to right. Since agents follow the majority in their neighborhood, in period 2 the following guesses will
be communicated g2 = (B,B,W,W,W,W, ?B?), where ?B? means that player 7 is indi�erent, but may stick
to their own signal with high probability. In period 3 g3 = (W,W,W,B,B,W, ?B?), in period 4 guesses will
be g4 = (B,W,W,W,W,W, ?B?) and in period 5 g5 = (W,W,W,W,W,W, ?B?). The time to convergence is
determined by the time it takes player 7 to resolve her indi�erence.

6



B Network Characteristics

In this subsection we summarize network properties of our di�erent networks and initial conditions. We
outline three indicators that are prominent in the literature. Table B.1 summarizes those network charac-
teristics for the di�erent network positions. In the following, we refer to A = [aij] as the adjacency matrix
of a network, where aij = 1 if there is a link between agents i and j and zero otherwise.

(i) Degree. The Degree of an agent is given by the number of his neighbors.

(ii) Clustering. The clustering coe�cient is the fraction of neighbours of i who are neighbours themselves.
The clustering coe�cient ci of agent i is de�ned as follows:

ci =

∑
j<k aijaikajk∑
j<k aijaik

.

The clustering coe�cient is of particular interest in our setting, because one way in which the Bayesian
and the naive model di�er is that the former accounts for dependencies of information (beliefs) in
clustered neighborhoods while the latter does not.

(iii) Eigenvector Centrality. Eigenvector Centrality (EC) is one of several measures that determines the
relative importance of a node within a network. This measure matters for convergence to a consensus
under the naive model of learning (deGroot, 1974; de Marzo, Vayanos and Zwiebel, 2003). The measure
assigns relative scores to all nodes in the network, assuming that connections to high-scoring nodes
contribute more to the score of the node in question than equal connections to low-scoring nodes.
Eigenvector Centrality is de�ned as

ECi =
1

λ

∑
j∈Ni

ECj =
1

λ

∑
j∈G

aijECj

The equality can be rewritten as the eigenvector equation AEC = λEC. Newman (2006) shows that
only the highest λ satis�es the requirement of entirely positive entries of the vector EC and thus,
Eigenvector Centrality of agent i is uniquely determined as the ith entry of the respective eigenvector
EC.

Circle Star Hub Star Spokes Kite 1 Kite 23 Kite 4 Kite 5 Kite 6 Kite 7

degree 2 6 1 3 2 4 2 2 1
clustering 0 0 0 0.66 1 0.33 0 0 0
EV centrality 0.14 0.29 0.11 0.22 0.17 0.25 0.11 0.04 0.01

Table B.1: Characteristics of di�erent network positions.
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C Additional Tables

C.1 Additional Tables Weights Estimations

Relative Weights λii - First Half of the Experiment
(1) (2) (3) (4) (5) (6) (7)

rel degree 0.630 0.564*
(0.887) (0.302)

rel clustering -0.230 0.176
(0.350) (0.263)

rel centrality -0.0726 0.040
(0.849) (0.284)

kite×rel degree 0.359***
(0.121)

star×rel degree 0.366
(0.310)

kite×rel centrality 0.432
(0.521)

star×rel centrality 0.397
(0.339)

kite×rel clustering 0.176
(0.263)

Constant 5.201*** 5.103*** 4.947*** 5.047*** 3.104*** 3.104*** 3.104***
(0.354) (0.341) (0.331) (0.338) (0.759) (0.766) (0.766)

Observations 451 451 451 451 451 451 451
NW type �xed e�ects YES YES YES YES YES YES YES
R-squared 0.031 0.028 0.021 0.025 0.042 0.025 0.021

Relative Weights λij - First Half of the Experiment
(1) (2) (3) (4) (5) (6) (7)

rel degree 0.075 0.010
(0.066) (0.042)

rel clustering -0.007 -0.014
(0.021) (0.020)

rel centrality -0.063 -0.023
(0.051) (0.032)

kite×rel degree -0.102
(0.125)

star×rel degree 0.024
(0.0450)

kite×rel centrality -0.074
(0.0466)

star×rel centrality 0.024
(0.0446)

kite×rel clustering -0.014
(0.0202)

Constant 0.634*** 0.629*** 0.630*** 0.621*** 0.508*** 0.508*** 0.508***
(0.041) (0.040) (0.039) (0.039) (0.084) (0.084) (0.084)

