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Abstract

In this paper, a novel batch-mode active learning method based on the nearest average-class distance
(ALNACD) is proposed to solve multi-class problems with Linear Discriminate Analysis (LDA) classifiers.
Using the Nearest Average-class Distance (NACD) query function, the ALNACD algorithm selects
a batch of most uncertain samples from unlabeled data to improve gradually pre-trained classifiers’
performance. As our method only needs a small set of labeled samples to train initial classifiers, it is
very useful in applications like Brain-computer Interface (BCI) design. To verify the effectiveness of the
proposed ALNACD method, we test the ALNACD algorithm on the Dataset 2a of BCI Competition IV.
The test results show that the ALNACD algorithm offers similar classification results using less sample
labeling effort than Random Sampling (RS) method. It also provides competitive results compared with
active Support Vector Machine (active SVM), but uses less time than the active SVM in terms of the
training.

Keywords: Active Learning; Linear Discriminant Analysis (LDA); Nearest Average-class Distance
(NACD); Brain-computer Interface (BCI)

1 Introduction

Brain–computer interfaces (BCI) provide a new non-muscular channel for sending messages and
commands to the external world. In BCI literatures, many supervised methods have been pro-
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posed for the classification of BCI data [1, 2]. The classification results of all these methods rely
heavily on the number of labeled samples used for learning. However, collecting labeled data is
often difficult, expensive and time-consuming. Two popular approaches, semi-supervised learning
and active learning, have been proposed for dealing with this problem. Semi-supervised learning
algorithms use a small set of labeled training data to build an initial classifier that can predict
the labels of unlabeled data, and then add samples with predicted labels into the training set,
resulting in more precise decision boundaries iteration by iteration. In active learning, a query
function repeatedly queries the most uncertain samples from a pool of unlabeled data for anno-
tating and updating the training set, and these samples have maximum ambiguity to belong to
certain class. Usually, the most uncertain samples can be considered as the most informative ones.
Thus, for active learning, redundant samples are avoided in training set, which greatly reduce
both labeling cost and computational time. In recent years, active learning algorithms have been
developed under the motivation of query strategies. Such strategies include uncertainty sampling,
query-by-committee, expected model change, expected error reduction and so an.

The key issue of active learning is to find a good query function to reduce the number of sam-
ples needed to be labeled from a pool of unlabeled samples [3, 4]. Most query functions are for
binary classification. For multiclass active learning, the binary classification is often extended to
multiclass by One-against-all (OAA) or One-against-one (OAO) mechanism [5, 6]. Linear Dis-
criminant Analysis (LDA) is a binary classification method and can be well extended for solving
multi-class problems. As a popular classifier, LDA has been widely used in semi-supervised algo-
rithms. Cai et al. [7] and Zhao et al. [8] proposed, respectively, a Semi-supervised Discriminant
Analysis (SDA) method and a LDA-based self-training algorithm for face recognition. Another
semi-supervised method was presented in [9], which combines linear discriminant analysis and
manifold learning for improving the precision of hyperspectral imagery classification. However,
little investigation on LDA-based active learning has been conducted, particularly in the BCI
field.

In most existing active learning techniques, a single most uncertain sample is queried at each
iteration [10]. This can be inefficient, because the classifier has to be re-trained for the arriving
of each new sample. In this paper, our algorithm allows for batch-mode incremental learning.

In recent years, batch-mode active learning algorithms have been developed for the applications
where labeled data is insufficient. Lewis and Gale [11] proposed an uncertainty sampling method
which simply query the several instances for one iteration whose posterior probability is nearest
to 0.5. The active learning technique proposed in [5] is to select n most uncertain samples, one
closest to current separating hyperplane for each One-against-all (OAA) binary SVM. In [12],
Guo proposed a novel batch-mode active learning approach that selects a batch of queries in each
iteration by maximizing a natural mutual information criterion between labeled and unlabeled
instances. Also, another discriminative batch-mode active learning approach was presented in
[13], where information in unlabeled data is exploited and a batch of instances are selected by
optimizing the target classification model.

