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As enhanced fronto-parietal network has been suggested to support reasoning ability
of math-gifted adolescents, the main goal of this EEG source analysis is to investigate
the temporal binding of the gamma-band (30–60 Hz) synchronization between frontal and
parietal cortices in adolescents with exceptional mathematical ability, including the func-
tional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-
parietal network (phase-locking durations and network lability in time domain), and the
self-organized criticality of synchronizing oscillation. Compared with the average-ability
subjects, the math-gifted adolescents show a highly integrated fronto-parietal network
due to distant gamma phase-locking oscillations, which is indicated by lower modular-
ity of the global network topology, more “connector bridges” between the frontal and
parietal cortices and less “connector hubs” in the sensorimotor cortex. The time domain
analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal
coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal
connection reconfiguration.The results from sample fitting in the power-law model further
find that the phase-locking durations in the math-gifted brain abides by a wider interval
of the power-law distribution. This phase-lock distribution mechanism could represent a
relatively optimized pattern for the functional binding of frontal–parietal network, which
underlies stable fronto-parietal connectivity and increases flexibility of timely network
reconfiguration.

Keywords: mathematically gifted adolescents, fronto-parietal functional binding, EEG cortical network, gamma
phase-locking duration, power-law model

INTRODUCTION
In the fields of education and psychology, exceptional logical rea-
soning and visual-spatial imagery abilities are regarded as the
main characteristics of mathematically gifted adolescents. Numer-
ous neuroscience studies have reached an agreement that the
gifted mathematical thinking abilities are supported by a coop-
erative fronto-parietal network (O’Boyle et al., 2005; Lee et al.,
2006; Wartenburger et al., 2009; Prescott et al., 2010; Desco
et al., 2011; Hoppe et al., 2012), including the widespread activa-
tion of fronto-parietal cortices, the heightened intrahemispheric
frontal–parietal connectivity, and the enhanced interhemispheric
frontal connectivity between the dorsolateral prefrontal and pre-
motor cortices (Prescott et al., 2010). Some empirical studies have
further suggested that the functional facilitation of the fronto-
parietal network is driven by the extensively activated posterior
parietal cortices (Lee et al., 2006; Desco et al., 2011). Besides,
math-gifted adolescents were found having a larger number of
fronto-parietal connections within the right hemisphere as com-
pared with the left hemisphere (Prescott et al., 2010). Based on
the highly developed right hemisphere and well-developed inter-
hemispheric interaction, math-gifted adolescents can activate a
“bilateral” fronto-parietal network during the cognitive processing

related to mathematical thinking (Alexander et al., 1996; Stern-
berg, 2003; O’Boyle et al., 2005; O’Boyle, 2008; Desco et al., 2011).
Therefore, the heightened“interplay”of anterior/posterior accom-
panied with the enhanced interhemispheric frontal connectivity,
the extensive parietal activation and the bilateral fronto-parietal
network have been suggested as the important neural mechanisms
of the math-gifted brain (Singh and O’Boyle, 2004; O’Boyle et al.,
2005; Lee et al., 2006; Prescott et al., 2010; Desco et al., 2011).

The parieto-frontal integration theory (P-FIT) on individ-
ual differences in reasoning competence emphasizes the crucial
process of information communication between association cor-
tices within the parietal and frontal brain regions (Jung and Haier,
2007). Neural oscillations and synchronization represent impor-
tant mechanisms for interneuronal communication and bind-
ing of information among distributed brain regions. Specifically,
gamma oscillations (30–60 Hz) are considered as the important
building blocks of the electrical activity of the brain and possibly
represent a universal code of information communication in the
central nervous system (Basar et al., 1999, 2001). Gamma-band
modulation in spectral power shows spatial correspondence with
the fMRI blood oxygenation level dependent (BOLD) variation in
the activated regions of the brain (Niessing et al., 2005; Lachaux
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et al., 2007). Gamma oscillation is also highly involved in sensation,
perception, and cognition, and is correlated with high-order cog-
nition, working memory load, and decision-making, etc. (Karakas
et al., 2001; Howard et al., 2003; Fitzgibbon et al., 2004; Her-
rmann et al., 2010). As low-frequency oscillations coordinate long-
range functional connectivity, gamma synchronization oscillation
is more spatially restricted and reflects high-density local informa-
tion processing (Brovelli et al., 2005; Bassett et al., 2006), which has
been proposed as a crucial mechanism for the short-lasting func-
tional binding between discrete brain regions (Koenig et al., 2005).
Furthermore, the gamma binding-by-synchrony activity among
neuronal populations constitutes a transient, large-scale, and task-
specific functional neurocognitive network (Basar-Eroglu et al.,
1996; Doesburg et al., 2008; Uhlhaas et al., 2011).

On the other hand, the network with dynamic binding not
only depends on the transient coupling between neural assem-
bles, but also requires the timely reconfiguration of connections
to adapt to external stimuli and inner perturbation. As a rep-
resentation of functional coupling strength between adjacent or
distant brain areas, the synchronization between neuronal assem-
bles is actually operated in a metastable dynamic system (Werner,
2007). For example, EEG phase synchronization (PS) is a mix-
ture of episodic phase-locking durations interrupted by phase-
shifts (desynchronization) in spontaneous EEG (Freeman and
Rogers, 2002; Chialvo, 2004; Thatcher et al., 2009a). As continuous
phase-locks enhance the functional coupling between neuronal
populations and lead to the emergence of connections in neu-
ronal networks, phase-shifts mark the beginning of a different
set of connections and the occurrence of network reconfigura-
tion (Thatcher, 2012). Moreover, these phase-locking durations
have been discovered to conform the rule of power-law distri-
bution, which has been widely accepted as a typical empirical
signature of non-equilibrium systems in self-organized critical
states (Kitzbichler et al., 2009). The gamma network in partic-
ular has been found having the highest global synchronizability
in the fractal networks of the brain, suggesting that the gamma
synchronizing network is dynamically located at a critical edge
in transit to desynchronization. The highly critical state of the
gamma network increases its adaptiveness to cater for chang-
ing environmental requirements through rapid reconfiguration
of connections (Bassett et al., 2006).

