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Abstract

We report two experiments concerning the site of the principal nonlinearity in second-order stereopsis. The first exploits the
asymmetry in perceiving transparency with second-order stimuli found by Langley et al. (1998) (Proceedings of the Royal Society
of London B, 265, 1837–1845) i.e. the product of a positive-valued contrast envelope and a mean-zero carrier grating can be seen
transparently only when the disparities are consistent with the envelope appearing in front of the carrier. We measured the energy
at the envelope frequencies that must be added in order to negate this asymmetry. We report that this amplitude can be predicted
from the envelope sidebands and not from the magnitude of compressive pre-cortical nonlinearities measured by other researchers.
In the second experiment, contrast threshold elevations were measured for the discrimination of envelope disparities following
adaptation to sinusoidal gratings. It is reported that perception of the envelope’s depth was affected most when the adapting
grating was similar (in orientation and frequency) to the carrier, rather than to the contrast envelope. These results suggest that
the principal nonlinearity in second-order stereopsis is cortical, occurring after orientation- and frequency-selective linear filtering.
© 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A central issue in stereopsis concerns the way in
which left and right eyes views are combined to solve
the correspondence problem and to recover three di-
mensional scene structure. Conventional models posit
that matching relies on interocular correlation of
monocular band-pass signals (e.g. Poggio & Poggio,
1984; Ohzawa, DeAngelis & Freeman, 1990; Blake &
Wilson, 1991; Cormack, Stevenson & Schor, 1991;
DeAngelis, Ohzawa & Freeman, 1995; Mallot, Arndt &
Bulthoff, 1995; Fleet, Wagner & Heeger, 1996). But
there are classes of signals (often called non-Fourier or
second-order), the perception of which is not well cap-
tured by these models. Examples include texture
boundaries (Frisby & Mayhew, 1978), motion
boundaries (Halpern, 1991), and contrast envelopes
(Liu, Schor & Ramachandran, 1992; Sato & Nishida,

1993; Hess & Wilcox, 1994; Fleet & Langley, 1994b;
Sato & Nishida, 1994; Hibbard, Langley & Fleet, 1995;
Lin & Wilson, 1995; Wilcox & Hess, 1995, 1996, 1997).

There are several plausible models for second-order
visual processing, all of which involve an important
nonlinearity at some stage. There are single-channel
models that involve an early, pre-cortical nonlinearity
(e.g. Burton, 1973). Such models have received atten-
tion in the context of second-order motion (e.g. Brown,
1995; Scott-Samuel & Georgeson, 1995). According to
this model, the nonlinearity introduces a distortion
product into the visual signal at the frequencies of the
contrast envelope (Derrington & Badcock, 1986). This
distortion product would then be processed by a con-
ventional first-order model of binocular matching to
deliver the disparity information present in the second-
order signal.

There is increasing support, however, for a two-chan-
nel model. The two-channel models used to explain
stereopsis resemble those forwarded in visual motion,
with a separate channel for processing the second-order
signal (Chubb & Sperling, 1988; Turano & Pantle,
1989; Victor & Conte, 1992; Wilson, Ferrera & Yo,
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Fig. 1. Examples of the binocular stimuli. (A) A multiplicative combination of a vertically oriented contrast envelope and horizontal carrier
grating. (B) Each image shows an additive combination of two gratings like those in (A). Cross-eyed fusion of the image pairs yields a
transparency behind (left-center pair), or in front (center-right pair) of the horizontal grating.

1992; Zanker, 1993; Fleet & Langley, 1994a; Langley,
1997, 1999). These models differ in several ways, in-
cluding both the site and the mathematical form of the
nonlinearity. Many models suppose a cortical nonlin-
earity, so that the visual signal is processed by linear
filters tuned to spatial frequency and orientation before
the nonlinearity, and before second-order matching
takes place.

The form of linear filtering that precedes the nonlin-
earity is informative experimentally. If one finds that
this filtering is selective to spatial frequency and orien-
tation, then a cortical nonlinerity is implied. Con-
versely, if it is broad-band and isotropic then a
pre-cortical nonlinearity is implied, perhaps owing to
the compressive nonlinearity of neurons found in the
LGN (Sclar, Maunsell & Lennie, 1990; Scott-Samuel &
Georgeson, 1995). Similar issues exist concerning the
perception of monocular contrast envelopes (Burton,
1973; Henning, Hertz & Broadbent 1975; Derrington &
Badcock, 1986; Langley, Fleet & Hibbard, 1996;
Mareschal & Baker, 1998), and in the context of sec-
ond-order motion (Chubb & Sperling, 1988; Wilson et
al., 1992; Fleet & Langley, 1994a).

Wilcox and Hess (1996) posited that the nonlinearity
occurs before the binocular combination of monocular
signals. They also showed that second-order stereopsis
could be difficult when the carrier orientations in con-
trast-modulated inputs where different, suggesting that
orientation-specific processing precedes the nonlinear-
ity. In contrast, Langley, Fleet and Hibbard (1998) (see
also Liu et al., 1992) have shown that binocular depth
perception from contrast envelopes is possible when
carrier gratings differ significantly in spatial frequency.