Observations 1,282 1,282 1,282 1,282 1,282 1,282 1,282
NW type �xed e�ects YES YES YES YES YES YES YES
R-squared 0.021 0.020 0.020 0.020 0.020 0.022 0.020

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table C.1: Relative Weights regressed on relative network positions and network-type interactions. First
Half of the Experiment. The top panel focuses on diagonal weights, the bottom panel on o�-diagonal
weights.
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Relative Weights λii - First Half of the Experiment
(1) (2) (3) (4) (5) (6) (7)

degree 0.164** 0.420
(0.670) (0.280)

clustering 0.280 0.355
(0.481) (0.296)

centrality -0.156* -0.016
(0.821) (0.287)

kite× degree 0.518
(0.541)

star×degree 0.384
(0.328)

kite× centrality -0.253
(0.333)

star×centrality 0.660
(0.564)

kite× clustering 0.355
(0.296)

Constant 4.787*** 5.016*** 5.040*** 4.931*** 3.104*** 3.104*** 3.104***
(0.397) (0.334) (0.341) (0.338) (0.766) (0.766) (0.765)

Observations 451 451 451 451 451 451 451
NW type �xed e�ects YES YES YES YES YES YES YES
R-squared 0.037 0.025 0.023 0.020 0.025 0.024 0.023

Relative Weights λij - First Half of the Experiment
(1) (2) (3) (4) (5) (6) (7)

degree 0.033 0.006
(0.062) (0.036)

clustering 0.018 0.006
(0.035) (0.027)

centrality -0.028 -0.001
(0.053) (0.027)

kite× degree -0.027
(0.060)

star×degree 0.024
(0.044)

kite× centrality -0.010
(0.031)

star×centrality 0.032
(0.058)

kite× clustering 0.006
(0.027)

Constant 0.603*** 0.626*** 0.618*** 0.626*** 0.508*** 0.508*** 0.508***
(0.058) (0.039) (0.050) (0.039) (0.084) (0.084) (0.084)

Observations 1,282 1,282 1,282 1,282 1,282 1,282 1,282
NW type �xed e�ects YES YES YES YES YES YES YES
R-squared 0.020 0.020 0.020 0.020 0.020 0.020 0.020

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table C.2: Relative Weights regressed on network positions (absolute measures) and network-type interac-
tions. First Half of the Experiment. The top panel focuses on diagonal weights, the bottom panel on
o�-diagonal weights.
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Relative Weights λii - Second Half of the Experiment
(1) (2) (3) (4) (5) (6) (7)

degree 0.964* 0.319*
(0.414) (0.174)

clustering 0.722** 0.340**
(0.288) (0.172)

centrality -0.921* 0.284
(0.498) (0.173)

kite× degree 0.399
(0.324)

star×degree 0.286
(0.207)

kite× centralityy 0.220
(0.197)

star×centrality 0.493
(0.356)

kite× clustering 0.340**
(0.172)

Constant 2.921*** 3.274*** 3.095*** 3.286*** 4.635*** 4.635*** 4.635***
(0.249) (0.201) (0.204) (0.204) (0.496) (0.496) (0.495)

Observations 404 404 404 404 404 404 404
NW type �xed e�ects YES YES YES YES YES YES YES
R-squared 0.048 0.033 0.034 0.031 0.033 0.032 0.034

Relative Weights λij - Second Half of the Experiment
(1) (2) (3) (4) (5) (6) (7)

degree 0.254* -0.052
(0.191) (0.068)

clustering -0.314*** -0.194***
(0.101) (0.052)

centrality -0.060 -0.193***
(0.067) (0.052)

kite× degree -0.035
(0.116)

star×degree -0.061
(0.084)

kite×centrality -0.226***
(0.059)

star×centrality -0.080
(0.110)

kite×clustering -0.194***
(0.052)

Constant 0.810*** 0.750*** 0.975*** 0.749*** 0.291* 0.291* 0.291*
(0.111) (0.075) (0.097) (0.074) (0.161) (0.160) (0.160)

Observations 1,423 1,423 1,423 1,423 1,423 1,423 1,423
NW type �xed e�ects YES YES YES YES YES YES YES
R-squared 0.021 0.005 0.014 0.014 0.005 0.015 0.014

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table C.3: Relative Weights regressed on network positions (absolute measures) and network-type interac-
tions. Second Half of the Experiment. The top panel focuses on diagonal weights, the bottom panel on
o�-diagonal weights.
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D Additional Figures

D.1 Share of Correct Guesses by Combination of Network and Signal
Distribution

(a) Circle 1 (b) Circle 2 (c) Star 1

(d) Star 2 (e) Kite 1 (f) Kite 2

Figure D.1: Share of Correct Guesses over time for each network and signal distribution.