Through EEG source analysis of the gamma cortical network,
the present study aims to find the giftedness-related capacity of
functional binding in the crucial fronto-parietal network of rea-
soning, by assessing the task-related functional connectivity and
adaptive network reconfiguration. The study first compared the
basic cortical network topologies constituted by gamma phase-
locking oscillations in math-gifted and average-ability adolescents
while they were performing a deductive reasoning task. Further-
more, at a neural-mechanistic level of analysis, the study inves-
tigated the temporal dynamics of the fronto-parietal network,
including the phase-locking intervals/durations (PLI) and the
lability of fronto-parietal network reorganization. Then, the para-
meter fitting of the PLIs in the power-law model was conducted
to assess the criticality of phase-locking durations, which could
construct an association between the functional connectivity and
adaptive reconfiguration of fronto-parietal network. After that, the

relationship among the enhanced fronto-parietal connectivity, the
extensive reorganization of fronto-parietal connections, and the
high criticality of PLIs in the math-gifted brain was analyzed and
discussed.

MATERIALS AND METHODS
SUBJECTS
Two groups of subjects were enrolled in this study. The math-gifted
group included 11 adolescents (eight males and three females)
aged 15–18 years (mean± SD: 16.3± 0.6), who were from the Sci-
ence and Engineering Experimental Class at Southeast University
(Nanjing, China). The class was composed of adolescents who
had been recruited through a special college entrance examina-
tion aiming at gifted students under 15 years old with exceptional
abilities in mathematics and natural sciences. Three criteria were
employed to select math-gifted subjects from the class accord-
ing to the definition of “school giftedness” (Renzulli, 1978; Heller,
1989): (1) nomination: they were recommended by their teacher
according to their behavioral performance; (2) academic perfor-
mance: they should have been awarded prizes in nationwide or
provincial mathematical competitions; (3) intelligence score: their
scores of Raven Advanced Progressive Matrices (RAPM) test were
higher than 32 (mean± SD: 33.6± 0.8). For the control group, 13
subjects were recruited from the Fourth High School of Nanjing,
using the following criteria: (1) they were matched with the math-
gifted group for age (mean± SD: 15.9± 0.7) and gender (eight
males and five females); (2) they had average-level performance in
mathematical class tests; (3) their scores of RAPM test were <32
(mean± SD: 23.5± 4.5).

The exclusion criteria adopted included left handedness, med-
ical, neurological or psychiatric illness, and history of brain injury
or surgery. To avoid the long-term training effect on the human
brain activity, students who had received special training course
of Mathematical Olympiad were excluded from this experiment.
All the subjects were given informed consent and the study was
approved by the Academic Committee of the Research Center
for Learning Science, Southeast University, China. The subjects
received financial compensation for their participation.

EXPERIMENTAL PARADIGM
As the essential mathematical skill and the standard type of
deductive reasoning, a categorical syllogism task of analytic type
(verbal–logical way) was adopted in this study. Categorical syllo-
gism is constituted by a major premise, a minor premise, and a
conclusion. The actual reasoning process has been considered to
emerge during the presentation of the minor premise and remain
active until the validation of the conclusion (Fangmeier et al., 2006;
Rodriguez-Moreno and Hirsch, 2009). Neuroimaging studies have
identified that frontal, parietal, temporal, and occipital complexes
are involved in deductive reasoning tasks (Goel et al., 2000; Goel
and Dolan, 2001; Knauff et al., 2002; Goel, 2007). Particularly, the
activations in the left inferior frontal gyrus, bilateral precentral
gyrus of the left fronto-parietal system, and the left basal gan-
glia have been consistently reported to be specific to categorical
syllogism (Prado et al., 2011).

The syllogistic sentences without specific content include three
basic items: “S,” “M,” and “P.” “M” is the medium item and is
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presented in both the major premise and the minor premise. “S”
and “M” constitute the major premise, and “M” and “P” the minor
premise. From the two premises, the inferred relationship between
“S” and “P” forms the conclusion (Figures 1A,B).

The experiment adopted a three-block paradigm, included a
valid block (32 trials), an invalid block (32 trials), and a baseline
block (40 trials). The combinations of syllogistic sentences follow-
ing the true logical rules constituted a valid block, which employed
the logic expressions proposed by Evans et al. (1993). An invalid
block was constituted by the invalid combinations of syllogistic
sentences, in which there was inconclusive relationship between
two premises or incorrect conclusion under clear premises. A base-
line block consisted of the trials including the same letter items in
each sentence, in which there was no need for subjects to think of
the relationship between the items. The letters used in the syllo-
gistic sentences were randomly selected from the 26 letters of the
English alphabet. Some samples are shown in Figure 1B.

The trials of the three blocks were presented in a random order,
which was performed by the E-Prime 2.0 experimental procedure.
The stimuli presentations of all the trials took about 30 min. The
major premise, minor premise, and conclusion were presented
sequentially along the timeline (Figure 1C). When the minor
premise was shown, subjects were asked to draw a logical con-
clusion to judge whether the subsequent conclusion was valid or
invalid (the ratio of the numbers of valid and invalid trials was
1:1). Subjects put their left index finger on “D” key and right index

finger on “K” key at the beginning of a trial. They were asked
to respond as accurately as possible by pressing “D” for “invalid”
and “K” for “valid” within 3000 ms after the presentation of the
conclusion. The time length of a reasoning process is 9000 ms.

Before the formal experiment, a practice session including five
trials was conducted by each subject. After that, they decided
whether to practice again or enter the following formal procedure.
The sentences included Chinese characters and English letters,
which were white on black background to avoid visual fatigue.