In this paper, a novel batch-mode active learning method based on the nearest average-class
distance (ALNACD) is proposed for solving multiclass BCI classification problems with LDA
classifiers. The ALNACD uses the Nearest Average-class Distance (NACD) as query function
which is used to query the most uncertain samples from unlabeled data. The proposed ALNACD
is compared with Random Sampling (RS) and active SVM [5] on the Dataset 2a of BCI Compe-
tition IV with 9 subjects. Experimental results show the effectiveness of the proposed ALNACD
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algorithm. In the article, our main contributions contain the following: first, a novel NACD query
function is proposed for selecting most uncertain batch samples. Second, we show our algorithm,
as the first active learning algorithm used in BCI field, is available. Third, the proposed algorithm
are based on batch mode and used for solving multiclass BCI problems.

The rest of this paper is organized as follows. The related methods are reviewed and the
ALNAZD algorithm based multiclass is proposed in section 2. The Dataset 2a of the BCI Com-
petition IV is described in session 3, followed by experimental results. Conclusion is drawn in
session 4.

2 Methods

2.1 Linear Discriminant Analysis (LDA)

The LDA [14] aims at finding a transformation matrix W which maximizes between-class scatter
and minimizes within-class scatter, i.e.,

maximize
tr(W T SbW )

tr(W T SwW )
(1)

where W is the LDA weight vector. Let X = [x1
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be the data matrix of training samples and Nd be the number of samples in the dth class. The
within-class scatter matrix (Sw) and between-class scatter matrix (Sb) are defined as follows:
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vector, N is the total number of samples, and K = 2 is the number of classes for the two-class
problem.

The decision score function f(x) is defined as

f(x) = Wx + b (4)

where b = −
K∑

d=1

Ndmd

/ K∑
d=1

Nd is the bias, and the sign of f(x) is used to predict the class label

for a given test sample. If f(x) > 0, the sample x belongs to the first class (class1), otherwise it
belongs to the second class (class2).

2.2 Query Function Based on the Nearest Average-class Distance
(NACD)

In this paper, the proposed ALNACD technique is based on the Nearest Average-class Distance
(NACD) query function which is used for selecting most uncertain samples actively. In a binary
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classification problem, if labeled samples are two-dimensional, as shown in Fig. 1, they are pro-
jected onto a lower-dimensional space (a line in this case) and two classes are separated by a
separation line which makes the projection maximize the “separability” of the projected samples
[14]. Because those unlabeled samples with the smallest distance to each class-centre (mean1
or mean2) have higher confidence to belong to certain class (class1 or class2), it is reasonable
to assume that the most uncertain samples are the ones whose decision scores are near to the
average of the two class-centres, thus adding them to training set is most likely to improve the
performance of the classifier in the next iteration of re-training.

In this paper, we use NACD function to select most uncertain ones from unlabeled samples. The
uncertain criterion is implemented by analyzing the decision scores of LDA classifier for unlabeled
samples and the mean decision score of LDA classifier for two class-centres ((mean1+mean2)/2),
which is adopted to query those samples with the smallest distance between the decision score
of each unlabeled sample and the mean decision score of two class-centres. In addition, only the
decision scores of the unlabeled samples in the range of [mean1, mean2] will be considered. It is
clear that the smaller the distance of an unlabeled sample is, the easier the unlabeled sample is
to be queried for expanding current training data set.

2.3 Multi-class ALNACD Algorithm Based One-against-all (OAA)

The One-against-all (OAA) strategy [5] involves a parallel architecture made up of n binary LDA
classifiers, one for each class defined by one class against all the others. In the proposed multi-
class ALNACD technique, we use the OAA strategy to train n binary LDA classifiers with an
initial set of labeled samples. After the initial training, n decision scores fj(x) (j=1, 2, . . . , n)
are calculated separately based n binary LDA classifiers for each of unlabeled samples. Now we
consider each binary LDA classifier separately to select m (m ≥ 1) most uncertain samples at each
iteration on the basis of the proposed query function NACD. The confidence of each unlabeled
sample depends on the distance between the decision score of the unlabeled sample and the mean
decision score of two class-centres. To select the most uncertain samples from unlabeled samples,
m samples with the lowest confidence are selected by each binary LDA classifier at each iteration.
This should be h = m× n samples selected for n binary LDA classifiers. However, if the decision
scores of all unlabeled samples from at least one binary LDA are not in the range of [mean1,
mean2] or at least one sample is selected by more than one binary LDA, thus only a total of
h ≤ m×n samples from n binary LDA classifiers are selected at each iteration. The below Steps
describes the details of the proposed ALNACD algorithm. First, suppose that we have two raw
data sets: DI with labels as the initial labeled data set and DF without labels as the unlabeled
data set. DI contains N1 samples and DF contains N2 samples. Before describing the steps, we
clearly give the class-centre definition for each binary classification:

mean1 = mean(fj(xi))(xi ∈ DI1) (5)

mean2 = mean(fj(xi))(xi ∈ DI2) (6)

where mean1 and mean2 denote the first class-centre and the second class-centre in the initial
labeled data set DI . DI1 and DI2 respectively represents the data set belonging to the first and
the second class of DI . Obviously, DI = DI1 ∪DI2.

