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Abstract

In absolute identification experiments, the participant is asked to identify stimuli drawn from a

small set of items which differ on a single physical dimension (e.g., ten tones which vary in

frequency). Responses in these tasks show a striking pattern of sequential dependencies: The

current response assimilates towards the immediately preceding stimulus but contrasts with the

stimuli further back in the sequence. This pattern has been variously interpreted as resulting from

confusion of items in memory, shifts in response criteria or the action of selective attention, and

these interpretations have been incorporated into competing formal models of absolute

identification performance. In two experiments, we demonstrate that lengthening the time

between trials increases contrast to both the previous stimulus and the stimulus two trials back.

This surprising pattern of results is difficult to reconcile with the idea that sequential

dependencies result from memory confusion or from criterion shifts, but is consistent with an

account which emphasizes selective attention.

KEYWORDS:Absolute identification; Inter-stimulus interval; Sequential effects;

Assimilation; Contrast.
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The effect of inter-stimulus interval on sequential effects in absolute identification

On each trial of an absolute identification experiment, the participant is required to identify a

stimulus drawn from a small set of items which differ on a single physical dimension (e.g., 10

tones which differ only in intensity). It has long been known that absolute identification data

exhibit several interesting phenomena, including a severe limit in information transmission

between stimuli and responses (e.g., Miller, 1956) and greater accuracy for stimuli at the ends of

the stimulus range than in the middle (e.g., Murdock, 1960), and in the past few years there has

been a resurgence of interest in absolute identification research (Brown, Marley, Donkin, &

Heathcote, 2008; Brown, Marley, & Lacouture, 2007; Kent & Lamberts, 2005; Petrov &

Anderson, 2005; Rouder, Morey, Cowan, & Pfaltz, 2004; Stewart, 2007; Stewart, Brown, &

Chater, 2005).

A key result from absolute identification experiments is the finding that the response on

the current trial nR to the presented stimulus nS depends upon the sequence of preceding stimuli.

Typically, nR assimilates towards the immediately preceding stimulus 1nS but contrasts with

(i.e., shifts away from) the stimuli presented two or more trials back ( 2nS , 3nS …). The

magnitudes of these effects, and the point in the sequence at which there is a switch from

assimilation to contrast, depend upon the difficulty of the task and whether or not feedback is

provided (e.g., Ward & Lockhead, 1971), but the basic pattern has been found in a large number

of studies (Holland & Lockhead, 1968; Lacouture, 1997; Luce, Green, & Weber, 1976, analysed

in Jesteadt, Luce, & Green, 1977; Staddon, King, & Lockhead, 1980; Stewart et al., 2005;

Treisman, 1985; Ward & Lockhead, 1970; 1971).
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Over the past 40 years, this pattern of sequential effects has been given a number of

different psychological interpretations, and these interpretations have been incorporated into

competing formal models of absolute identification. Broadly speaking, the explanations for the

sequential dependencies fall into three groups, which we now discuss in turn. Throughout, we

focus on the core psychological ideas rather than detailed discussion of formal models, not least

because recent models (e.g., Brown et al., 2008; Stewart et al., 2005) incorporate many free

parameters and may possibly, with appropriate parameter choices, be rendered indistinguishable.

The first interpretation of sequential effects is that they represent the confusion of items

in memory. This idea was first proposed by Holland and Lockhead (1968) and has appeared in

various forms since then (Lockhead & King, 1983; Lockhead, 1984; 1992). According to this

interpretation, the representation of each stimulus is confused with the memories for earlier

stimuli in the trial sequence. More recently, Stewart et al. (2005) have incorporated the idea of

memory-confusion into a highly successful model which captures the full set of absolute

identification choice data, including sequential effects. According to Stewart et al.’s relative

judgment model (RJM), the participant estimates the difference between the current stimulus and

the previous one (Laming, 1984). This difference is added to the feedback from the previous trial

to produce a judgment of the current stimulus, with noise in the mapping of the perceived

difference onto the response scale which leads to the information transmission limit seen in

absolute identification. Crucially, the RJM assumes that the current stimulus difference is

contaminated by residual representations of earlier stimulus differences, and that the more

recently a stimulus difference occurred, the more likely it is to contaminate the judgment of the

current difference. Stewart et al. (2005, pp. 896-897) show that, when feedback is provided and

assuming that the participant’s estimate of the stimulus difference corresponding to a single unit
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on the response scale is approximately correct, the confusion of stimulus differences predicts

assimilation to 1nS and contrast to stimuli further back.

Memory-confusion interpretations of sequential effects like those of Stewart et al. (2005)

suggest that the current response is predicted by the preceding stimulus sequence; preceding

responses are ignored. The dependence of nR on the current and preceding stimuli may

conveniently be assessed by fitting a regression equation to the data:

nknknnnn eSSSSrR   ...221100 (1)

Because only preceding stimuli are included as predictors in Equation 1, we refer to it as a

stimulus-only regression. When Equation 1 is applied to absolute identification data, the

coefficient for 1nS is positive, indicating assimilation, and the coefficients for stimuli further

back in the sequence are negative, indicating contrast (e.g., Lockhead, 1984).

The second interpretation of sequential effects is that they represent trial-by-trial shifts in

response criteria. A comprehensive statement of this idea is provided by criterion setting theory

(Triesman & Williams, 1984; Treisman, 1985). Criterion setting theory adopts a Thurstonian

framework in which the presentation of each stimulus results in a noisy value on an internal

sensory scale. Criteria, or response boundaries, divide the sensory scale into response categories

and the response is determined by which criteria the (noisy) stimulus representation falls

between. Each criterion has a long-term reference location, but the effective criteria on each trial

are also influenced by two short-term processes: tracking and stabilization. The tracking

mechanism is motivated by the idea that objects in the real world tend to persist, so that the

presence of a particular object indicates that it is likely to occur again. Tracking therefore
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involves shifting the criteria away from the most recently made response, increasing the

probability that the response will be repeated. Thus, the tracking mechanism produces

assimilation to recent responses. The stabilizing mechanism, on the other hand, serves to place

criteria near to the prevailing flux of sensory input. For example, if a series of sensory inputs all

lie well above a criterion then that criterion may be too low in relation to the current distribution

of inputs. Stabilization therefore shifts each criterion towards the current sensory input,

producing contrast to recent stimuli.