The reasons for this discrepancy could reflect differ-
ences in the paradigms and stimuli used.

This paper addresses the site of the nonlinearity with
two experiments. The first exploits the results of Lang-
ley et al. (1998) who examined disparity thresholds for
sums (first-order) and products (second-order) of binoc-
ular gratings like those used here (see Fig. 1). They
found that, when viewed binocularly, the sum of two
1-d gratings of different spatial frequency and orienta-
tion may be seen transparently. Either grating can be
perceived in front of or behind the other, depending on
the disparities of the respective gratings. When the same
two gratings were multiplied together transparency also
occurred, but there was an asymmetry. The contrast
envelope was only perceived in a separate depth plane
when in front of the carrier; it was never seen as the
underlaying surface.

To explain the depth asymmetry Langley et al. (1998)
(see also Kersten, 1991) applied the constraints on the
perception of monocular transparency proposed by
Metelli (1974): (i) no matter how a monocular transpar-
ency is produced, the overlaying transparent surface
must not change the order of luminance values reflected
from the underlaying surface; and (ii) when lightness
values are attenuated by a transparent surface, local
differences in lightness seen through the transparent
surface must be less than those seen without the trans-
parent surface. If one assumes that these constraints
influence binocular depth perception, then the asymme-
try can be explained.

Metelli’s constraints also predict that the product of
the two positive-valued signals used in our study may
be perceived symmetrically in depth; either signal may
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be seen in-front of or behind the other. This is because
both signals satisfy Metelli’s monocular constraints on
transparency so that a monocular cue could not be used
by the visual system to influence binocular depth per-
ception (see also Beck, 1984; Beck, Prazdny & Ivry,
1984; Kersten, 1991). This case, consistent with the
results of Langley et al. (1998), is exploited in the first
experiment here. In particular, one can add power at
the envelope frequencies to a second-order signal to
create a stimulus that is equal to a product of positive-
valued gratings, and is therefore perceived symmetri-
cally transparent. Here, we measured the amplitude of
additive signal at envelope frequencies that was re-
quired to override the depth asymmetry. We then com-
pared these thresholds to those predicted from two
models, namely, a single channel model with a com-
pressive nonlinearity as measured in other studies
(Brown, 1995; Scott-Samuel & Georgeson, 1995), and a
model that depends on the energy of the second-order
signal. We report that this amplitude may be predicted
from the sum of the contrast envelopes sidebands1

rather than that expected from the magnitude of pre-
cortical nonlinearities as measured in other studies
(Burton, 1973; Henning et al., 1975; Sclar et al., 1990;
Scott-Samuel & Georgeson, 1995).

In our second experiment, subjects were adapted to a
high contrast sinusoidal grating and then asked to
detect the relative depth of the contrast envelope in a
contrast-modulated test stimulus. If the site of adapta-
tion was after the nonlinearity, then one would expect
the most effective adapting frequencies to be similar to
those of the envelope. If the site of the adaptation was
before the nonlinearity, then we would expect that the
carrier frequency would make the most effective adapt-
ing stimulus. If the effect of the adaptation was strongly
orientation- and frequency-specific, then this implies
that it occurs in visual cortex. We report that adapta-
tion caused the largest threshold elevations when the
frequency and orientation of the adapting grating were
close to the carrier rather than to the envelope. More-
over, the adaptation was orientation and frequency
specific. From these data, we conclude that the site of
the nonlinearity occurs in the cortex, after orientation
and frequency selective filtering.

2. Methods

2.1. Subjects

Three subjects were used for each experiment. Two
subjects were authors. The third subject did not know

the purpose of the experiments. All subjects had normal
or corrected-to-normal vision.

2.2. Apparatus

Binocular images were presented on a SONY moni-
tor with a refresh rate of 76 Hz and 256 grey scales.
Eight-bit quantization, although crude, was thought
sufficient because contrast thresholds for the discrimi-
nation of envelope disparity in our experiments were
typically close to 2%. The luminance of the monitor
was linearised by taking luminance measurements with
a photometer, to which a logarithmic curve was fitted
and a linear lookup table generated. The residual error
from the fitted curve was no more than 0.2% of the
luminance at any one of the sample points. The mean
luminance was 37.7 cd m−2.

Experiments were carried out in a darkened room.
The only visible illumination originated from the moni-
tor. A modified Wheatstone stereoscope was used to
view the binocular images on a single monitor. The
distance from the screen to the stereoscope was 44 cm.
The stereoscope was adjusted so that the stereo image
pairs were aligned using parallel viewing geometry. The
visual extent of each monocular image was 7.9°. Image
pixels were square with a width of 2.0 min. A fixation
spot was used as a reference point to help keep ver-
gence fixed.