D.2 Switching by Combination of Network and Signal Distribution

(a) Circle 1 (b) Circle 2 (c) Star 1

(d) Star 2 (e) Kite 1 (f) Kite 2

Figure D.2: Frequency of switches over time for each network and signal distribution.
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D.3 Share of Correct Guesses per Matching Group

Figures D.3 - D.10 show the share of correct guesses over time for di�erent matching groups.

(a) MG1 (b) MG2 (c) MG3

(d) MG4 (e) MG5 (f) MG6

Figure D.3: Share of Correct Guesses over time. K-NI. K1 and K2 indicate initial conditions.

(a) MG101 (b) MG102 (c) MG103

(d) MG104 (e) MG105 (f) MG106

Figure D.4: Share of Correct Guesses over time. K-II. K1 and K2 indicate initial conditions.
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(a) MG21 (b) MG22 (c) MG23

(d) MG24 (e) MG25 (f) MG26

Figure D.5: Share of Correct Guesses over time. Treatment 2 (Star, No Info). S1 and S2, respectively,
indicate initial conditions.

(a) MG121 (b) MG122 (c) MG123

(d) MG124 (e) MG125 (f) MG126

Figure D.6: Share of Correct Guesses over time. Treatment 12 (Star, Incomplete Info). S1 and S2, respec-
tively, indicate initial conditions.
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(a) MG221 (b) MG222 (c) MG223

(d) MG224 (e) MG225 (f) MG226

Figure D.7: Share of Correct Guesses over time. Treatment 22 (Star, complete Info). S1 and S2, respectively,
indicate initial conditions.

(a) MG31 (b) MG32 (c) MG33

(d) MG34 (e) MG35 (f) MG36

Figure D.8: Share of Correct Guesses over time. Treatment 3 (Circle, No Info). C1 and C2, respectively,
indicate initial conditions.
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(a) MG131 (b) MG132 (c) MG133

(d) MG134 (e) MG135 (f) MG136

Figure D.9: Share of Correct Guesses over time. Treatment 13 (Circle, Incomplete Info). C1 and C2,
respectively, indicate initial conditions.

(a) MG231 (b) MG232 (c) MG233

(d) MG234 (e) MG235 (f) MG236

Figure D.10: Share of Correct Guesses over time. Treatment 23 (Circle, Complete Info). C1 and C2,
respectively, indicate initial conditions.
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E Additional Results

E.1 Time to Convergence

In this subsection we collect some additional evidence on convergence times. Table E.1 measures the time to
convergence. The measure used is relatively strict in that it requires for convergence to obtain in period τ
that no player switches not even once at any period t > τ . Despite the measure being quite strict the table
shows that convergence is obtained in several networks well before the end of a round.

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Mean No of Switches
Kite-NI 9.5 17 13.5 8.5 7 17 12.2

(6;10) (19;16) (11;17) (5;13) (4;10) (20;11) (13.2; 14.2)
Kite-II 18 19 18 15.5 12 18.5 14.6

(12;20) (19;19) (19;17) (20;11) (12;8) (20;18) (19.4; 9.8)
Kite-CI 19 19.5 13.5 15 16 19.5 15.8

(19;15) (19;20) (15;12) (11;20) (16;16) (20;19) (18; 13.6)
Star-NI 15 4.5 7 10 8 4.5 13.2

(10;15) (8;4) (8;6) (8;12) (8;5) (7;4) (14.8;11.6)
Star-II 20 18.5 11 19 14.5 12.5 17

(20;20) (18;19) (9;16) (7;19) (14;20) (8;19) (15; 19 )
Star-CI 20 13.5 19.5 20 16.5 13.5 17.6

(20;20) (20;6) (19;20) (4;20) (20;16) (19;4) (21; 14.2)
Circle-NI 15 18 14 19 19 16 19.6

(9;20) (18;12) (6;20) (19;19) (19;19) (7;19) (18.6; 20.6)
Circle-II 15.5 19.5 19.5 13 19 19.5 22

(10;20) (8;20) (19;17) (7;20) (20;18) (20;14) (24.8;19.2)
Circle-CI 13.5 11 17.5 12.5 16.5 12.5 18.6

(9;16) (13;7) (18;17) (14;10) (15;18) (5;19) (19.2;17.6)

Table E.1: Time to Convergence. Median Number of per τ s.t. there are no switches by any player at any
t > τ . In brackets separate values for each signal distribution. The last column shows the average number
of switches per network and round.