EEG RECORDING AND PREPROCESSING
The EEG data were recorded using the Neuroscan system at sam-
pling rate 1000 Hz, with 60 scalp electrodes placed according to
the international 10–20 system (Figure 2). Additionally, bilateral
mastoids were used to place the reference electrodes. To monitor
ocular movements and eye blinks, electro-oculographic (EOG)
signals were simultaneously recorded by four surface electrodes,
with one pair placed over the higher and lower left eyelids and the
other pair placed 1 cm lateral to the outer corners of the left and
right orbits.

By using the Scan 4.3 data preprocessing software, the contin-
uous EEG signals with correct responses were band-pass filtered
between 1 and 100 Hz. The epoch of each trial was extracted using
a time window of 9500 ms (500 ms pre-stimulus and 9000 ms
post-stimulus), and was baseline-corrected according to the pre-
stimulus time interval. Ocular artifacts were removed according

FIGURE 1 | Experiment protocol: (A) rules and forms for cross-combination in logical syllogism. The valid forms utilized in this experiment are AAA, AII, EAE,
EIO, AEE, EAE, EIO, AOO, AAI EAO, IAI, OAO, which are adapted from Evans et al. (1993). For example, a valid combination of EAE and the first rule is “No S is
M; All M are P; Therefore, No S is P”; (B) some samples of valid, invalid, and baseline trials; (C) timeline of the stimuli.
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FIGURE 2 | Head model and cortical vertices. The diagram located at the
left of the arrow shows the head model with four layers (scalp, outer skull,
inner skull, and cortex), and the scalp is placed with 60 EEG data channels.
The diagram located at the right of the arrow shows the cortical vertices
that are transformed from the EEG channel locations through a source
estimation procedure.

to the simultaneously recorded EOG signals. After the artifact
rejection with the thresholds ranging from 50 to 75µV, the blink
and electrocardiogram noises were excluded. Finally, 18–22 trials
were retained for each math-gifted subject and 15–25 trials were
retained for each control subject. In addition, the independent
component analysis (ICA) in the EEGLAB Toolbox was used to fur-
ther clear the visible artifacts, such as the components of possible
ocular and muscle movements. Since the emergence of the minor
premise in the syllogistic sentence was viewed as the beginning
of the actual reasoning process, the time interval 3000–9000 ms
(presentation time of the minor premise and conclusion) of the
artifact-free EEG signal was selected as the event-related time
window. Because of the individual differences in response speed
and completion time of each trial, the interval 4000–8000 ms was
further extracted as the time window for data analysis.

GAMMA-BAND RESPONSE AND CORTICAL SOURCE ESTIMATION
Gamma-band response
Task-induced response at the gamma frequency of the human
brain activity was first assessed in each EEG channel by calculat-
ing event-related synchronization/desynchronization (ERS/ERD),
which was expressed as the percentage of power increase/decrease
relative to the baseline resting state:

ERS/ERD
(
f
)
=
[
A
(
f
)
− R

(
f
)
/R(f )

]
× 100% (1)

where f indicates the gamma frequency band, A(f) is the power
spectrum density (PSD) of an EEG signal in the task period and
R(f) is the PSD in the pre-stimulus interval of the signal. Positive
value is ERS and negative value represents ERD.

Cortical current estimation
There is a limitation that the EEG-based brain connectivity analy-
sis was influenced by the volume conduction, which was caused
by the variation of the electrical conductivity among the different
head layers (Langer et al., 2012; Klados et al., 2013). To avoid this
problem, the scalp-recorded EEG signals were transformed into
the source space, which was performed by using the source estima-
tion procedure of the Brainstorm Toolbox that is documented and

freely available at http://neuroimage.usc.edu/brainstorm (Tadel
et al., 2011). In the source estimation, the EEG signals were
assumed to be mainly determined by a block of electric dipoles
located at the surface of the cortex. Based on an averaged realistic
head model that was constituted by four layers, i.e., scalp, outer
skull, inner skull, and cortex, the symmetric Boundary Element
Method (BEM) in the open-source software (http://www-sop.
inria.fr/athena/software/OpenMEEG/) (Gramfort et al., 2010) was
applied to the EEG electrode locations to obtain the volume con-
ductor modeling of the subjects, i.e., the forward model matrix.
Through an inverse kernel matrix produced by the standardized
Low Resolution Brain Electromagnetic Tomography (sLORETA)
and the forward model, the raw EEG signals were transformed
into the current sources located at the cortical surface. By apply-
ing a downsampling procedure to the original sources, 248 cortical
vertices were selected to serve as the nodes in the following graph
theory analysis (Figure 2).

PHASE SYNCHRONIZATION AND UNDIRECTED GRAPH CONSTRUCTION
To quantify the strength of connectivity, the cortical currents were
followed by a phase-locking value (PLV) calculation between each
pair of the nodes. PLV is a representative method of PS through
obtaining a statistical quantification of the frequency-specific syn-
chronization strength between two neuroelectric signals (Lachaux
et al., 1999). The phase-locked neuronal groups can communicate
effectively, because the communication windows between these
neuronal populations for input and output are open at the same
time (Fries, 2005). For two signals x(t ) and y(t ) with instanta-
neous phases φx(t ) and φy(t ), PS is the locking of the phases
associated to each signal, i.e., |φx(t )−φy(t )|= const. Phase can
be obtained through the Hilbert transform (HT), which is used to
constitute an analytical signal as H (t ) = x (t )+ ix̃ (t ). Here, x̃ (t )

is the HT of x(t ), defined as x̃ (t ) = 1
π

PV
∫
∞

−∞

x(t ′)
t−t ′ dt ′, where PV

denotes the Cauchy principal value. The phase of the signal x(t ) is
defined by φx (t ) = arctan x̃ (t ) /x (t ). The PLV bivariate metric
for φx(t ) and φy(t ) is defined as

PLV =

∣∣∣∣∣∣ 1

M

M−1∑
j=0

exp
(
i
(
φx
(
j1t

)
− φy

(
j1t

)))∣∣∣∣∣∣ (2)

where1t is the sampling interval and M is the number of sample
points of each signal. The range of PLV is within [0,1], where 1
denotes perfect PS and 0 represents absence of synchronization
(Sakkalis, 2011).