2.3. Stimuli

The basic second-order stimuli were contrast-modu-
lated sinusoidal gratings. Some examples are shown in
Fig. 1A. The envelope, 0.5(1+mE(x, y)), was an ap-
proximation to a square-wave grating formed by sum-
ming the first and third harmonics. Here, m is the depth
of modulation (between zero and one), and E(x, y) is
given by:

E(x, y)=a
�

sin(vx)+
1
3

sin(3vx)
n

(1)

where v is the fundamental frequency of the envelope,
and a is chosen so that E oscillates between 1 and −1.

Given the envelope and a carrier, C(x, y), the math-
ematical form of the left and right contrast-modulated
test stimuli is:

Tl(x, y)=
m

2
�

1+
a
2

(1+mE(x+d/2, y))C(x, y)
n

, (2)

Tr(x, y)=
m

2
�

1+
a
2

(1+mE(x−d/2,y))C(x, y)
n

. (3)

where m is the mean luminance, a denotes the contrast
of the carrier prior to the contrast modulation, and d is
the positional disparity. The stimuli were visible only
within a circular window as shown in Fig. 1. For

1 The sidebands are the frequencies on either side of the carrier
frequency at which there is nonzero power. These sidebands grow in
amplitude with the depth of contrast modulation.
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Experiment 1, the surrounds of the circular window
were black as in Fig. 1. In Experiment 2, the sur-
rounds were equal to the mean luminance. For all
these experiments, C(x, y) was a horizontal sinusoidal
grating. Its spatial frequency was either 2.25 or 4.5
cycles per degree (cpd).

2.4. Procedure

Subjects were seated with their heads stabilized in a
chin rest in front of the Wheatstone stereoscope.
They responded using a computer mouse in forced-
choice discrimination tasks. In Experiment 1 subjects
were asked to respond as quickly as they could, but
were not constrained by the viewing time otherwise.
In Experiment 2, the adaptation experiment, the test
image was presented for 500 ms following the adapt-
ing grating.

3. Experiment 1

The purpose of this experiment was to determine
whether a pre-cortical nonlinearity can account for
second-order stereopsis. Towards this end, we exam-
ined two models. The first model involves an early
compressive nonlinearity like that given by the
Naka–Rushton receptor equation (Scott-Samuel &
Georgeson, 1995). As discussed in Appendix A (also
see Burton, 1973; Henning et al., 1975; Brown 1995;
Scott-Samuel & Georgeson, 1995), a compressive non-
linearity applied to a contrast-modulated signal intro-
duces a distortion product at the frequency of the
contrast envelope. The distortion product is 180° out
of phase with the envelope, and its amplitude at the
envelope frequency increases as a function of modula-
tion depth and the square of image contrast.

An alternative model posits that the strength of the
envelopes disparity signal depends upon the amplitude
of the carriers sideband frequencies. The amplitude of
the sidebands is a measure of the energy in the sec-
ond-order signal. Eq. (11) of the appendix shows that
this model predicts that the amplitude of the envelope
signal increases linearly as a function of modulation
depth and contrast. These predictions are different
from the compressive nonlinearity model because of
the different linear coefficients that govern the effect
of modulation depth, and because of the linear versus
quadratic dependence on contrast.

To decide between the two models, we exploited
the depth asymmetry found for contrast envelopes
(Fleet & Langley, 1994b; Hibbard et al., 1995; Hib-
bard, 1997; Langley et al., 1998). We measured the
contrast of an additive contribution of E(x, y) that
was required to override the depth asymmetry, so
that E(x, y) could be seen transparently at a different

depth behind, or in front of, the carrier. The stimuli
were similar to those in Eqs. (2) and (3), but with an
additive contribution of E(x, y):

Tl(x, y)=
m

2
�

1+bE(x+d/2, y)

+
a
2

(1+mE(x+d/2, y))C(x, y)
n

, (4)

Tr(x, y)=
m

2
�

1+bE(x−d/2, y)

+
a
2

(1+mE(x−d/2, y))C(x, y)
n

. (5)

where m is the mean luminance, b is the contrast of
the additive contribution of E(x, y), a is the mean
contrast of the original contrast-modulated term, and
a and b are constrained so that a+bB1. In different
sessions, we varied the modulation depth m of the
envelope so we could test the predictions of each
model. The range of m that we tested is shown in
Fig. 2B. In order to have a wide range of contrasts
available at which we could test for the threshold of
b, the contrast of the carrier, a, was fixed at 0.3. The
spatial frequencies of E(x, y) and C(x, y) were 0.45
and 4.5 cpd, respectively. Note that while a distortion
product introduces power that is 180° out of phase
with the envelope, the additive signal here is in-phase
with the envelope.