Table E.2 then relaxes the previous criterium and allows for one switch (by one player) in every period.
Relaxing the criterium in this manner reduces convergence times drastically, illustrating that long convergence
times are often due to one player displaying somewhat unstable behaviour while all others have converged.

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

Kite-NI 4 1 1.5 1.5 1 6
(6;1) (1;1) (2;1) (2;1) (1;1) (16;1)

Kite-II 16 1.5 3.5 12 1.5 13
(12;20) (17;1) (17;1) (16;11) (3;1) (16;2)

Kite-CI 18 11 9 7 5 9.5
(18;6) (9;13) (3;15) (5;9) (7;1) (13;4)

Star-NI 4.5 3 4.5 3 4.5 3.5
(7;1) (3;3) (3;5) (2;3) (4;5) (5;3)

Star-II 12.5 3 5 4.5 4 3
(10;15) (3;3) (4;6) (5;4) (3;12) (4;2)

Star-CI 11.5 11.5 2.5 3 4.5 5
(16;7) (20;4) (1;3) (3;3) (8;4) (7;3)

Circle-NI 7.5 15.5 9 13.5 9.5 4.5
(6;9) (4;19) (3;15) (14;13) (14;2) (4;5)

Circle-II 11.5 12 8 5 15.5 12.5
(7;16) (3;18) (4;9) (5;5) (13;15) (18;3)

Circle-CI 13.5 11 7.5 4 6.5 6.5
(9;16) (13;7) (8;7) (4;4) (5;8) (5;8)

Table E.2: Time to Convergence. Median Number of per τ s.t. there is at most one switch at any t > τ . In
brackets separate values for each signal distribution. The last column shows the average number of switches
per network and round.

Another prediction we evaluate refers to the time it takes to reach a consensus. The time it takes to
reach a consensus should be higher the more homophily there is in the network. The intuition is based on
a result by Golub and Jackson (2012) who have shown that homophily (the fact that people with the same
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beliefs tend to be linked up with increased probability) slows down convergence under the naive model. In
our experiment it is the initial conditions Kite2, Star2 and Circle2 which present higher homophily (or lower
signal dispersion) compared to initial conditions 1 (Kite1, Star1, Circle1).

Newman Time to reach Consensus
Assort. NI II CI

Circle1 -0.05 12.05 10.83 12.05
Circle2 0.30 16.27 15.77 15.41
∆2−1 4.22∗∗∗ 4.94∗∗∗ 3.36∗∗∗

Star1 -0.20 12.16 9.33 8.38
Star2 0.47 11.27 11.22 10.38
∆2−1 −0.89 1.89∗ 2.00∗∗

Kite1 0.09 15.05 13.8 11
Kite2 0.86 18 18.66 15.16
∆2−1 2.95∗∗∗ 4.86∗∗∗ 4.16∗∗∗

Table E.3: Newman's Assortativity and Time to Consensus. Time to consensus is measured by the �rst
period in each round in which all agents agree irrespective of whether the agreement breaks down later on.
No agreement is counted with the value 20. Statistical signi�cance of di�erence between initial conditions
1 and 2 (∆2−1) is determined from random e�ects OLS regression of variable indicating a (correct guess;
correct urn; time to consensus) on dummy for signal distribution (standard errors clustered by matching
group). ∗∗∗,∗∗ ,∗ signi�cance at 1,5,10 percent level.

Table E.3 reports Newman's assortativity coe�cient (our measure of signal dispersion or homophily) and
the average time to consensus for all our networks, information conditions and initial signal distributions.1 In
the table time to consensus is measured by the �rst period in each round in which all agents agree irrespective
of whether the agreement breaks down later on. No agreement is counted with the value 20. Table E.3 shows
that indeed convergence times are much slower under initial conditions 2 with higher homophily. The
di�erences are strongest and most signi�cant in the Kite and Circle networks. These results are consistent
with the naive model.

1The de�nition of Newman's assortativity can be found in Appendix B. We only exploit the fact, however, that
homophily (or assortativity) is higher under initial conditions Circle-2, Star-2 and Kite-2. The results do not depend
on the exact numerical values and hence on the exact measure of homophily used.
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E.2 Adjusted Model

(a) Kite 1 (b) Kite 2

Figure E.1: The share of correct guesses over time according to the Bayesian model (solid line), the naive
model (dashed line) and the adjusted rule (long dashes) as well as data points.