After calculating the PLV matrix of size 248× 248 for all the cor-
tical vertices, a fixed connection density was employed to acquire
the adjacency matrix. The connection density of the network was
set to p= 21n n/n according to the Erdos–Renyi model (Erdos and
Renyi, 1961), where n is the number of the nodes. After that, the
graph theory was used to quantify the topological properties of
the adjacency matrix (Bullmore and Sporns, 2009; Rubinov and
Sporns, 2010).

In the following definitions of the graph-theoretical measures
based on an adjacency matrix [ai,j], N is the set of all the nodes in
a functional brain network (i, j) represents the link between nodes
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i and j (i, j ∈N ). If there is a link (i, j) between nodes i and j, then
ai,j= 1, which denotes a connection status; otherwise, ai,j= 0.

Degree of node i is the number of links connected to it:

ki =
∑
j∈N

aij (3)

Modularity of a network is defined by

Q =
∑
u∈M

euu −

(∑
v∈M

euv

)2
 (4)

where M is a set of non-overlapping modules that the network
can be fully divided. euv is mainly determined by the ratio of the
number of the links connecting the nodes in module u with the
nodes in module v to the total number of the links in the network.

Characteristic path length is defined by

L =
1

n

∑
i∈N

Li =
1

n

∑
i∈N

∑
j∈N ,j 6=i dij

n − 1
(5)

where Li is the average distance between node i and other nodes,
and dij is the shortest path length between nodes i and j, which
is given by dij =

∑
amn∈gi→j

amn (gi→j is the shortest geodesic path

between i and j. For all disconnected pairs i, j, dij=∞).
Node clustering coefficient is quantified by a proportion of the

number of existing connections between the nearest neighbors of
a node i to the number of maximally possible connections:

Ci =
2ti

ki (ki − 1)
, (Ci = 0 if ki < 2) , (6)

where ti is the number of triangles around node i, i.e., ti =
1
2

∑
j ,h∈N

aij aihajh , ki is the degree of the node.

Node betweenness centrality is measured according to the pro-
portion of the number of the shortest paths between all the node
pairs passing through a specific node to the total number of
shortest paths between all the node pairs, which can assess the
communication role of the node within the functional network
and is defined as follows:

bi =
1

(n − 1) (n − 2)

∑
h,j∈N

h 6=j ,h 6=i,j 6=i

ρhj (i)

ρhj
(7)

where ρhj is the number of the shortest paths between nodes h and
j, and ρhj(i) is the number of the shortest paths between nodes h
and j that pass through node i. A node with high betweenness
centrality is thus crucial to play the role of “connector hub” in the
network.

Edge betweenness centrality is calculated based on how many of
the shortest paths between all the node pairs in the network pass
through a specific edge:

Bij =
1

(n − 1) (n − 2)

∑
h,k∈N

i 6=j ,h 6=k
h 6=i,h 6=j
k 6=i,k 6=j

ρhk
(
ij
)

ρhk
,
(
aij = 1

)
(8)

where ρhk is the number of the shortest paths between nodes h and
k, and ρhk(ij) is the number of the shortest paths between nodes h
and k passing through edge (i, j). An edge with high betweenness
centrality represents a “connector bridge” between two parts of a
network, the removal of which might affect the communication
between many pairs of nodes through the shortest paths between
them.

PHASE-LOCKING DURATION AND NETWORK LABILITY DURING
DYNAMIC BINDING PROCESS
Since PLV is the temporal statistic of the intermittent phase-
locking durations in a specified time interval, the PLIs between
frontal and parietal cortical signals were extracted to further
quantify the distribution characteristic of the continuous syn-
chronizations. PLI is the period of time when two oscillators
maintain the synchronization activity in their phase difference
within a limited range, i.e.,1φxy(t )= |φx(t )−φy(t )|< const. In
this paper, PLI is defined as the length of time during which two
signals x(t ) and y(t ) are synchronized by satisfying the condition
of−π4 < 1φxy (t ) <

π
4 (Kitzbichler et al., 2009). If this condition

does not hold true, the phase-locking oscillation is interrupted and
enters into the phase-shifting interval.

On the other hand, to measure the coordinated change of func-
tional coupling states of the synchronizing network during reason-
ing task, the fronto-parietal lability was calculated in the selected
nodes ranging from frontal, sensorimotor to parietal cortices. The
lability is quantified by the total number of phase-locking pairs of
signals in a dynamic network that can change over time. The num-
ber of signal pairs that were phase-locked at any time points can
be acquired according to the following preset condition of phase
difference:

N (t ) =
∑
x<y

b
(∣∣∣1φxy (t ) <

π

4

∣∣∣) (9)

where b
(∣∣1φxy (t )

∣∣ < π
4

)
=

{
1, if

∣∣1φxy (t )
∣∣ < π

4
0, otherwise

The lability of a synchronizing network is defined as

12 (t , 1t ) = |N (t +1t )− N (t )|2 (10)

where the time interval1t was set to 10, 15, 20, and 25 ms respec-
tively, as 10–30 ms had been proposed as the optimal temporal
window for information transmission and storage in cortical cir-
cuits (Harris et al., 2003). It is clear that larger12(t,1t ) represents
more extensive change in the fronto-parietal network and more
flexible adjustment of the functional connections.
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For all the trials, the scattergrams were constituted by the sam-
ples with the feature distribution of mean fronto-parietal PLI and
mean lability of fronto-parietal network in 10, 15, 20, and 25 ms
time intervals. Linear discriminant analysis (LDA) (Webb, 2003)
with 10-fold cross-validation was employed to further discover the
giftedness-related dynamic functional binding pattern.

CRITICALITY ASSESSMENT OF PHASE-LOCKING DURATIONS
To construct an association between PLI and functional reor-
ganization of network, critical dynamics of the fronto-parietal
synchronization is assessed by fitting the PLIs in the “power-law”
model. The PLI distributed in a critical interval indicates that a
“metastable” synchronization is in effect, which implies the syn-
chronizing state would access “neuronal avalanche” and adaptive
reorganization by synaptic interaction in the face of endoge-
nous perturbation and external event (Werner, 2007; Beggs, 2008;
Kitzbichler et al., 2009; Thatcher et al., 2009a).