In each trial, subjects reported whether the com-
bined envelope and luminance signal (referred to be-
low as the hybrid envelope) was seen behind the
horizontal grating. When b was sufficiently large, sub-
jects reported that the horizontal carrier was per-
ceived in the depth plane of the fixation spot (Wurger
& Landy, 1989; Langley et al., 1998), with the hybrid
envelope appearing transparently behind it. On the
other hand, when b was small, subjects reported a flat
(coherent) surface. This can verified by cross-eyed fu-
sion of Fig. 1A. The disparity of the envelope was
uncrossed and fixed at 20 min. At this disparity, with
b=0, all subjects reported a flat (coherent) surface.

Within a single session (for a fixed value of m), the
contrast of the additive signal, b, was controlled from
trial to trial in an adaptive fashion using APE (Watt
& Andrews, 1981). Psychometric functions were fitted
to the data. The magnitude of b at which the subjects
reported that the carrier lay in front of the hybrid
envelope on 50% of the trials was taken as the con-
trast threshold. Each session was repeated three times
to obtain threshold values for each condition.

4. Results and discussion

Fig. 2 summarizes the results. Fig. 2A shows JBs
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Fig. 2. (A) A psychometric function from subject JB shows the probability of perceiving transparency as a function of the contrast, b, of the added
signal. The envelope modulation depth was 0.5. The threshold represents the value of b required by subjects to see transparency on 50% of the
trials such that the hybrid envelope was reported to lie behind the carrier. The psychometric function was generated using APE. It should be noted
that during each session, the number of trials at each contrast level would have been different because APE is an adaptive method. (B)
Transparency thresholds are shown as a function of modulation depth. The error bars represent the standard error of subjects 50% thresholds over
three different sessions.

psychometric function for one session, when m=0.5.
As the contrast b increased, the percept of transparency
(i.e. ones ability to observe the vertical structure at a
different depth than the horizontal structure) became
more likely. Fig. 2B shows the contrast of the additive
signal that was required to perceive the hybrid envelope
behind the carrier on 50% of the trials, averaged over
all three subjects. Notice that this contrast threshold
increases with modulation depth. For the modulations
depths studied, a linear regression, weighted by the
inverse variance from each subjects measurements,
yielded slopes of 0.2390.17 (KL), 0.2990.21 (JB),
and 0.1090.04 (PB) with intercepts of 0.0490.07,
0.0990.10, and 0.0790.02, respectively2. The mean
slope averaged across all three subjects, again weighted
by the inverse variance of each subjects measurements,
was found to be 0.21190.09.

We now consider which of the models discussed
above might account for the data in Fig. 2. In
particular, we consider one model based upon
distortion products introduced by an early
Naka–Rushton nonlinearity like that proposed by
Scott-Samuel and Georgeson (1995). We also consider
a model in which the contrast envelope is explicitly
extracted by, for example, a quadratic nonlinearity
often used in an energy mechanism. The appendix
explains some specific predictions of these two models
that are used below.

The first problem with the early nonlinearity model
concerns the expected amplitude of the distortion
product. We applied the Naka–Rushton nonlinearity
to our stimuli with the parameters determined by
Scott-Samuel and Georgeson (1995) and found that
the amplitudes of the distortions products were too
small. For example, in the condition shown in Fig. 2,
with m=0.5 and a=0.3, the contrast of the
envelopes distortion product was estimated at 0.007.
However, a 0.45 cpd luminance grating alone at this
contrast is insufficient to yield a depth percept. By
comparison, Fig. 3B shows that the mean disparity
thresholds when the modulation depth was zero
(which is a simple additive transparency condition as
shown in Fig. 1B) was 0.0690.04. Therefore, the
amplitude of the distortion products introduced by
the Naka–Rushton nonlinearity are below the
contrast threshold required to produce a reliable
disparity signal for the stimuli used in our
experiments.

Eq. (10) in the appendix also shows that, according
to this form of nonlinearity, the contrast b required
to override the asymmetry should increase as a
function of modulation depth with a slope close to
0.0144. As calculated from Fig. 2, the mean slope for
the three subjects was 0.2190.09. This value departs
significantly the predicted value of 0.0144 that was
obtained from the pre-cortical nonlinearity model.

Finally, concerning the pre-cortical nonlinearity
model, it is interesting to note that the distortion

2 Each measurement reported here is given with a 95% confidence
interval taken from a two-tailed students t-distribution.
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product and the additive signal bE(x, y) are expected to
be 180° out of phase. Therefore one might expect that
there should be a value of b for which they combine
destructively and cancel. In this case one would expect
no resultant disparity cue and a loss in depth sensation.
We found no circumstances in which added luminance
information nulled the depth signal in the contrast
envelope. This was also the case when we added lumi-
nance information to only one eye’s input. By similar
arguments, an early compressive nonlinearity would not
account for the data reported by Lin and Wilson
(1995). They showed that a binocular depth signal
could be detected between a luminance and contrast
defined D6 Gaussian. These data may not be predicted
from a pre-cortical nonlinearity model because the D6
Gaussian distortion products would be out-of-phase
with the luminance defined signal. Unlike periodic sig-
nals, a disparity signal from two phase-reversed Gaus-
sian functions may not be detected by a first-order
process.