We describe the theoretical predictions under the adjusted model, starting with the pentagon network
(Figure 1).

Pentagon � The adjusted model Under the initial condition depicted in �gure 1 there is no consensus

with agents sticking forever to the initial condition.

Proof. There is only one player who in the �rst period observes a majority of guesses that contradict her
own signal. This is the player with W signal who observes one neighbour guessing W and three neighbours
guessing B. This player, however, has a clustering coe�cient of one. Hence, under the adjusted rule, she will
place a weight of 2

5 on herself. Given that she has a W signal herself, she would then need at least 5
6 ∗ 4 of

her neighbours to communicate B. Since she observes only 3 B guesses she will stick to W. Given this all
agents will stick to their signals in the �rst period and hence in all periods.

Rectangle � The adjusted model Under the initial condition depicted in �gure 1 there is consensus on

B after 6 rounds of communication.

Proof. Label the agents with W signals 1,2,3 from left to right and those with B signals 4,5,6,7 also from
left to right. Since agents follow the majority in their neighborhood, in period 2 the following guesses will
be communicated g2 = (B,B,W,W,W,B, ?). In contrast to the naive model, player 6 here will not follows
the majority but her own signal of B. The reason is that her clustering coe�cient is one and hence she
places a weight of 2

3 on her own opinion. Given this, she will follow her own signal no matter what the
neighbours say. In period 3, then, guesses will be g3 = (W,W,B,B,B,B, ?) with all agents following the
majority, player 6 sticking to B and player 7 potentially being indi�erent (or saying B). In period 4 guesses
will be g4 = (B,B,B,W,W,B, ?) with again all agents following the majority. In period 5 guesses will be
g5 = (W,B,B,B,B,B, ?) with all agents having followed the majority and in round 6 there will be consensus
on B (with potentially player 7 being still indi�erent).
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E.3 Frequency of Switching

In the previous two subsections we analyzed whether and how participants take network position into ac-
count in the CI treatments. Network position can presumably explain less in the II and especially also NI
treatments, where participants are only partially aware of network structure. One possibility that we explore
in this subsection is that participants react to the frequency with which their neighbours switched in the
past between two guesses.

Ex ante it is not clear how participants should react to switching. It can be indicative of confusion
or it can be indicative of being able to react to information. Both types of behaviours have also been
widely documented as violations of Bayesian rationality: (i) base-rate neglect, which leads to overweighing
of sampled information (Kahnemann and Tversky, 1972) can lead to excessive switching and (ii) conservatism,
which leads to underweighing or even ignoring the sample (Ward, 1982) can induce participants not to switch
enough.

To understand whether and how participants in our experiment react to switching, we run the following
regression:

relλij,k = α+ βSjk + εik, (8)

where Sjk is the (standardized) frequency of switches of neighbour j compared to other neighbours k
across all periods 1-19. Under the naive model, we would again expect β = 0 as weights in this model are
�xed and do not depend on neighbours' behaviour. It should be noted that switching is an endogenous
outcome as switching of j can depend on how much weight i places on j.

(1) (2) (3)
NI II CI

Sjk 0.383*** 0.093 0.129
(0.094) (0.105) (0.108)

Constant 0.413*** 0.378*** 0.379***
(0.039) (0.068) (0.105)

Observations 322 321 323
R-squared 0.017 0.001 0.001

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table E.4: Relative weight placed on neighbour j depending on how often that neighbour has switched
guesses in the previous periods of that round. Data from the last period of each round. Standard errors
clustered at the network (matching group) level. Missing observations to 324 are missing because of no
variation among neighbours weights.

Table E.4 shows the results of these regressions. Across all information conditions, weights are positively
related to neighbours' switching. This e�ect is particularly strong and only statistically signi�cant in treat-
ment NI, where a one standard deviation increase in the frequency of switching is associated with an ≈ 38
percentage point increase in the weight.
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F Questionnaire

Our questionnaire consisted of three parts which we list in turn.

Emotional Intelligence (TEIQue-SF)

There are seven possible responses to each statement ranging from �Completely Disagree� (number 1) to
�Completely Agree� (number 7).

� Expressing my emotions with words is not a problem for me.

� I often �nd it di�cult to see things from another person's viewpoint.

� On the whole, I'm a highly motivated person.

� I usually �nd it di�cult to regulate my emotions.

� I generally don't �nd life enjoyable.

� I can deal e�ectively with people.

� I tend to change my mind frequently.

� Many times, I can't �gure out what emotion I'm feeling.