Playing the role of functional integration between posterior
parietal and frontal cortices in reasoning (Jung and Haier, 2007),
the inter-module connections between frontal and parietal cor-
tical areas are crucial for straightforward coupling. Therefore,
the phase-locking durations between 30× 30 frontal–parietal
node pairs were concatenated to constitute the inter-node PLI
sample set.

In this study, the parameter fitting method proposed by Clauset
et al. was applied to the PLIs set. The method has been proven valid
on various datasets from the natural phenomenon with power-law
distribution characteristic (Clauset et al., 2009). Let x represents a
discrete set of PLI values, a discrete power-law distribution can be
described by the following probability density

p (x) = Pr (X = x) = Cx−α (11)

where X represents the observed PLI value, C is a normaliza-
tion constant, and α indicates the power-law exponent. It is clear
that smaller α indicates a higher probability of long phase-locking
duration. In practice, not all the PLI values obey the power-law,
and only the values greater than a minimum value xmin can fit in
the power-law distribution with less bias. While the data are drawn
from a distribution that follows a power-law exactly for x ≥ xmin,
the scaling parameter α can be estimated correctly. In the special
case of xmin= 1, the maximum likelihood estimator (MLE) used
for appropriate estimation of α is given by the solution to the

transcendental equation
ζ ′(α̂)
ζ(α̂)
= −

1
n

n∑
i=1

ln xi , where ζ is the Rie-

mann zeta function. When xmin> 1, the zeta function is replaced

by the generalized zeta
ζ ′(α̂, xmin)
ζ(α̂, xmin)

= −
1
n

n∑
i=1

ln xi . For each possible

choice of xmin, α was estimated by the MLE. The Kolmogorov–
Smirnov (KS) goodness-of-fit statistic was calculated according
to D = max

x≥xmin
|S (x)− P (x)|, where S(x) is the cumulative dis-

tribution function of the data for the observation with the value
larger than xmin, and P(x) is the cumulative distribution function
of the best fitting of data to the power-law model in the region
x ≥ xmin. The optimal estimation of xmin is the one that gives the
minimum value of D. Root-mean-square error (RMSE) expressed

by Re =

√
[
∑

di
2/n] is used to assess the goodness-of-fit of the

power-law scaling, where di is the deviation between the observed
value and the estimated one.

ANOVA STATISTICAL TEST
The single-trial analysis results obtained from 215 samples of
the math-gifted group and 252 samples of the control group
were examined statistically using the one-way analysis of vari-
ance (ANOVA) in the Matlab Statistics Toolbox, with group
(gifted/control subjects) serving as the between-subjects factor. At
the nodal level of the graph-theoretical analysis, clustering coef-
ficient and node betweenness centrality of each cortical vertex
were statically tested by the one-way ANOVA. Moreover, edge
betweenness centrality was tested as well for 30× 30 links con-
necting frontal–parietal nodes. The Bonferroni Corrections were
used in the multiple statistical tests, with significance level set to
0.05. At the global level of the functional network, the ANOVA was
conducted on modularity and characteristic path length, respec-
tively. Additionally, the relevant fitting parameters of PLIs in the
power-law model from the single-trial analytical results were sta-
tistically compared between the two groups. For the behavioral
data, the AVOVA tests were used to identify the group difference
in task performances in terms of accuracy and response time.

RESULTS
BEHAVIORAL MEASURE OF TASK PERFORMANCE
In the deductive reasoning task, the math-gifted group has
outperformed the control group in average response accu-
racy (mean± SD: 75.14± 12.58% in the math-gifted group and
68.20± 15.29% in the control group). Regarding the reaction
time of correct response, significant group difference (p= 0.0036)
has been observed in the task, in which the math-gifted adoles-
cents showed shorter reaction time than the controls (mean± SD:
831± 536 ms in the math-gifted group and 994± 655 ms in the
control group).

ENHANCED FUNCTIONAL INTEGRATION IN THE GAMMA CORTICAL
NETWORK
The ERS/ERD based brain topological maps show that the gamma-
band response induced by the deductive reasoning task is mainly
distributed in the prefrontal, frontal, sensorimotor, parietal, and
occipital regions. The math-gifted group in particular has higher
gamma-band ERS in the central sensorimotor regions as compared
with the average-ability subjects (Figure 3A). Corresponding to
this result, relatively extensive brain regions with small phase dif-
ference are discovered in the math-gifted group, as shown in the
phase topologies from the averaged values of the subjects in the
time window of data analysis (Figure 3B).

From the graph-theoretical analysis results of the gamma cor-
tical network, the basic neurocognitive network topologies of
the two groups are primarily composed of the prefrontal, fron-
totemporal, parietal, occipital, and fronto-parietal modules. With
the same connection density employed in the two groups, the
gamma synchronization network in the math-gifted group shows
an expanded fronto-parietal module that integrates more corti-
cal vertices in frontal, parietal, and sensorimotor regions and the
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relatively shrinking frontotemporal modules, by using the Lou-
vain method for functional community detection (Blondel et al.,
2008). In the comparison between the PLV matrices from the
two groups, the intensively increased synchronized node pairs in
the gamma cortical network of the math-gifted subjects focus on
the fronto-parietal cortical regions, accompanied with the node
pairs with decreased synchronization in prefrontal, temporal, and
occipital regions (Figure 4). Moreover, the ANOVA results for test-
ing the between-groups difference in the individual nodes show
that the math-gifted adolescents have significantly high clustering
coefficients on the nodes in the fronto-parietal module (adjusted
p< 0.05/248), especially in the sensorimotor area (Figure 5A),

FIGURE 3 | Scalp activities in spectral power and relative phase
difference: (A) task-induced ERS/ERD at gamma frequency band;
(B) relative phase topologies, in which the electrode at central location is
used as the reference. The left column is from the averaged value of the
math-gifted subjects, and the right column is from the control subjects.

which means enhanced local interconnectivity or cliques among
the neighbors of the nodes in fronto-parietal cortical area and
correlates with higher local efficiency of information transfer
and robustness of fronto-parietal network (Bullmore and Sporns,
2009; Power et al., 2010; Kitzbichler et al., 2011).