Instead of looking to a pre-cortical nonlinearity to
explain the data in Fig. 2B, one might consider a
cortical nonlinearity that extracts the modulating envel-
ope after band-pass filtering. With such a model, one
can show that the amplitude of the modulating envel-
ope is a linear function of the amplitude of the carrier
sidebands. As discussed in the appendix, one can show
that the sideband amplitudes will vary linearly with the
contrast a and with the depth of modulation m. In
particular, with a=0.3 in the experiment here, it pre-
dicts that the sideband amplitudes should increase lin-
early as a function of m with a slope of 0.138. This is
much closer to the average slope of 0.21 found from
Fig. 2B than the slope predicted by the early nonlinear-
ity model above.

This view is also consistent with the predictions
obtained from Metellis’ (1974) monocular constraints
on transparency; namely, that the product of two posi-
tive-valued functions may be perceived symmetrically in
front of, or behind each other. With our stimuli it is
easy to show that, when b=am/2 the stimulus in Eq.
(3) is equivalent to a product of two positive-valued
signals. In this case:

Tl(x, y)=

m

2
�

1+bE(x+d/2, y)+
a
2
(1+mE(x+d/2, y))C(x, y)

n
,

=
m

2
��

1−
a
2
�

+
a
2

(1+mE(x+d/2, y))(1+C(x, y))
n

.

(6)

When b=am/2 the signal in Eq. (6) is equal to a
product of two-positive valued signals. Moreover, this
relationship between b, the depth of modulation m, and
the contrast a, is very close to that in Eq. (11) that

describes the amplitude of the signals sideband fre-
quency components (after the signal has been com-
pressed by a Naka–Rushton nonlinearity). It provides
another way to predict the threshold on b at which
transparent depth perception occurs (see also Langley
& Hibbard, 1994).

Finally, it is worth noting that Langley et al. (1998)
showed that transparent depth perception for additive
combinations of the same signals used here are per-
ceived symmetrically. In addition to those results, the
experiments reported here show that the product of the
same two signals (when each is defined as a positive-
valued function) may also be perceived symmetrically
transparent. These observations rule out the possibility
that the depth asymmetry found for contrast envelopes
occurs solely because of different additive versus multi-
plicative combination rules that were used to construct
the stimuli. It points to our hypothesis that binocular
asymmetries reflect a property of second-order process-
ing, consistent with a two-channel model.

5. Experiment 2

In our second experiment, subjects were first adapted
to a high contrast sinusoidal grating, and then asked to
report the relative depth of the envelope in a contrast-
modulated test stimulus. The premise behind the exper-
iment was that, if the site of adaptation was after the
nonlinearity, then the envelope signal would be present
(as a first-order signal), and one would therefore expect
that the most effective adapting frequencies would be
close to the envelope frequency. If the site of the
adaptation was before the nonlinearity, then the envel-
ope signal remains implicit in the sideband frequencies
near the carrier. Therefore we would expect that adap-
tation to frequencies near the carrier would affect the
perceived depth of the envelope significantly. In addi-
tion to these two factors, if the adaptation was strongly
orientation- and frequency-specific, then this implies
that it occurs in visual cortex. In this case one might
predict that contrast thresholds (as a function of the
adapting gratings frequency) would show the same
frequency and orientation dependent tuning as simple
cells found in area V1 of the visual cortex (Hubel, 1988;
De Valois & De Valois, 1990).

To explore these ideas, we used test stimuli that were
the same as those defined in Eqs. (2) and (3). The depth
of modulation m was fixed at unity, while the contrast
a was varied as an independent variable. In these
experiments, the spatial frequency of the carrier grating
and the contrast envelope were varied in different
sessions.

Subjects were adapted to a 98%-contrast sinusoidal
grating for 2 min. The grating was counterphase flick-
ered at 4 Hz to reduce phase-dependent after effects
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Fig. 3. (A) Threshold elevations are shown as a function of the angle between the carrier and adapting grating. The frequencies of the carrier and
adapting gratings were identical. (B) Threshold elevations as a function of the adapting frequency. The carrier was parallel to the adapting grating.
The two carrier frequencies are indicated on the horizontal axis. (C) Threshold elevations as a function of the angle between the carrier and
adapting grating. The frequencies of the adapting grating and the envelope were equal. Error bars represent the standard error taken calculated
from each subjects mean thresholds.

(Georgeson, 1987). Subjects were then shown a binocu-
lar test stimulus like that in Fig. 1A for 500 ms and
asked to report whether the contrast envelope was in
front or behind a fixation spot. This was immediately
followed by a top-up adaptation period of 6 s, followed
by another test stimulus on each subsequent trial. The
contrast of the test stimulus (a in Eqs. (2) and (3)) was
varied using the method of constant stimuli.

Baseline contrast thresholds were measured before
each session by repeating the same task without an
adapting grating. These data were obtained so that we
could compute threshold elevations after adaptation as
a multiple of the baseline threshold.