� I feel that I have a number of good qualities.

� I often �nd it di�cult to stand up for my rights.

� I'm usually able to in�uence the way other people feel.

� On the whole, I have a gloomy perspective on most things.

� Those close to me often complain that I don't treat them right.

� I often �nd it di�cult to adjust my life according to the circumstances.

� On the whole, I'm able to deal with stress.

� I often �nd it di�cult to show my a�ection to those close to me.

� I'm normally able to �get into someone's shoes� and experience their emotions.

� I normally �nd it di�cult to keep myself motivated.

� I'm usually able to �nd ways to control my emotions when I want to.

� On the whole, I'm pleased with my life.

� I would describe myself as a good negotiator.

� I tend to get involved in things I later wish I could get out of.

� I often pause and think about my feelings.

� I believe I'm full of personal strengths.

� I tend to �back down� even if I know I'm right.

� I don't seem to have any power at all over other people's feelings.
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� I generally believe that things will work out �ne in my life.

� I �nd it di�cult to bond well even with those close to me.

� Generally, I'm able to adapt to new environments.

� Others admire me for being relaxed.

Cognitive Re�ection Test

1. A bat and a ball cost Euro 1.10 in total. The bat costs Euro 1.00 more than the ball. How much does
the ball cost?

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100
widgets?

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the
patch to cover the entire lake, how long would it take for the patch to cover half of the lake?

Probability Biases

� Lisa is 38 and pregnant for the �rst time. She is worried about birth defects such as Down Syndrome.
Her doctor tells her the probability is actually only 1 out of 1000 that a woman of her age has a baby
with Down Syndrome. Nevertheless, she takes a test. The test is moderately accurate. When a baby
has Down Syndrome the test delivers a positive result 86 percent of the time. There is however a
small �false positive� rate. 5 percent of babies produce a positive result despite NOT having Down
Syndrome. Lisa takes the test and obtains a positive result. What are the chances that her baby has
Down Syndrome.

� 0-20 %

� 21-40 %

� 41-60 %

� 61-80 %

� 81-100 %

� Which of the following instances appears most likely, which appears second most likely?

� Drawing a red marble from a bag containing 50 percent red and 50 percent white marbles

� Drawing a red marble seven times in succession, with replacement (i.e. a selected marble is put
back in the bag before the next marble is selected), from a bag containing 90 percent red marbles
and 10 percent white marbles

� Drawing at least one marble in seven tries, with replacement, from a bag containing 10 percent
red marbles and 90 percent white marbles.

� Which of the following sequences (of heads H and tails T) arises most likely from �ipping a fair coin
5 times?

� HHHHH

� HTHTH

� HHTTT

� All equally likely
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� B and C equally likely (and more likely than A)

� I am drawing three cards from a deck of 32 (16 of which are red and 16 black). Now I am holding
those three cards in my hands. You randomly draw one of my three cards and it is black. What is the
probability that out of the three cards I drew exactly two are black?

� 0

� 1/4

� 1/3

� 1/2

� 2/3

� 3/4

� 1

Risk Numeracy

� Imagine that we roll a fair, six-sided die 1000 times. Out of 1000 rolls, how many times do you think
the die would come up as an even number?

� The chance of getting a viral infection is .0005. Out of 10 000 people, about how many of them are
expected to get infected?

� In a contest, the chance of winning a car is 1 in 1000. What percent of tickets of that contest win a
car?

� Imagine we roll an unfair six-sided die, where the probability of rolling a six is twice as high than the
probability of rolling any other number. How often should we expect to see a six if we roll the die 105
times?

� Out of 1000 people in a small town 500 are members of a choir. Out of these 500 members in a choir
100 are men. Out of the 500 inhabitants that are not in a choir 300 are men. What is the probability
that a randomly drawn man is a member of the choir?

� A drawer contains red and black socks. When two socks are drawn at random, the probability that
both are red is 0.5. How many socks must the drawer contain at least?
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G Questionnaire Results

In this last section we report evidence from our questionnaire. Apart from general statistics on gender,
age and nationality we collected our participant's responses to questions in 4 areas that we conjectured
might be related to how well they are able to solve the problem of belief updating in networks. The �rst
area is emotional intelligence which is measured by the TEIQue (Petrides, 2009), the second is participant's
willingness to re�ect (measured by the cognitive re�ection test (CRT); Fredericks, 2005), the third area asks
5 questions relating to typical biases in probability (such as neglect of base rates) and the fourth area asks
questions relating to is risk numeracy. From each of these areas we then construct a variable that indicates
which share of questions a participant answered correctly (in the case of CRT, probability biases and risk
numeracy) or which share of responses indicates high emotional intelligence in the case of the TEIQue
questionnaire.