Criterion setting theory thus asserts separate effects of preceding stimuli and preceding

responses, with contrast to the former and assimilation to the latter. These effects suggest that

absolute identification data may usefully be described with a regression equation in which both

stimuli and responses are included as predictors:

nknkknknnnn eRSRSSrR   ...111100 (2)

Because both preceding stimuli and preceding responses are included as predictors, we refer to

Equation 2 as a stimulus-response regression. (Note that the term stimulus-response regression

should not be taken to imply that the effects of preceding stimuli and responses are linked, only

that both factors are being considered as predictors of the current response.) Mori and Ward

(1995) applied a version of Equation 2 to absolute identification data and found that, in keeping

with criterion setting theory, the coefficient for 1nR was positive but that the coefficient for 1nS

was often negative, most notably in the absence of feedback - although the high correlation of

stimuli and responses means that these coefficients may not be reliable. Mori (1998) similarly

found assimilation to 1nR and contrast to 1nS , although the latter changed to assimilation when
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the stimuli were masked. Both of these studies only considered the effects of the immediately

preceding trial (Jesteadt et al., 1977).

The third interpretation of sequential effects is that they result from the operation of

selective attention (e.g., Luce et al., 1976). Selective attention forms the basis of a recent, highly

successful account of absolute identification - the selective attention, mapping, ballistic

accumulator (SAMBA) model of Brown et al. (2008). SAMBA is able to predict the full range of

choice and RT data from absolute identification experiments. At the heart of the model is a

selective attention mechanism based on the rehearsal process of Marley and Cook (1984; 1986).

It is assumed that the stimulus dimension is monotonically mapped onto a linearly ordered set of

leaky nodes. Throughout the experiment the participant rehearses a region of the stimulus

dimension by directing rehearsal activity to a subset of these nodes. The upper and lower nodes

in this range are referred to as anchors; their positions depend upon the range of stimuli in the

experiment. To produce a magnitude estimate for the current stimulus the participant judges the

position of the stimulus within the rehearsed range by calculating ΣL, the total rehearsal

activation between the lower anchor and the current stimulus, and ΣU, the total activation

between the stimulus and the upper anchor. The magnitude estimate is then ΣL/(ΣL+ ΣU). This

magnitude estimate serves as input to Lacouture and Marley’s (1995) mapping model, which

produces a set of response strengths, one for each possible response. These response strengths

serve as inputs to the final, decision stage of the model, which uses ballistic accumulators

(Brown & Heathcote, 2005) to produce a response. There is one ballistic accumulator

corresponding to each possible response; each accumulator has a starting level of activation

which then increases at a rate determined by the response strengths from the mapping stage. The

first accumulator to reach a threshold level of activation determines the response and the time it
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takes to do so determines the RT.

Sequential effects are incorporated into SAMBA by the introduction of two additional

assumptions. The first of these concerns the selective attention stage and comprises the idea that,

on some trials, the participant directs rehearsal activity to the node corresponding to the most

recently presented stimulus. For example, suppose the last stimulus was Stimulus 5. Rather than

randomly allocating rehearsal activity between the lower and upper anchors, the participant

directs the activity to the node corresponding to Stimulus 5. If the next stimulus lies above

Stimulus 5, this redirected activity will contribute to ΣL and the stimulus estimate will be larger

than when the rehearsal activity is distributed randomly among the rehearsal nodes. Conversely,

if the current stimulus lies below Stimulus 5 then the redirected activity will contribute to ΣU,

resulting in a smaller magnitude estimate than normal. In this way, directing rehearsal activity to

the location of the most recently presented stimulus causes subsequent responses to contrast with

this stimulus. The second assumption concerns the decision stage of the model, in which ballistic

accumulators race to threshold. Brown et al. (2008) assume that once an accumulator reaches

threshold and a response is made, the activation begins to decay; the residual activity determines

the starting point for each accumulator on the next trial. Since the accumulator with the greatest

activity will be the one which reached threshold, the most recently made response will have a

head start on the next trial, thereby increasing the probability that this response will be made

again. Thus, the model predicts assimilation to the previous response. To summarize: SAMBA,

like criterion setting theory, posits distinct effects of preceding stimuli and responses. Selective

rehearsal of recent items produces contrast to the former whilst residual activity in the response

system produces assimilation to the latter.
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It is clear from the foregoing survey that, while sequential effects provide a strong

empirical constraint on formal models of absolute identification, the psychological interpretation

of these effects remains disputed. In the current paper, we seek to clarify the interpretation of

sequential dependencies by asking how the effects of previous stimuli and responses depend

upon the time interval between trials. Manipulations of inter-stimulus interval have proved useful

in distinguishing between interpretations of sequential effects in other tasks (e.g., Collier, 1954;

DeCarlo, 1992) and several authors have recently argued for the importance of manipulating

inter-stimulus interval in absolute identification (Brown et al., 2008; Lockhead, 2004; Stewart et

al., 2005). The two experiments reported here represent the first attempt to do so.

Experiment 1

Method

Participants

Thirty nine members of the University of Warwick subject panel took part. Each was paid £12.

Stimuli

Ten tones of varying frequency were used. The lowest tone had a frequency of 600 Hz with each

subsequent tone increasing in frequency by 12%. Each tone had a total duration of 500ms
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including a 50-ms amplitude ramp at beginning and end. Tones were played over Sennheiser

eH2270 or HD265 headphones.