A logistic function (ranging from 0.5 to 1) was fitted
to the data taken from each subject in each session.
From the resulting psychometric curves, 75%-correct
disparity thresholds were measured. Each measurement
was divided by the 75%-correct disparity thresholds
taken from the baseline task to obtain the threshold
elevations. Each session consisted of test images pre-
sented at ten different contrast levels, eight times each.

Each session was repeated three times, yielding 24
trials at each contrast level. Three sets of sessions were
run:
� In the first set of sessions the frequency of the

adapting grating was equal to the carrier frequency
in the test stimulus, and we varied the angle between
the adapting grating and the carrier grating. This
allowed us to examine the importance of orientation
when adapting frequencies were close to the carrier.
We used angles of 0, 10, 25, 45, and 90°. The carrier
frequency was 4.5 cpd. The fundamental frequency
of the contrast envelope was 0.45 cpd.

� In the second set, the spatial frequency of the adapt-
ing grating was varied, but the orientations of the
carrier and adapting grating were identical. Two
carrier frequencies (2.25 and 4.5 cpd) were used to
show spatial frequency tuning. The frequencies of
the adapting gratings differed from the carrier by
factors of, 0.5, 1.0, 1.414 and 2. We also used an
adapting frequency that was equal to the fundamen-
tal frequency of the envelope and one that was 1
octave lower than the envelope frequency.

� In the third set, the frequency of the adapting grat-
ing was equal to the fundamental frequency of the
envelope. Then we varied the angle between the
adapting grating and the carrier, using angles of 0,
45 and 90°. Because the carrier and envelope are
perpendicular, when the orientation between the
adapting grating and carrier was 90°, the adapting
grating and envelope were parallel.

6. Results and discussion

Fig. 3 shows the threshold elevations averaged across
all duplicate sessions and all three subjects. Threshold
elevations were greatest when the adapting and carrier
signals were similar in frequency and orientation. These
trends are apparent from Fig. 3A and B. Fig. 3C shows
that threshold elevations remained small when we
adapted to the fundamental frequency of the envelope
rather than the frequency of the envelopes carrier grat-
ing. The figure suggests that threshold elevations were
affected by the orientation of the adapting grating
because the highest elevation occurred when the orien-
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tation of the adapting grating was equal to the carrier.
This trend in our data was, however, statistically
insignificant.

If the adaptation occurred after the principal nonlin-
earity of second-order processing, then one would not
expect threshold elevations to depend strongly on small
differences between the adapting grating and the carrier.
Instead, one might have expected the difference between
the adapting grating and the envelope to have had a
more a significant impact. A nonlinearity early in the
visual system would introduce Fourier energy at the
envelope frequencies, which could then be processed by
luminance channels tuned to the envelope rather than
the carrier. The data do not agree with these predictions;
the curve shapes exhibit orientation- and frequency-se-
lective tuning that depend upon the carrier frequency.
The data suggest that the luminance signal was pro-
cessed by orientation and frequency-selective channels
before the contrast envelope was detected, and that the
nonlinearity is therefore cortical. Also, note that because
the carrier in the test stimulus was oriented horizontally
these data imply that channels tuned to horizontal
orientations play a role in binocular matching.

Threshold elevations decay from their maxima in Fig.
3A and B by a factor of two after 25° in orientation and
1 octave in frequency. Similar results have been reported
in spatial vision, following contrast adaptation to sinu-
soidal gratings (De Valois & De Valois, 1990). These
tuning curves are often attributed to orientation-selec-
tive neurons in the primary visual cortex (Hubel, 1988).
These trends that further support the idea of a cortical
nonlinearity.

Similar results were obtained from an analogous
study on the effects of adaptation to spatial contrast
envelopes that were modulated by sinusoidal gratings
(Fleet & Langley, 1994b; Langley et al., 1996). These
previous experiments concerned contrast thresholds for
the detection of envelope orientation. Like the data
reported here, those experiments found that adaptation
to the envelopes carrier had the greatest influence on
contrast thresholds for orientation discrimination of the
envelope. One can note, however, that Langley et al. did
not test for adaptation at the spatial frequencies of the
contrast envelope, while these experiments did. There
was, however, one notable difference between the data
reported by Langley et al. (1996) and those found here.
In the spatial adaptation paradigm, the threshold eleva-
tions for contrast envelope’s reported by Langley et al.
(1996) were almost an order of magnitude larger than
the ones found here. There are two plausible explana-
tions for this difference. One was that baseline
thresholds for the envelope disparity task used here were
higher than those for envelope orientation discrimina-
tion. Thus, in the experiments reported here there was
less of a difference between the adapting contrast and

the test contrast. Another explanation may be the
disparity selectivity of adaptation, where adaptation to
a zero disparity grating mainly affects the detection of
disparities near zero (Blakemore & Hague, 1972). In the
experiment here the adapting pattern was at zero dispar-
ity but the test patterns had crossed or uncrossed
disparities. So one might again expect somewhat weaker
effects following contrast adaptation to an envelopes
carrier grating.