Emo.Intelligence CRT Prob. Biases Risk Numeracy
Circle NI 0.72 0.48 0.37 0.54

[0.5,0.9] [0,1] [0,0.6] [0,1]
Circle II 0.74 0.51 0.36 0.54

[0.5,0.8] [0,1] [0,0.8] [0.2,1]
Circle CI 0.75 0.45 0.37 0.48

[0.5,0.9] [0,1] [0,0.8] [0,0.8]
Star NI 0.72 0.57 0.35 0.6

[0.5,0.8] [0,1] [0,1] [0,1]
Star II 0.75 0.5 0.39 0.55

[0.6,0.9] [0,1] [0,0.8] [0,1]
Star CI 0.75 0.5 0.33 0.53

[0.5,0.9] [0,1] [0,0.8] [0,0.8]
Kite NI 0.73 0.59 0.30 0.56

[0.5,0.9] [0,1] [0,0.8] [0,1]
Kite II 0.72 0.59 0.30 0.52

[0.5,0.9] [0,1] [0,0.8] [0,1]
Kite CI 0.73 0.48 0.36 0.55

[0.5,0.8] [0,1] [0,0.8] [0,1]

Table G.1: Summary Statistics on Questionnaire Indicators. Mean Share of Correct Answers and in brackets
range.

Table G.1 shows the mean and range of these four variables in all of our treatments. The means are similar
across treatments and in most cases (except for the TEIQue) the range covers almost the entire interval [0,1].
We then ask whether any of these measures can explain how well participants do in our experiment. There
are reasons to conjecture that any of these might be able to do so. The risk numeracy indicator summarizes
how well participants understand probabilistic statements and uncertain environments. The probability
biases indicator checks for some well known mistakes in dealing with probabilities and in particular also with
Bayesian updating. Participants who score better in these test hence should have less problems with Bayesian
updating and hence might be better at incorporating information from neighbours into their assessments.
The cognitive re�ection test (CRT) measures how willing people are to re�ect carefully when making a
decision. The emotional intelligence test is the odd one out in that it doesn't test for reasoning abilities.
Instead it measures how good participants are in assessing their own and others emotional responses. If
there is a lot of heterogeneity, decisions are very noisy and following di�erent heuristics, then - rather than
reasoning abilities - a good intuition for neighbours' decisions might be important for participants.

Table G.2 shows the marginal e�ects of an OLS regression where we regress a binary variable indicating
whether a participant had above median payo�s (1) or not (0) on the four questionnaire indicators. The
table shows that, by and large, the questionnaire indicators are insigni�cant. Interestingly, the emotional
intelligence indicator does best at explaining success in our experiment. It has a signi�cantly positive e�ect
in the Star-II, Star-CI and Kite-NI treatments.
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Emo.Intelligence CRT Prob. Biases Risk Numeracy
Circle NI −0.76 0.01 −0.83 0.02
Circle II −1.08 0.33 0.28 −0.09
Circle CI −1.52 −0.22 −0.52 1.31∗∗∗

Star NI −0.35 0.11 −0.28 0.51
Star II 0.78∗ 0.32 0.02 −0.31
Star CI 2.31∗∗ −0.29 0.51 0.18
Kite NI 2.14∗∗ −0.13 −0.02 −0.19
Kite II 0.40 0.14 −0.13 −0.19
Kite CI 0.39 0.15 −0.60 −0.20

Table G.2: Marginal E�ects from OLS regression of a binary variable indicating whether a participant had
above median payo�s (1) or not (0) on questionnaire indicators. Standard errors clustered by matching
group.
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H Screenshots

Figures (H.1) and (H.2) show screenshots from the �Rectangle� and �Pentagon� treatments, respectively.
The screens are the �rst period where the participant sees the network (no previous decisions by neighbours
because it is period 1) and her signal and is asked to make a guess on the colour of the urn at the bottom.

Figure H.1: Screenshot of �Rectangle� Complete Information treatment. First period decision.

Figure H.2: Screenshot of �Pentagon� Complete Information treatment. First period decision.
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I Instructions Treatment K_CI

Instructions2

Welcome and thank you for participating in this experiment. Please read these instructions carefully.