Design and Procedure

Participants were tested individually in quiet testing cubicles. Each participant completed two

sessions, one with a short ISI and one with a long ISI. Each session consisted of four blocks of

90 trials; in each block, all ten tones were presented equally often with the order randomized for

each participant. At the start of the experiment the ten tones were played in sequence from 1-10

with a 1s gap between each. While the tones played, the corresponding numbers appeared on the

computer screen. Participants then began the experimental trials. On each trial participants heard

one of the 10 tones; after the tone had finished, the participant indicated which of the tones had

played by pressing one of the number keys along the top of a standard computer keyboard. In

order to ensure a controlled interval between successive stimuli, participants were given a fixed

temporal window in which to make their response. Previous studies have found that the vast

majority of responses take less than 2s, so a 3s window was used. At the end of the response

window, the actual number of the presented tone was displayed for 500ms. The sequence of

events on each trial was therefore: a 500ms ‘Ready’ signal, a 500ms blank interval, the stimulus

for 500ms, a 3000ms response window, and feedback for 500ms. In the Short condition there

followed a 500ms blank interval before the next trial; in the Long condition, this interval was

5500ms. Thus, in the Short condition the interval between the end of one stimulus and the start

of the next was 3000 (response window) + 500 (feedback) + 500 (ISI) + 500 (‘Ready’) + 500
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(blank) = 5000ms whilst in the Long condition it was 3000 + 500 + 5500 + 500 + 500 =

10000ms. The experiment was controlled by DMDX (Forster & Forster, 2003).

All participants had a break between sessions and some chose to come back on a different

day to complete the second session. The first block of trials from each session was treated as

practice and excluded from the analysis.

Results and Discussion

One participant was discarded because of technical difficulties; a second was discarded because

of failing to respond within the 3s response window on a large proportion (14.1%) of trials (the

mean proportion for the remaining subjects was 1.0%). For two of the 37 useable participants,

one block of trials was discarded because the test session was briefly interrupted; 18 participants

completed the sessions in the order Short-Long and 19 in the order Long-Short.

Basic Performance

The average proportion of trials on which the participant failed to respond in the 3s window in

the Short condition was 0.7% (SD = 1.0); the mean for the Long condition was 1.4% (SD = 1.7).

We used a mixed ANOVA to examine the effects of ISI and session order (Short-Long or Long-

Short) on the proportion of missed responses. There was a main effect of condition, F(1,35) =

6.70, 2
p = .16, p = .014, with significantly more missed responses in the Long condition than

the Short condition. (Here and throughout what follows, the criterion for significance was set at

05. ). Although significant, this difference is very small and the very low number of missed
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responses in both conditions indicates that our choice of a 3s response window was appropriate.

There was no effect of session order, F(1,35) < 1, and no interaction, F(1,35) < 1. The mean

proportion of correct responses (excluding missed responses) in the Short condition was 54.0%

(SD = 10.3), the mean for the Long condition was 52.7% (SD = 10.5). Analysis of variance

indicated no effect of condition, F(1,35) = 1.37, 2
p = .04, p = .249, no effect of session order,

F(1,35) < 1, and no interaction, F(1,35) < 1.

In short, analysis of accuracy and proportion of missed trials shows that these statistics

vary only slightly with changes in ISI and do not compromise the analysis of sequential effects

which are the main focus of the current paper.

Sequential Effects

The effects of the preceding stimulus sequence on the current response are illustrated in Figure 1.

This figure provides a so-called “impulse plot” (e.g., Lockhead, 1984). In an impulse plot, the

mean error on the nth trial (averaged across all nS ) is shown as a function of the lag, k, for all

possible knS  . The left panel shows the results from the Short ISI condition; the right panel

shows the results from the Long ISI condition. (As is usual, the data have been collapsed over

pairs of stimuli.)

Consider first the data from the Short condition. There is assimilation to the stimuli

presented at lag k = 1, because the mean error on trial n is positive when the stimuli presented on

trial n-1 are large, and negative when the stimuli presented on trial n-1 are small. However, the

effect of stimuli shown at lag k = 2 is the opposite; when 2nS was large, the mean error on trial

n was negative, and when 2nS was small the mean error was positive. The same is true of
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stimuli at longer lags. The left panel of Figure 1 therefore illustrates the classic pattern of

assimilation to 1nS and contrast to 2nS seen in many previous studies of absolute identification

(e.g., Lockhead, 1984; Stewart et al., 2005; Ward & Lockhead, 1970; 1971) When we turn to the

results from the Long ISI condition, however, two differences are apparent. Firstly, the

assimilation to 1nS has disappeared and, if anything, been replaced by weak contrast. Secondly,

the magnitude of the contrast to 2nS , and possibly to stimuli further back in the sequence, has

increased. Figure 1 therefore suggests that increasing the ISI has led to a general increase in

contrast.

Impulse plots provide a convenient way to visualise the data, but they do not permit a

quantitative analysis. Moreover, they do not separate the effects of preceding stimuli and

preceding responses. We therefore fit Equations 1 and 2 to the data, to obtain a clearer

understanding of the effects of inter-stimulus interval on sequential effects.

Stimulus-only regression

We began by fitting the stimulus-only regression equation (Equation 1) using stimuli up to five

trials back in the sequence as predictors. (Responses which fell outside the 3s response window

were excluded from the analysis.) We conducted the regression analysis separately for both the

Short and Long ISI conditions for each participant and then compared the regression coefficients

from the two conditions. (An alternative approach would be to include the data from both

conditions in a single regression which included ISI and the interactions between ISI and the

various knS  terms as predictors. The pattern of results from such an analysis are identical to

those reported here.) The means and standard deviations of the regression coefficients for the 37
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participants are presented in the left of Table 1. Inspection of the regression coefficients reveals

the same pattern as Figure 1. In the Short ISI condition, the coefficient for 1nS is moderately

large and positive, indicating assimilation, whilst the coefficient for 2nS is negative, indicating

contrast. In the Long ISI condition, the coefficient for 1nS has dropped to slightly below zero,

whilst the coefficient for 2nS has become more negative. Finally, we note that the fit of the

regression equation is good ( 2R approximately .85), and little affected by the ISI condition. This

is true of all of the regression equations fit in both experiments.