7. Conclusions

The data presented in this paper suggest that the site
of the principal nonlinearity in second-order stereopsis
is cortical. Experiment 1 showed that the amount of
additive Fourier power at envelope frequencies required
to over-ride the depth asymmetry reported by Langley
et al. (1998) is inconsistent with a pre-cortical nonlinear-
ity like that examined by Scott-Samuel and Georgeson
(1995). Rather, it is consistent with an influence of
Metelli’s monocular constraints on binocular transpar-
ency, and with the energy contained in the sidebands of
the contrast modulated stimuli. Experiment 2, showed
that adaptation to the orientation and spatial frequency
of the carrier has a more significant impact on one’s
sensitivity to the contrast envelope. These results suggest
that the significant nonlinearity used to extract the
envelope information followed orientation and fre-
quency selective filtering and occurred in the visual
cortex.

In light of this, one remaining question concerns the
purpose of the early nonlinearities reported by other
researchers (Burton, 1973; Henning et al., 1975; Scott-
Samuel & Georgeson, 1995). One possible account is
based on the anatomical constraints of transmitting
retinal image signals via the LGN and optic nerve to the
primary visual cortex. The transmission of information
by neurons is limited by three factors: (i) transmission
bandwidth, (ii) spike rate and (iii) shot noise (Laughlin,
1994). To transmit a faithful representation of the retinal
image, Laughlin (1994) proposed that vertebrate visual
systems optimise the coding of contrast at the earliest
opportunity. One optimisation technique may be to
introduce a nonlinear (say logarithmic or Naka–Rush-
ton) compression prior to transmission. This process
would offer a higher signal to (quantization) noise ratio
in comparison to a linear quantization, especially when
transmission bandwidth is limited (e.g. Schwartz, 1987).
Following such compression, an inverse transformation
is necessary to recover the original signal. Such inverse
transformations are generally ill-conditioned and hence
noisy. Inverse transformations of this form may also
introduce expansive nonlinearities into the processed
signal (Schwartz, 1987). Whether these inverse transfor-
mations occur is a potential topic of further research.
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This perspective suggests that both expansive and
compressive signal nonlinearities may be present in the
visual cortex, but that their sources would be different.
One would expect compressive nonlinearities to have
been introduced early, soon after reception of the visual
signal by the photoreceptors (cf. Burton, 1973; Sclar et
al., 1990; Scott-Samuel & Georgeson, 1995). Con-
versely, expansive nonlinearities would be apparent
much later, perhaps in the cortex. Harris and Smallman
(1995) found evidence for expansive nonlinearities
which they thought to be cortical in origin. These
expansive nonlinearities could reflect imperfections that
occurred during the encoding, transmission and recep-
tion of the signals from the retina.

Given that the significant nonlinearity used to detect
second-order signals is cortical, there remain two mod-
els to consider. There are single-channel models that
exploit an explicit logarithmic nonlinearity after orien-
tation and frequency selective filtering (Langley, 1999).
There are also two-channel models in which first and
second-order signals are processed by independent first-
order filters (Liu et al., 1992; Sato & Nishida, 1993;
Hess & Wilcox, 1994; Sato & Nishida, 1994; Hibbard et
al., 1995; Lin & Wilson, 1995; Wilcox & Hess, 1995,
1996, 1997). These two-channel models of binocular
matching resemble those used to explain perception for
second-order motion (Chubb & Sperling, 1988; Wilson
et al., 1992; Zanker, 1993; Fleet & Langley, 1994a).

The model proposed by Langley (1999) involved a
logarithmic transformation in order to linearise multi-
plicative combinations of image signals. Provided that
the mean luminance of image has been removed by
some pre-filtering, the logarithm transforms the nonlin-
ear product of a contrast envelope and carrier signal
into a sum of these two signals. Following a transfor-
mation of this form, it is feasible that a single model of
binocular depth detection could then be used to explain
binocular matching for both first and second-order
signals as in the models proposed by Weinshall (1991)
and Parker, Johnston, Mansfield and Yang (1991).

This model might predict that the visual system has
the capacity to detect binocular signals that are cor-
rupted by multiplicative noise (e.g. Franks, 1969). It
might also explain some results of other researchers
who have used similar stimuli to identify properties of
the postulated second-order channel (e.g. Liu et al.,
1992; Sato & Nishida, 1993; Lin & Wilson, 1995;
Wilcox & Hess, 1995, 1996, 1997). However, this single-
channel model would not explain depth asymmetries
reported for second-order signals (Frisby & Mayhew,
1978; Halpern, 1991; Kersten, 1991; Sato & Nishida,
1994; Hibbard et al., 1995; Langley et al., 1998). This is
because this single-channel model does not determine
the origin of each disparity cue, whether first or second-
order. Using the same reasoning, a pre-cortical nonlin-
earity model would also find it difficult to account for
the depth asymmetry.