In the math-gifted brain, the expanded fronto-parietal func-
tional module and enhanced connectivity of the frontal–parietal
network are associated with the emergence of more connections
between structurally separated frontal and parietal cortical ver-
tices. The ANOVA results indicate that some frontal–parietal
links show significantly higher edge betweenness centrality in
the cortical network of the math-gifted subjects (adjusted
p< 0.05/900), suggesting the enhanced role of “connector bridges”
of the frontal–parietal connections (Figure 5B). The increased
direct connections in the fronto-parietal network can make the
distant nodes be linked through relatively few intermediate steps,
which supports the straightforward information communication
and promotes the capacity of parallel information transfer of the
fronto-parietal network. Specifically, more fronto-parietal “con-
nector bridges”would decrease the dependence of inter-area infor-
mation communication on the “connector hubs” and increase the
robustness of the gamma network even in the case of the hub
lesion. As shown in Figure 5C, the cortical vertices with signifi-
cantly lower node betweenness centrality (adjusted p< 0.05/248),
i.e., decreased role of “connector hubs,” in the math-gifted brain
are found being located at the central sensorimotor area, involv-
ing some of the cortical vertices in premotor and primary motor
regions (Figure 5C).

Besides, the ANOVA analysis of the global network further
demonstrates that the math-gifted adolescents have significantly
lower modularity in the global network topology as compared
to the average-ability subjects (Figure 5D), which reflects the
highly integrated configuration pattern at the level of global
topology. However, the longer characteristic path length in the
math-gifted group indicates the less economical network config-
uration, which might be caused by the fixed connection density
used in the network analysis that would lead to the disconnected
nodes in prefrontal, temporal, and occipital regions (Figure 5E)
(Table 1).

FIGURE 4 | Gamma neurocognitive network topologies and
between-groups difference in synchronized node pairs: (A) network
topology derived from the averaged PLV matrix of the math-gifted subjects;
(B) network topology derived from the averaged PLV matrix of the control
subjects. Each node represents a cortical vertex, and the size of node is
proportional to the degree of node. The color of node indicates the

membership of topological module, which is segmented by the Louvain
method for functional community detection; (C) the difference of phase
synchronization between the PLV matrices of the math-gifted and control
groups. As compared to those of the control group, the blue edges represent
the increased synchronizations of the math-gifted group, and the red edges
are the decreased synchronizations.
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FIGURE 5 | Between-groups statistical differences of topological
parameters: when the topological parameters of the math-gifted
subjects are compared with those of the control subjects, the statistical
differences are shown in (A) the red nodes with significantly higher
clustering coefficient and the blue nodes with significantly lower
clustering coefficient (adjusted p<0.05/248), (B) the links with

significant higher edge betweenness centrality (adjusted p< 0.05/900),
(C) the cortical vertices with significantly lower node betweenness
centrality (adjusted p<0.05/248), (D) the significantly lower modularity
of global network (p<0.01), and (E) the significantly longer characteristic
path length (p<0.05). The size of node/line corresponds to log p value for an
ANOVA test with the null hypothesis that between-groups difference is zero.

Table 1 | Between-groups F -tests for differences in graph measures of

global network topology with fixed connection density: SS, sum of

squares; df, degrees of freedom; MS, mean square.

Source SS df MS F P

Modularity Group 0.0131 1 0.0131 11.09 p<0.01

Error 0.5486 465 0.0012

Total 0.56169 466

Characteristic

path length

Group 0.0852 1 0.0852 3.91 p<0.05

Error 10.1389 465 0.0218

Total 10.2241 466

PROLONGED PHASE-LOCKING DURATION AND INCREASED LABILITY
OF NETWORK REORGANIZATION
From the result of PLI analysis, the increased inter-module con-
nections of fronto-parietal network can be attributed to stable
phase dynamics of synchronization oscillation between distant
brain regions (Thatcher et al., 2009a). Figure 6A illustrates the
episode phase-locks between a pair of frontal–parietal cortical
signals and the time-varying process of phase-lock/shift (synchro-
nization/desynchronization) between them. Compared with the

average-ability subjects, the longer mean phase-locking duration
in the math-gifted adolescents represents a wider range of stable
patterns of PS in the time domain, which supports straightforward
communication and functional coupling of the frontal–parietal
cortical areas (Figure 8A).

Although too long phase-locking duration has been surmised
to lead to the lack of flexibility of neural activity (Thatcher et al.,
2008), Figure 7 shows a tendency that the prolonged fronto-
parietal PLI accompanies with the increase of fronto-parietal
network lability. The results of the LDA between the two groups
with classification accuracies of 0.8026, 0.7997, 0.7831, and 0.7811,
corresponding to different time intervals, indicate that the math-
gifted brain could be characterized by longer PLI and higher
lability in the fronto-parietal network reorganization, especially
for the relatively rapid change in the 10 and 15 ms intervals
(Figures 7A,B). From the samples of the math-gifted subjects, the
long mean PLI helps information processing of network and the
extensive adjustment of fronto-parietal connections indicates the
widespread connection reorganization to adapt to temporal bind-
ing for cognitive event. The phase-lock mechanism in the math-
gifted brain represents an optimized synchronization pattern in
functional binding of fronto-parietal network, because it simulta-
neously supports the phase “stability” of functional coupling and
the “flexibility” of network connection reorganization.
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FIGURE 6 | Illustration of phase-locking duration between pairs of
cortical signals and power-law distribution diagrams of PLIs at gamma
frequency: (A) the top of the diagram is the phase signals of the two
cortical signals from a frontal–parietal node pair. The bottom of the diagram
is the time curve of the phase difference between them. The horizontal axis
is time course and the vertical axis represents phase difference between
the cortical signals. The light gray box contains the region in which the
phase signals are synchronized, and the light yellow boxes represent the
PLIs within which the synchronization is unintermittent. (B) Cumulative
distribution function of PLI (>35 ms) plotted on logarithmic axes. The blue
fitting curves are derived from all the math-gifted subjects and the red
fitting curves are derived from all the control subjects. The horizontal axis is
PLI and the vertical axis is cumulative probability density. The black dotted
line represents a power-law rule with exponent α= 3.