As one would expect when a large number of participants complete only a few hundred

trials each, there was individual variation in the regression coefficients. We therefore used

analysis of variance to statistically test the effects of ISI on the regression coefficients (Lorch &

Myers, 1990)1. We conducted a mixed ANOVA with ISI (Short vs. Long) as a within-subject

factor and session order (Short-first vs. Long-first) as a between subjects factor. (Throughout

what follows, the effects of session order were not significant unless otherwise stated.) The right

side of Table 1 shows the ANOVA results for the main effect of ISI on each coefficient. The

results show that inter-stimulus interval exerted a significant effect on the coefficients for 1nS

and 2nS ; increasing the ISI significantly reduced assimilation to 1nS and significantly

increased contrast to 2nS . The coefficients for stimuli further back in the trial sequence were not

significantly affected by the ISI manipulation.

Stimulus-response regression
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To investigate the separate effects of preceding stimuli and responses, we applied Equation 2 to

the data from Experiment 1. For this analysis, we considered the effects of stimuli and responses

from the previous two trials. The mean and standard deviations of the regression coefficients are

shown in the bottom of Table 1. Also shown at the right of the table are the ANOVA results for

the main effect of ISI condition.

The coefficient for 1nS is significantly influenced by the inter-stimulus interval. In the

Short condition, it is close to zero; in the Long condition, it is markedly negative, indicating a

shift to contrast as the ISI is increased. A similar pattern is found for 2nS , with contrast in the

Short condition becoming significantly more pronounced in the Long condition (although the p

value for this effect is not particularly small; as a general point in the current work, we suggest

that any significant results for which the p value is not considerably less than .05 be treated with

some caution). The effects of previous responses are not influenced by ISI. There is moderate

assimilation to 1nR and very little effect of 2nR , neither of which is influenced by the ISI

manipulation. There was also a significant main effect of session order for the 2nR coefficient,

F(1,35) = 5.20, p = .029, 2
p = .13, although session order did not interact with experimental

condition, F(1,35) = 1.41, p =.243, 2
p = .04. This result is hard to interpret, and we do not

consider it further.

In short, increasing the ISI makes the coefficients for both 1nS and 2nS more negative.

That is, in the Long condition, there is stronger contrast to preceding stimuli than in the Short

condition 2.

Summary
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The results of Experiment 1 show that, irrespective of which regression model is used to assess

the sequential effects, increasing the time between trials increases contrast to preceding stimuli.

This is a novel and counter-intuitive result with strong theoretical implications, which we discuss

below. Before that, we report a second experiment which sought both to establish the generality

of this finding and to dissect the influence of intervals between specific pairs of trials.

Experiment 2

In Experiment 1, the Short and Long ISI conditions were grouped into blocks of trials. In

Experiment 2, short and long inter-stimulus intervals were randomly intermixed throughout the

experiment. The motivation for this was twofold. Firstly, we sought to replicate the striking

pattern of results obtained in Experiment 1 under different conditions. Secondly, we sought to

clarify which inter-stimulus intervals contribute to the observed effects. For example, in

Experiment 1 it was found that increasing the ISI caused increased contrast to 2nS . Was this

because of the increased interval between 2nS and 1nS , the increase between 1nS and nS , or

both? Randomly intermixing short and long inter-stimulus intervals throughout the trial sequence

allows us to answer this type of question.

Method

Participants
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Thirty eight members of the University of Warwick subject panel took part. Each was paid £6.

Stimuli

The stimuli were the same as Experiment 1.

Design & Procedure

Each participant completed a single experimental session consisting of five blocks of 80 trials. In

each block, each of the ten tones was presented eight times, four times followed by a short ISI

and four times followed by a long ISI. The order was randomized for each participant.

At the start of the experiment, the ten tones were played in sequence from 1-10 with a 1s

gap between each. While the tones played, the corresponding numbers appeared on the computer

screen. Participants then began the experimental trials. On each trial, participants heard one of

the 10 tones; after the tone had finished, the participant had 2.5 seconds to indicate which of the

tones had played by pressing one of the number keys along the top of a standard computer

keyboard. At the end of the response window, the actual number of the presented tone was

displayed for 500ms. On trials where participants failed to make a response, the words ‘Too

slow’ were presented with the numerical feedback. Following the feedback there was a blank

interval of 500ms (short ISI) or 5000ms (long ISI) after which the word ‘Ready’ was shown for

500ms followed by a further 500ms blank interval before the next tone played.

The total interval between the end of one tone and the start of the next was therefore 2500

(response window) + 500 (feedback) + 500 (ISI) + 500 (‘Ready’) + 500 (blank) = 4500 ms in the
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short ISI condition and 2500 + 500 + 5000 + 500 + 500 = 9000 ms in the long ISI condition. The

first block of trials from each session was treated as practice and excluded from the analyses.

Results and Discussion

Two participants failed to respond within the 2.5s window on a large proportion of trials (19.9%

and 20.8%) and were excluded from the analysis; the mean proportion of missed responses for

the remaining participants was 1.5%.

We refer to the interval between 2nS and 1nS as 1,2  nnISI , and to the interval between

1nS and nS as nnISI ,1 . The data were organized according to 1,2  nnISI and nnISI ,1 . For each

trial, the lengths of 1,2  nnISI and nnISI ,1 were established and the data organized into the four

possible combinations of the two ISIs: S,S (i.e., both ISIs were short: 1,2  nnISI = 4.5s and nnISI ,1

= 4.5s), S,L (a short ISI followed by a long ISI, 1,2  nnISI = 4.5s, nnISI ,1 = 9s), L,S ( 1,2  nnISI =

9s, nnISI ,1 = 4.5s) and L,L ( 1,2  nnISI = 9s, nnISI ,1 = 9s). Note that we label the conditions to

reflect, from left to right, the order in which the intervals were experienced. Thus condition S, L

corresponds to the stimulus sequence: 2nS - short interval - 1nS - long interval - nS . In order to

have a useable number of trials in each condition, the length of the ISI separating 3nS and

2nS was ignored, as were other ISIs further back in the sequence.