Taken together with the results of others, the results
reported here support the hypothesis that, for stereop-
sis, contrast envelopes are detected by a cortical nonlin-
earity, and that first and second-order signal
combinations may be processed by different
mechanisms.
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Appendix A. Naka–Rushton receptor nonlinearity

Scott-Samuel and Georgeson (1995) have measured
the magnitude of early visual nonlinearities (also see
Brown (1995)). They temporally interleaved two spatial
stimuli, one equal to the product of two gratings, and
one equal to the sum of the same two gratings. In
successive presentations of the product (every second
frame), the contrast envelope was phase shifted by 180°.
So there is no motion cue from the envelope alone.
Similarly, in each successive presentation of the sum,
the phase of the envelope component was phase shifted
by 180° to remove motion cues in the sum signal.
Finally, successive presentations of the envelope in the
product were phase shifted 90° from the corresponding
component in the sum.

An early compressive nonlinearity applied to the
contrast-modulated signal produces a distortion
product, containing energy at the envelope frequencies.
Moreover, there are only 90° phase shifts between a
distortion product in one frame and the corresponding
Fourier components of the sum in the next frame. This
gives rise to a first-order motion signal. In their experi-
ments, Scott-Samuel and Georgeson varied the ampli-
tude of the envelope components in the sum to find the
contrast threshold at which this first-order motion sig-
nal could be nulled.

To model the early nonlinearity they used a Naka–
Rushton receptor equation (e.g. Sclar et al., 1990) the
response of which is given by:

R(x)=
T(x)

T(x)+S
(7)

where S is a semi-saturation constant, and T(x) the
input signal (scaled to have a maximum value of one).
This model was found to give a good fit to their
contrast threshold data with semi-saturation constants
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Fig. 4. Fourier spectrum (cycles per pixel) for the contrast modulated signal in Eq. (9) after being passed through a Naka–Rushton compressive
nonlinearity. (A): Spectrum obtained for contrast-modulation depth and a semi-saturation constant of unity. (B) Spectrum obtained by reducing
the mean contrast of the signal by one-third. In comparing the figures, note that the magnitude of the distortion product is reduced by changes
in contrast as predicted by Eq. (11).

between 1.0 and 2.8. Scott-Samuel and Georgeson also
found that the amplitude of distortion products in-
creased with increasing temporal frequency. As noted
by Sclar et al. (1990), the responses of motion sensitive
neurons within magnocellular areas of the macaque
LGN show greater compressive responses at high con-
trast than cells in parvocellular areas. If this occurs in
human visual processing also, then we may regard these
estimates of early nonlinearities as somewhat conserva-
tive because our stimuli were static. In what follows we
consider this model with S= l as it produces the largest
distortion products into the transformed signal.

The basic stimuli used in the experiments here were
one dimensional, of the form:

T(x)=
m

2
�

1+
a
2

(1+mE(x))C(x)
n

(8)

To normalize this signal to have values between 0 and
1, we divide by m to obtain:

T(x)=
1
2
+

a
4

(1+mE(x))C(x) (9)

where 05a5 l is the amplitude of the carrier grating,
E(x) is an approximation to a square-wave grating, and
05m51 is the modulation depth. To understand the
effect of the nonlinearity, we apply the compressive
nonlinearity in Eq. (7) to the signal given by Eq. (9) to
obtain R(x). The Fourier spectrum of R(x) then gives
us the spectrum of the transformed signal which in-
cludes the distortion product at the envelope frequen-
cies.Fig. 4 shows the Fourier spectra of R(x) in two
cases, namely, when a=1 and when a=1/3 (where
S=1 and m=1). From the Fourier spectrum, at the

frequencies of the envelope, we measured the amplitude
of the distortion product as a function of contrast a
(between 0.3 and 1.0) and modulation depth m (be-
tween 0 and 1.0). From these measurements we found
that the amplitude Db of the distortion product at
envelope frequencies increases approximately linearly
with modulation depth, and approximately quadrati-
cally with the carrier amplitude. Our fit to these data
produced the following relation:

Db=0.16 a2 m (10)

This equation allows us to calculate the expected ampli-
tude of early nonlinearities introduced as a function of
carrier contrast and modulation depth. In particular,
with a contrast of a=0.3, like that used in Experiment
1, we might expect contrast thresholds that depend
linearity on m with a slope of 0.0144.

Alternatively, one might suppose that the critical
source of information is the amplitude of the carriers
sidebands. Using the same approach as above, after
applying the nonlinearity to Eq. (9), we measured the
amplitude Ds of the sidebands in R(x), and found that
they vary linearly with m and a, that is:

Ds=0.46 a m (11)

Note that if we had ignored the nonlinearity, then it is
easy to show that the sideband amplitudes should equal
am
2

; with the nonlinearity it is slightly different.

A comparison of Eqs. (10) and (11) shows that the
amplitude of the sidebands increases with a greater
slope (as a function of modulation depth) than the
amplitude of the distortion product introduced by the
early nonlinearity.
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