POWER-LAW DISTRIBUTION OF LARGE PHASE-LOCKING DURATIONS
The coordination relationship in functional binding of fronto-
parietal network can be explained by the power-law distribution
of PLIs. Based on a plenty of PLI samples from the trial con-
catenation for each subject (the sample size n> 106) (Table 2),
Figure 6B depicts the cumulative distribution functions P(x) of
the PLIs of all the subjects when x is >35 ms. It can be seen that
each PLI distribution follows the power-law rule (the standard
deviation of the estimated values Re< 0.5%), which is manifested
as an exponential fall-off. It is notable that the obvious difference
between the two groups is presented in the distribution tail that
represents large but rare synchronization and critical behavior as
well (Clauset et al., 2009; Kitzbichler et al., 2009).

The basic parameters of the power-law fitting from the single-
trial data provide statistic evidence for the difference between the
two groups. Corresponding to the higher maximum PLI values,
the math-gifted subjects show wider power-law interval of PLIs
distribution, i.e., the critical interval, and lower power-law expo-
nent (Figures 8A–D) (Table 3). In the expanded critical interval,
large synchronization durations (>35± 3.2 ms) play an impor-
tant role in maintaining the inter-module connectivity temporally,
although they form a small proportion in the total PLI samples.

FIGURE 7 | Scattergrams of frontal–parietal PLI and network lability:
the blue circles represent the samples from all the math-gifted
subjects and the red asterisks are the samples derived from all the
control subjects. The horizontal axis is mean value of the
frontal–sensorimotor, sensorimotor–parietal, and frontal–parietal PLIs and
the vertical axis represents fronto-parietal network lability in (A) 10-ms, (B)
15-ms, (C) 20-ms, and (D) 25-ms.

At the same time, the synchronizations in the critical interval are
surmised to be tuned to the critical point of state transition, which
could make the fronto-parietal synchronizing state “metastable.”
Additionally, the lower power-law exponent of the math-gifted
brain could be viewed as an indicator of higher intrahemispheric
frontal–parietal connectivity, as it is found to be correlated to
stronger structural connectivity (Kitzbichler et al., 2009).

Critical synchronization can be compatible with the rapid net-
work reorganization in response to temporary perturbation and
stimulus, which promotes the adaptive ability of a functional
network in spatial reconfiguration of connections (Bassett et al.,
2006; Kitzbichler et al., 2009). The adaptive change imposed on a
network is realized through local rewiring rules motivated by the
activity-dependent synaptic development (Bornholdt and Röhl,
2003). The rich distant connections in fronto-parietal network of
the math-gifted brain provide more available links and selection
advantage to operate the local rewiring rule, since the adjust-
ment of these connections has been found to be the most salient
gamma network change during the adaptive network reconfigura-
tion (Bassett et al., 2006; Kitzbichler et al., 2011). In the math-gifted
brain, the phase-locking durations abiding by wider power-law
distribution might account for the optimized synchronization
pattern of functional binding through achieving a better balance
between prolonged PLI and increased network lability.

DISCUSSION
The paradigms used in the previous studies on math-gifted adoles-
cents or children mostly involved visuospatial imagery tasks that
were related to mathematical thinking ability, such as RAPM test
and mental rotation. As an essential mathematical skill, a cognitive
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Table 2 | Basic parameters of the power-law fitting of individual PLI samples between 30×30 node pairs from trial concatenation: n, sample

size; 〈x〉, mean value of samples; xmax, maximum PLI; x̂min, estimated minimum PLI of power-law distribution interval; α̂, estimated power-law

exponent; ntail= [ x̂min, xmax]; Re, standard deviation of estimated values.

n 〈x〉 xmax x̂min α̂ ntail Re (×10−2)

MATH-GIFTED SUBJECT

01 311242 20 316 36 2.89 280 0.31

02 316268 21 438 37 2.83 401 0.26

03 325099 22 332 37 2.86 295 0.27

04 205294 23 376 33 2.87 343 0.33

05 335295 21 355 37 2.80 318 0.23

06 201462 20 347 35 2.82 312 0.25

07 268759 19 334 33 2.92 301 0.29

08 260084 20 265 36 2.9 229 0.29

09 334978 21 432 35 2.92 397 0.30

10 390596 21 456 37 2.86 419 0.21

11 568511 21 401 36 2.85 365 0.28

Mean value 319781 21 368 37 2.86 333 0.27

CONTROL SUBJECTS

01 318080 18 258 31 2.90 227 0.32

02 322137 19 296 35 2.94 261 0.30

03 252469 18 290 31 2.95 259 0.32

04 313898 17 261 31 2.90 230 0.36

05 307197 20 292 36 2.85 256 0.28

06 321789 19 355 34 2.92 321 0.27

07 312976 21 319 36 2.81 283 0.25

08 383190 19 289 34 2.92 255 0.32

09 297221 17 221 29 2.93 192 0.41

10 401429 20 316 34 2.88 282 0.33

11 396750 19 281 33 2.93 248 0.32

12 362526 19 249 34 2.94 215 0.26

13 275928 19 331 33 2.91 298 0.31

Mean value 328122 19 289 33 2.9 255 0.31

task of the analytic type (verbal–logical way) was designed in this
study for determining whether the previous research results were
specific to the mathematical thinking or just the general attri-
butions of problem solving. The logical syllogism used in this
experiment is viewed as a basic form of mathematically logi-
cal thinking and fills the void of the experimental paradigm in
neuroscience studies of mathematical giftedness.