Basic Performance
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The proportion of trials on which each participant failed to respond was calculated for each ISI

condition. In condition S,S the mean proportion was 1.0% (SD = 1.5); in condition S,L the mean

was 1.6% (SD = 2.3); in condition L,S the mean was 1.2% (SD = 1.5) and in condition L,L the

mean was 2.1% (SD = 2.7). A 2x2 within-subject ANOVA revealed a marginally significant

effect of 1,2  nnISI , F(1,35) = 4.13, p = .050, 2
p = .11, and a significant effect of nnISI ,1 , F(1,35)

= 8.28, p = .007, 2
p= .19, but no interaction, F(1,35) < 1. As in Experiment 1, the overall

proportion of missed responses was very low, indicating that the choice of response window

(2.5s) was appropriate. The mean proportion of correct responses (excluding missed responses)

was also calculated for each condition. In condition S,S, the mean was 54.1% (SD = 14.9); in

condition S,L the mean was 52.1% (SD = 12.6); in condition L,S the mean was 53.2% (SD =

14.2); in condition L,L the mean was 51.1% (SD = 13.1). A 2x2 within-subjects ANOVA

revealed no significant effect of 1,2  nnISI , F(1,35)=1.16, p = .289, 2
p = .03, or nnISI ,1 , F(1,35) =

3.66, p = .064, 2
p = .09, and no interaction, F(1,35) < 1.

Sequential Effects

As in Experiment 1, we begin by considering impulse plots for each of the four conditions. These

are shown in Figure 2. The top left panel shows the results when both intervals were short. There

is assimilation to 1nS and weak contrast to 2nS . The bottom left panel shows the results when

the interval between 2nS and 1nS was long and the interval between 1nS and nS was short.

The assimilation to 1nS has not changed, but the contrast to 2nS has become more pronounced.

The top right panel shows the results when the interval between 2nS and 1nS was short but the
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interval between 1nS and nS was long. Now the assimilation to 1nS has been replaced by weak

contrast; there is also contrast to 2nS , and the magnitude of this effect is similar to that seen in

condition L,S. Finally, the bottom right panel shows the results when both intervals are long. As

in the preceding condition, there is weak contrast to 1nS , and contrast to 2nS which is even

stronger than before.

To quantify these findings, we again fit Equations 1 and 2 to the data.

Stimulus-only regression

For each of the four 1,2  nnISI , nnISI ,1 combinations, we fit a stimulus-only regression model

(Equation 1) to the data from each participant. The mean and standard deviations of the

regression coefficients for the 36 participants are presented in the upper portion of Table 2. (As

in Experiment 1, an alternative approach is to conduct a single regression for the data from all

four conditions with the inclusion of interaction terms to assess the effects of 1,2  nnISI

and nnISI ,1 . The results are identical to those reported here.)

The coefficients were entered in a 2x2 within-subject ANOVA. The upper portion of

Table 3 shows the F values, p values, and effect sizes for the main effects of 1,2  nnISI and

nnISI ,1 and for the interaction term. For the nS coefficient, there is a main effect of nnISI ,1 and

an 1,2  nnISI * nnISI ,1 interaction. When 1,2  nnISI is short, the coefficient is unaffected by

nnISI ,1 . When 1,2  nnISI is long, the nS coefficient is larger when nnISI ,1 is long than when

nnISI ,1 is short. Of more interest are the results for 1nS and 2nS . The results confirm the
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pattern suggested by inspection of the impulse plots in Figure 3: There is a main effect of nnISI ,1

on the coefficient for 1nS , but no effect of 1,2  nnISI and no interaction. Both 1,2  nnISI and

nnISI ,1 significantly affect the coefficient for 2nS , but again there is no interaction. The lack of

interaction between the effects of 1,2  nnISI and nnISI ,1 suggests that it is the total amount of time

since 2nS was presented that determines the extent of contrast to this stimulus – i.e., the effects

of 1,2  nnISI and nnISI ,1 are additive.

Stimulus-response regression

We next applied a stimulus-response regression (Equation 2). The means and standard deviations

of the regression coefficients are presented in the lower part of Table 2. A series of 2x2 within-

subject ANOVAs were used to examine the effects of 1,2  nnISI and nnISI ,1 on each coefficient

and the results are shown in the lower half of Table 3. The pattern for nS is the same as for the

stimulus-only regression. For the 1nS coefficient, there is a main effect of nnISI ,1 ; when the

interval between 1nS and nS is short (i.e., in conditions S,S and L,S), there is weak assimilation

to 1nS , but when the interval is long the coefficient becomes negative, indicating contrast. There

is no main effect of 1,2  nnISI and no interaction. The coefficient for 1nR is moderately large and

positive in all conditions; there is no effect of nnISI ,1 , no effect of 1,2  nnISI , and no interaction.

That is, assimilation to 1nR seems to be unaffected by inter-stimulus interval. Similarly, there is

contrast to 2nS in all conditions. Inspection of the values for this coefficient suggests an

increase in contrast as the time between 2nS and nS is increased. The coefficient is smallest in



21

condition S,S and largest in condition L,L, with S,L and L,S having intermediate levels of

contrast. However, the ANOVA indicates no effect of nnISI ,1 , no effect of 1,2  nnISI , and no

interaction. It seems likely that the effect of inter-stimulus interval on the coefficient for 2nS is

no longer significant because of the increased noise in the regression parameters due to the

multicollinearity among the stimulus and response predictors. (Recall also that the pattern of

increasing contrast to 2nS seen here was found to be significant in Experiment 1, where there

were more trials in each condition.) Finally, there is some evidence of weak assimilation to 2nR ,

but as for 1nR there is no effect of nnISI ,1 , no effect of 1,2  nnISI , and no interaction.