Should you have any questions, please raise your hand. An experimenter will come to you and answer
your questions. From now on all communication with other participants in the experiment is forbidden. If
you don't follow these rules we will have to exclude you from the experiment. Please do also switch o� your
mobile phone now.

You will receive 6 Euros for showing up on time to this experiment and for answering a questionnaire at
the end of the experiment. During the course of the experiment you can earn more. How much depends on
your and others' decisions. All your decisions will be treated con�dentially.

The Experiment The experiments consists of 6 rounds in which the same game will be played. The 6
rounds are independent of each other, meaning that your decisions from previous rounds do not a�ect future
rounds in any way.

In every round you will interact with seven randomly selected participants from this session. All your
decisions will remain anonymous for all other participants.

At the beginning of each round There are two urns. Each urn contains balls of di�erent colours.
One urn (we refer to it as the �BLACK� urn) contains four black balls and three white balls. The other urn
(urn �WHITE�) contains four white balls and three black balls. At the beginning of each round the computer
randomly selects one urn. Both urns are equally likely. You will not know which urn was chosen. Your goal
in each round will be to guess which urn was chosen.

After the urn was chosen each player receives one ball from the urn, the colour of which she will see.
This means.

� If urn BLACK was chosen four group members will receive a black ball and three group members a
white ball.

� If urn WHITE was chosen four group members will receive a white ball and three group members a
black ball.

Each group member hence receives information about only one ball from the urn that was chosen. If you
knew all colours of all the balls given to the group members, then you would know exactly which urn was
chosen. At the beginning of a round each group member, however, knows only the colour of their own ball.

The Network The seven members of your group (including yourself) get a pseudonym in each period:
L,D,H,Z,A,O or R. All seven members of your group are directly or indirectly linked via information channels
as illustrated in the following graph.

In each round hence, there is

� one group member with one �neighbour�

� four group members with two �neighbours� each,

� one group member with three �neighbours� and

� one group member with four �neighbours�.

2Translation from german.
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�Neighbours� are other group members who you transmit information directly and from whom you receive
information. In the graph shown above, neighbours are connected directly with a line. You will learn below
what type of information is communicated between neighbours and how this is done.

At the beginning of each round you will learn your position in the network shown above. The network
will appear on your screen and your position within the network will be marked black. Hence you will also be
able to see how many neighbours you have in that round. You will also learn you own pseudonym and that
of your neighbours. Just like you, all the other group members will also learn their position in the network,
the number of neighbours they have, their pseudonym and that of their neighbours.

Network positions as well as pseudonyms are assigned anew at the beginning of each round. Hence both
your pseudonym and those of your neighbours will change in each round. Also the positions of all group
members change each round. You will have a new position and you will interact with di�erent participants
as your neighbours.

The Decision Phase After all group members have received information about their network positions,
their pseudonyms, the pseudonyms of their neighbours as well as their private signals (either a black or white
ball) each round continues as follows.

Each round contains 20 periods. Each period contains the following two steps.

1. Your decision: You guess whether the urn the computer chose at the beginning of the round is BLACK
or WHITE.

(a) You say BLACK if you believe it is more likely that there are four black and three white balls in
the urn.

(b) You say WHITE if you believe it is more likely that there are four white and three black balls in
the urn.

2. After all participants have made their guess information will be exchanged simultaneously between
direct neighbours in the network: You learn which guess your neighbours made and theu learn about
your guess. On your screen the positions of your direct neighbours will appear in the colour that
corresponds to their guess.

Keep in mind that your neighbours might receive information not only from you but also from other
group members. (That depends on how many neighbours they have apart from you.)
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Your earnings At the end of the experiment three periods from di�erent rounds will be randomly drawn.
If your decision in the chosen period was correct (if you guessed the right urn in that period) you will receive
6 Euros for that period. If your decision was incorrect you receive nothing for that period.

This means that, if your decision was correct in all three selected periods, you receive 3 ∗ 6 = 18 Euros,
which, together with the base payment of 6 Euros, gives you earnings of 24 Euros in total. If you are wrong
in all three selected periods you will receive only the base payment of 6 Euros. If you are correct in one
period you receive 12 Euros in total and if you are correct in two periods you receive 18 Euros.

Di�erent rounds are independent of each other. As already mentioned you will participate in 6
di�erent rounds. All these 6 rounds are independent of each other. This means in particular that

� your neighbours and your position in the network will change between rounds

� the colours of the urns and balls will change in each round (black and white were only used as examples
and will not be used in the actual experiment)

� a new urn will be chosen at the beginning of each round.

Summary The following is a graphical summary of a round.
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