To the best of our knowledge, this is the first time that the indi-
vidual difference between math-gifted and average-level abilities
is investigated through EEG dynamic network analysis. With the
highest criticality in the fractal networks of the human brain,
the cortical network at the classic gamma frequency is assessed
by transforming the scalp-recorded EEG signals into the corti-
cal dipoles. According to the results obtained from the graph-
theoretical analysis, the math-gifted adolescents demonstrate a
highly integrated fronto-parietal network that is supported by
the prolonged gamma binding-by-synchrony activity among dis-
crete neuronal assembles, which is in line with the results of the
previous fMRI studies and the P-FIT model of reasoning. Fur-
thermore, as the prolonged periods of phase-locking are more
likely to occur between the processes within the same functional

module (Kitzbichler et al., 2009), the fronto-parietal PLIs in the
math-gifted brain might be the consequence of strong structural
connectivity of fronto-parietal network. On the other hand, the
math-gifted subjects recruited in our experiment might have more
practice with this kind of reasoning task by virtue of their exposure
to more education. The mental training-related effect might lead
to the changes of neuroelectric activities in phase-locking. That
is, perhaps the performances of the math-gifted adolescents in
gamma synchronization are not solely due to greater innate ability.

Functional connectivity of the phase coherent network is posi-
tively related to the phase-locking duration and stability of phase
dynamics. In the context of temporally stable fronto-parietal con-
nectivity in the math-gifted brain, the theory of critical dynamics
is applied to the realistic data from the high-order cognitive task
through the analysis of single-trial samples, which constructs an
association between the enhanced functional connectivity and the
highly adaptive reconfiguration of the fronto-parietal network in
the math-gifted brain. From the perspective of criticality, the exis-
tence of power-law distribution of PLIs in the brain puts the large
synchronization on a “metastable island”; that is, the longer the
PLI is, the higher the desynchronization possibility will be (Werner,
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FIGURE 8 | Between-groups AVOVA tests for basic power-law fitting parameters of PLIs from signal-trial data (p<0.01): (A) mean PLI; (B) maximum of
PLI; (C) power-law exponent; (D) power-law distribution interval of PLI.

Table 3 | Between-groups F -tests for differences in power-law fitting parameters of PLIs: SS, sum of squares; df, degrees of freedom; MS, mean

square.

Source SS df MS F P

Mean phase-locking duration Group 261.8558 1 261.8558 142.1430 p<0.01

Error 856.6231 465 1.8422

Total 1.1185e+003 466

Maximum of phase-locking duration Group 1.3654e+005 1 1.3654e+005 41.4677 p<0.01

Error 1.5311e+006 465 3.2927e+003

Total 1.6677e+006 466

Power-law exponent Group 0.1901 1 0.1901 131.0518 p<0.01

Error 0.6746 465 0.0015

Total 0.8647 466

Power-law distribution interval Group 1.1235e+005 1 1.1235e+005 35.5266 p<0.01

Error 1.4705e+006 465 3.1624e+003

Total 1.5829e+006 466

2007). The large-sample EEG study conducted in 378 children and
adolescents (Thatcher et al., 2008) has suggested that, the“optimal”
balance between phase-locking duration and phase-shifting dura-
tion benefits the effective allocation of neuronal resources, and is
related to high intelligence level that has been consistently con-
sidered as a basic factor of mathematical giftedness. The cortical
network study in this paper supports the opinion that the math-
gifted adolescents can use the well-allocated phase-lock resources
to facilitate the functional binding in the fronto-parietal cortices,

since the temporal binding between neuronal assembles depends
on the transient coupling and adapts to the timely connection
redistribution of network. Empirical studies have demonstrated
that the significant gamma network reorganization is affected by
the motor task, working memory task, cognitive effort, etc. (Bas-
sett et al., 2006; Kitzbichler et al., 2011). In the math-gifted brain,
the optimized phase-lock pattern in functional binding would
make the synchronizing network flexibly compatible to varying
cognitive requirement of the reasoning process. Except the neural
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correlates of mathematical giftedness, there is evidence that phase-
locking and phase-shift durations in EEG low-frequency intervals
are significantly different in people with Autism Spectrum Dis-
order (ASD), with longer periods of phase-lock and fewer phase-
shifts (Thatcher et al., 2009b). In addition, the individuals with
ASD also have been found showing the abnormal functional con-
nectivity between some regions in default model network (Assaf
et al., 2010). As there are frequent reports of the relevance between
people with ASD and high mathematical ability, the phase-locking
mechanisms in the both populations might follow the similar
distribution rule. Perhaps in another aspect of phase-locking dura-
tion and network reconfiguration, too long period would also lead
to the decreased flexibility of adaptive network reconfiguration,
because of the reduced resources available to be operated by the
phase-shift mechanism (Thatcher et al., 2008). Due to the dif-
ference in network wiring, the locally over-connected functional
network in the brain might be related to the deficits seen in ASD.

The optimized synchronization pattern of the fronto-parietal
network also plays a key role in information processing. The pro-
longed fronto-parietal phase-locking durations distributed in a
wider critical interval indicate that some optimizations of infor-
mation processing would occur simultaneously. Firstly, the gen-
erally prolonged phase-locking durations enhance the global syn-
chronization of the gamma network through a widespread stability
of phase dynamics, which could increase the capacity of informa-
tion storage of the network. Secondly, the phase-locking duration
at a critical state supports effective information communication
between neuronal assembles because the long synchronization
leads to efficient information transmission. Finally, when the
synchronizing activity is maintained at a critical state, it would
decrease the stability of the connection but increase the adap-
tiveness of the network for timely reorganization of connections.
In conclusion, the optimizations of the fronto-parietal synchro-
nization enhance the information processing of the math-gifted
brain during the deductive reasoning task, and further support
the exceptional logical thinking ability of math-gifted adolescents.
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