Summary

The results of Experiment 2 replicate those of Experiment 1. Both the stimulus-only and

stimulus-response regression analyses indicate that increasing the time between trials increases

contrast to preceding stimuli. In addition, the effect of 1nS depends only on nnISI ,1 , whilst the

effect of 2nS depends on both nnISI ,1 and 1,2  nnISI .

General Discussion

In both experiments, and irrespective of which regression equation was used to assess sequential

effects 3, increasing the time between trials led to increased contrast to preceding stimuli. In

Experiment 1, trials were blocked by inter-stimulus interval. The Short (5s) ISI condition

produced results typical of previous work: When the current response was considered as a
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function of the preceding stimuli (ignoring previous responses, Equation 1), there was

assimilation to 1nS and contrast to stimuli further back in the sequence (e.g., Ward & Lockhead,

1970). However, when the ISI was increased to 10s the assimilation to 1nS disappeared whilst

the contrast to 2nS became more marked. That is, for both 1nS and 2nS there was a shift

towards contrast. When the effects of preceding responses were also considered (Equation 2), the

Short ISI condition indicated very little effect of 1nS and contrast to 2nS , and the Long ISI

condition showed a significant increase in contrast to both 1nS and 2nS . There was also

evidence of assimilation to 1nR which was unaffected by the time between trials. Experiment 2

replicated these findings, and additionally found that the effects of 1nS and 2nS depend the

total time since their occurrence.

As we described above, sequential effects have variously been interpreted as resulting

from memory confusion, from shifts in Thurstonian response criteria, or from selective attention.

The surprising pattern of results found here imposes an important constraint on the psychological

interpretation of sequential effects and on the formal models of absolute identification which

incorporate these ideas. In what follows, we discuss these interpretations in turn and ask whether

each can accommodate the pattern of results found in the two experiments.

Memory confusion

As described in the Introduction, sequential effects have long been taken to indicate the

confusion of items in memory (e.g. Holland & Lockhead, 1968). The most successful

formulation of this idea is Stewart et al.’s (2005) relative judgment model, in which each item is
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judged relative to the previous one but with the judgment of the current stimulus difference

contaminated by memory for previous differences. Existing memory-based interpretations of

sequential dependencies emphasize the effects of preceding stimuli and ignore previous

responses; the impulse plots and stimulus-only regression analyses therefore provide the

appropriate description of the data for appraising the memory-confusion account.

The results of these analyses are difficult to reconcile with a memory-based interpretation

of sequential effects. If sequential effects reflect the influence of memories for previously

encountered stimuli, we would expect that influence to decrease as the time since the

presentation of those stimuli is lengthened, because the memory trace fades over time (e.g.,

Wicklegren, 1974). This is true irrespective of whether the sequential effects result from memory

for actual stimuli or from memory of stimulus differences. Even if one assumes that forgetting

occurs over items rather than in physical time (e.g., McGeoch, 1932), the best that can be

expected is that increasing the ISI will make no difference to the effects of previous stimuli. In

Experiments 1 and 2, increasing the time between trials decreased assimilation to 1nS , consistent

with the idea that the memory for that stimulus diminished. However, contrast to 2nS became

more pronounced, not less.

It might be premature to abandon Stewart et al.’s (2005) highly successful account of

absolute identification on the basis of the current results. However, we can see no

straightforward memory-based interpretation of the finding that increasing the time between

trials diminishes the effect of the more recently presented stimulus but increases the effect of the

more distantly presented item. Furthermore, the situation is not improved by asserting separate

effects of preceding stimuli and responses. The stimulus-response regressions show that

increasing the ISI leads to greater contrast to both 1nS and 2nS , and it is again difficult to see



24

why lengthening the time since the establishment of a memory trace should increase the effect of

that trace on the current response.

Shifts in response criteria

The current data are also hard to reconcile with the idea that sequential effects result from shifts

in Thurstonian response criteria. According to criterion setting theory (Treisman & Williams,

1984), each trial establishes a tracking trace which shifts the response criteria away from the

current response, and a stabilization trace which produces a smaller shift towards the current

stimulus. These traces decay over time so that the criteria move back to their long-term reference

locations. Criterion setting theory therefore predicts separate effects of recent stimuli and

responses, with contrast to the former and assimilation to the latter. Increasing the time between

trials should reduce both the assimilation to preceding responses and the contrast to preceding

stimuli, and the stimulus-response regression analyses provide an appropriate description of the

data against which to test these predictions.

The results of these analyses contradict criterion setting theory. In keeping with the

model, we found assimilation to 1nR ; the magnitude of this effect was not affected by the ISI,

but this may simply reflect a slow decay in the tracking trace. However, we also found that

increasing the time between trials rendered the regression coefficients for 1nS and 2nS

significantly more negative. This is exactly the opposite of what is predicted; criterion setting

theory assumes that the stabilizing shifts decay linearly over time, such that increasing the ISI

must decrease the magnitude of the contrast effect.
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Criterion setting theory is, of course, only one instantiation of the idea that sequential

effects result from shifts in response criteria. Alternative criterion-setting models could be

developed to account for the current data if one were willing to assume arbitrary shifts in

response criteria. Specifically, one would need to postulate shifts which initially increased over

time (to explain the increase in contrast with increasing inter-stimulus interval) but which

eventually changed direction and began to decay (because it makes no sense for the criteria to

drift apart indefinitely). It would be hard to motivate such assumptions: Whereas Treisman and

Williams (1984) convincingly argue that the shifts in criteria predicted by criterion setting theory

tune the response system to the prevalent flux of sensory information, it is difficult to see how

the pattern of criterion shifts needed to explain the current data could be justified.

Selective attention

Our results are hard to interpret in terms of memory processes or shifts in response criteria. They

are, however, consistent with an account based on selective attention, the SAMBA model of

Brown et al. (2008). Like criterion setting theory, this account posits separate influences of

preceding stimuli and responses such that a stimulus-response regression provides the most

appropriate description of sequential effects, and, as we have shown, the results of such analysis

show that increasing the time between trials produces an increase in contrast to both 1nS and

2nS . This is the pattern of results predicted by Brown et al.’s model.

Recall that the key idea of SAMBA is that the participant selectively attends to the region

of the stimulus dimension occupied by the experimental stimuli. This selective attention is

modelled by a Poisson rehearsal process: The stimulus dimension is represented by an ordered
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series of nodes and the participant directs rehearsal activity to the nodes covering the range of

stimuli presented during the experiment (Marley & Cook, 1984). Increments in the activity of

each node are offset by a passive decay process, and the magnitude of a given stimulus is judged

by determining the proportion of total rehearsal activity which lies below (or above) the

corresponding node. On some proportion of trials, the rehearsal activity is preferentially directed

towards the most recently presented stimulus; this preferential rehearsal may also be considered

a form of selective attention. If a subsequent stimulus lies above the preferentially-rehearsed

node, the stimulus magnitude will be overestimated; if it lies below, the magnitude will be

underestimated. Thus, preferential rehearsal of recent stimuli produces contrast to those stimuli.

This model predicts that contrast will increase with increasing ISI. Immediately after the

presentation of 1nS , the participant begins to direct rehearsal activity to the corresponding node.

Meanwhile, the activity in all the other nodes passively decays. The longer this goes on, the

greater the proportion of total rehearsal activity accruing to the 1nS node and, correspondingly,

the greater the contrast effect. There will also be increased contrast to 2nS , provided the model

parameters are chosen such that the increased rehearsal of the 2nS node during the interval

between 2nS and 1nS is not offset by increased decay during the interval between 1nS and nS

(or if, as Brown et al., 2008, suggest, the redirection of rehearsal activity continues for more than

one trial.) The selective attention mechanism embodied in Brown et al.’s SAMBA model

therefore successfully predicts the key pattern of results found in the current experiments.

According to SAMBA, the magnitude estimate produced by the selective attention stage

is fed into Lacouture and Marley’s (1995) mapping model, the outputs of which serve as inputs

to ballistic accumulators (Brown & Heathcote, 2005) which produce the final response. Residual

activation in the ballistic accumulators is responsible for assimilation to previous responses, and
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this effect is predicted to decrease over time. The current experiments found the predicted

response assimilation, and although we did not observe a decline in this effect when the ISI was

increased this may simply reflect a slow decay in ballistic accumulator activity. Crucially, the

selective attention mechanism is not tied to the other elements of SAMBA. The selective

attention component of SAMBA represents a general idea which may be incorporated into other

psychophysical models, including ones which provide different explanations for response

assimilation.

The selective attention component of SAMBA provides the only account of sequential

effects which correctly predicts that increasing the ISI will increase contrast to preceding stimuli.

However, there is one aspect of the current data which is potentially problematic for this account,

namely that the stimulus-response regression analyses provide little evidence for contrast to 1nS

in the short ISI conditions. In Experiment 1, the mean coefficient for 1nS in the Short condition

was 0.009 (Table 1). In Experiment 2, the stimulus-response regression produced mean

coefficients for 1nS of 0.030 in the S,S condition and 0.029 in the L,S condition (see the lower

half of Table 2). One sample t-tests established that none of these coefficients are significantly

different from zero. Mori and Ward (1995) similarly found that the coefficients for 1nS were

sometimes positive, although they are typically strongly negative in the absence of feedback (see

also Mori, 1998). We do not regard this as a serious problem because the selective attention

mechanism is only expected to produce weak contrast to 1nS when the ISI is short, and the

coefficients obtained from the stimulus-response regression used to identify stimulus-specific

effects are noisy because of the multicollinearity among stimuli and response predictor variables.

However, should future experiments find significant assimilation to 1nS (when 1nR is included

in the regression model), the selective attention explanation will need to be modified.
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The current results have applicability beyond absolute identification. DeCarlo (1992)

varied the ISI in a magnitude estimation experiment and found that, when a stimulus-response

regression was used, there was contrast to 1nS which became more pronounced as the ISI

increased. DeCarlo suggested that this pattern indicated a mis-specification of the regression

model. However, the selective attention component of SAMBA produces a magnitude estimate

and Marley and Cook (1986) developed a model for magnitude estimation based upon this

mechanism but without the redirection of rehearsal activity which produces contrast. If the re-

direction of rehearsal activity to recently presented stimuli assumed by SAMBA also occurs in

magnitude estimation experiments, then this might provide an explanation for DeCarlo’s result.

That is, in magnitude estimation, as in absolute identification, preferential rehearsal of recent

items may produce contrast to preceding stimuli, the magnitude of which increases with

increasing time between trials. Similarly, the current results argue against the idea that sequential

effects result from confusion of items in memory or shifts in response criteria. Both of these

ideas have been invoked as explanations for sequential effects in other psychophysical tasks

(e.g., Lockhead, 1992; 2004; Treisman, 1984; Treisman & Williams, 1984); their failure to

capture the pattern in absolute identification casts doubt on their applicability in these situations,

too.

One outstanding question concerns the reason for redirecting rehearsal activity to the

most recently presented stimuli. This redirection produces contrast and also underlies the

increase in contrast which results from increasing the ISI. Since contrast shifts the participant’s

response away from the correct value, we might ask what function the preferential rehearsal

serves. In the real-world, recently presented stimuli are likely to occur again in the near future

(Treisman, 1985). It may be that selectively attending to the most recent stimuli reduces the
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perceptual noise in the representation of these items, thereby improving the accuracy with which

likely future stimuli are represented. In absolute identification tasks, perceptual noise is usually

so small as to be irrelevant, but under other conditions the redirected rehearsal activity may

improve performance. Alternatively, the preferential rehearsal of recent items may serve as a

general tracking mechanism such that, if the range or distribution of stimuli suddenly change

(e.g., Ward, 1987), the system reallocates rehearsal activity to the new values.
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Footnotes

1 When separate regression analyses are conducted for a number of different participants, it is

common to use inferential statistics, such as t-tests and ANOVA, to test whether the mean

coefficients differ from zero or differ between conditions (Lorch & Myers, 1990). However, an

alternative, arguably superior, approach is provided by multi-level analysis (Raudenbush &

Bryk, 2002). For all of the analyses reported here we conducted corresponding multilevel

analyses and found the same pattern of significant results.

2 A reviewer asked whether the results for the subject averaged data reflected the findings from

individual participants. In the stimulus-only regression, the 1nS coefficient decreased when the

ISI was lengthened for 27 of the 37 participants (p = .008, two-tailed Binomial test) and the 2nS

coefficient decreased for 25 of the 37 participants (p = .047). The coefficients for the nS , 3nS ,

4nS and 5nS terms decreased for 17, 15, 22 and 18 participants, respectively (all ps > .3). For

the stimulus-response regression, increasing the ISI led to a decrease in the 1nS coefficient for

26 of the 37 participants (p = .02). Similarly, 26 participants showed a decrease in the coefficient

for 2nS . The coefficients for nS , 1nR and 2nR decreased for 15, 17 and 15 participants,

respectively (all ps > 0.3). These results match those of the averaged data.

3 In addition to Equations 1 and 2, several alternative regression equations for the assessment of

sequential effects have been proposed (Lockhead 1984; Lockhead & King, 1983; DeCarlo &

Cross, 1990; in addition, a reviewer suggested regressing the current response only on the
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preceding sequence of responses). These approaches produced the essentially the same results as

those reported here.
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Tables

Table 1. Regression coefficients for the stimulus-only regression (Equation 1) and stimulus-

response regression (Equation 2) from Experiment 1.

Predictor or
2R

Mean SD F(1,35) 2
p p

Short Long Short Long

Stimulus-only regression (Equation 1)

nS 0.877 0.888 0.067 0.073 1.36 .04 .252

1nS 0.042 -0.005 0.046 0.059 19.44 .36 <.001

2nS -0.037 -0.059 0.029 0.030 14.40 .29 .001

3nS -0.034 -0.032 0.025 0.031 0.09 .00 .765

4nS -0.021 -0.022 0.029 0.022 0.01 .00 .930

5nS -0.014 -0.015 0.027 0.030 0.00 .00 .991

2R 0.855 0.860 0.072 0.071

Stimulus-response regression (Equation 2)

nS 0.877 0.887 0.066 0.073 1.24 .03 .274

1nS 0.009 -0.047 0.078 0.110 11.29 .24 .002

1nR 0.040 0.049 0.081 0.082 0.34 .01 .565

2nS -0.032 -0.066 0.067 0.071 5.30 .13 .027

2nR -0.008 0.015 0.062 0.072 2.22 .06 .145

2R 0.852 0.859 0.072 0.071
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Table 2. Regression coefficients for the stimulus-only (Equation 1) and stimulus-response

regression (Equation 2) analyses for Experiment 2.

Predictor
or 2R

Mean SD

S,S S,L L,S L,L S,S S,L L,S L,L

Stimulus-only regression

nS 0.880 0.887 0.859 0.907 0.074 0.088 0.082 0.066

1nS 0.068 -0.010 0.080 -0.011 0.069 0.076 0.068 0.066

2nS -0.015 -0.038 -0.025 -0.064 0.057 0.048 0.047 0.054

2R 0.852 0.831 0.846 0.857 0.081 0.097 0.084 0.081

Stimulus-response regression

nS 0.885 0.890 0.864 0.908 0.074 0.088 0.079 0.068

1nS 0.030 -0.048 0.029 -0.080 0.113 0.155 0.128 0.141

1nR 0.043 0.046 0.059 0.079 0.107 0.148 0.115 0.133

2nS -0.033 -0.042 -0.048 -0.077 0.109 0.111 0.119 0.116

2nR 0.016 0.000 0.037 0.015 0.121 0.123 0.120 0.107
2R 0.861 0.836 0.857 0.863 0.074 0.094 0.076 0.082

Note. Column headings indicate 1,2  nnISI , nnISI ,1 durations: S = Short (4.5s), L = Long (9.0s)
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Table 3. ANOVA results for stimulus-only (Equation 1) and stimulus-response regression

(Equation 2) coefficient from Experiment 2.

Predictor 1,2  nnISI nnISI ,1 1,2  nnISI * nnISI ,1

F(1,35) 2
p p F(1,35) 2

p p F(1,35) 2
p p

Stimulus-only regression

nS 0.00 .00 .965 15.68 .31 <.001 5.48 .14 .025

1nS 0.39 .01 .537 40.70 .54 <.001 0.60 .02 .445

2nS 4.65 .12 .038 14.31 .29 <.001 0.96 .03 .335

Stimulus-response regression

nS 0.02 .00 .896 10.39 .23 .003 5.09 .13 .030

1nS 0.59 .02 .447 21.39 .38 <.001 0.63 .02 .431

1nR 1.44 .04 .239 0.39 .01 .535 0.19 .01 .662

2nS 1.44 .04 .239 1.01 .03 .321 0.31 .01 .583

2nR 0.98 .03 .329 0.86 .02 .360 0.04 .00 .853
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Figure Legends

Figure 1. Impulse plots for Experiment 1.

Figure 2. Impulse plots for Experiment 2.
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Figure 2.