Step 1: Train n binary LDA classifiers with DI . Let fj(.) be the decision scores of the jth
binary LDA classifier and set k = 0.
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Step 2: The kth iteration (k=1, 2, . . . , K0) follows Step 2 to 6. Set h = 0.

Step 3: For j=1 to n, if (number(fj(x) ∈ [mean1,mean2]) > m) (x ∈ DF , the number(.)
represents the number of samples satisfying the condition in the parentheses), for the jth binary
LDA classifier, select the m samples from DF , whose decision scores are closest to (mean1 +
mean2)/2, (see the equation (7) and (8)), h = h + m, otherwise, select the samples from the
unlabeled data set DF , whose decision scores fj(x) ∈ [mean1,mean2], h = h + number(fj(x) ∈
[mean1,mean2]).

dj(xi) = |fj(xi)− (mean1 + mean2)/2| (xi ∈ DF ) (7)

newdj(xi) = ascend(dj(xi)) (8)

where the difference dj(xi) between the LDA’s decision score fj(xi) of the unlabeled sample
predicted with the jth class and the LDA’s decision score of the mean of binary class-centre, rep-
resents the uncertainty of each unlabeled sample. newdj(xi) denotes the results in the ascending
order for dj(xi), which means the uncertainty of the unlabeled samples predicted is ranked from
the most uncertain members to the most certain members. Then m most uncertain samples are
selected from the unlabeled samples

Step 4: Assign true class labels to the h selected samples Dk
S and add Dk

S into the labeled data
set DI and get rid of Dk

S from unlabeled data set DF in the kth iteration. In here,

DI = DI + Dk
S (9)

DF = DF −Dk
S. (10)

Step 5: Retrain the n binary LDA classifiers with the updated data set DI .

Step 6: (termination criterion) If k ≥ (N2 × β)/(m × n), the algorithm terminates after the
kth iteration, where β is a pre-determined percentage of the number N2 of initial unlabeled data
set DF . Otherwise, go to Step 2 to perform the (k + 1)th iteration.

3 Experiments and Results

3.1 Description of the Electroencephalographic (EEG) Data

In this paper, the Dataset 2a of BCI Competition IV [15] is used to test the proposed ALNACD
active learning algorithm, which consists of EEG data recorded from 9 subjects who performed
imagined movements of left hand (class 1), right hand (class 2), feet (class 3), and tongue (class
4). The subjects were sitting in a comfortable armchair in front of a computer screen. At the
beginning of a trial (t = 0 s), a fixation cross appeared on the black screen. In addition, a short
acoustic warning tone was presented. After two seconds (t = 2 s), a cue in the form of an arrow
pointing either to the left, right, down, or up (corresponding to one of the four classes: left hand,
right hand, foot, or tongue) appeared and stayed on the screen for 1.25 s. This prompted the
subjects to perform the desired motor imagery task. No feedback was provided. The subjects
were asked to carry out the motor imagery task until the fixation cross disappeared from the
screen at t = 6 s. There was a short break with black screen between trials. Two sessions of
motor imagery EEG data were recorded from each subject on different days using 22 electrodes as
shown in Fig. 2. The signals were sampled at frequency 250 Hz and bandpass-filtered between 0.5
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Fig. 2: Electrode montage corresponding to the
international 10-20 system

Hz and 100 Hz. Each session is comprised of 6 runs separated by short breaks. One run consists
of 48 trials (12 for each of the four possible classes), yielding a total of 288 trials per session and
a total of 576 trials for two sessions.

For each subject, the first 400 trials are considered as the training set T and the remaining 176
trials are used as the independent testing set TS. We only select randomly a small number of
samples from T as the initial labeled date set DI , with the same proportion for each class, and the
rest is treated as unlabeled data setDF for expanding DI . The performance of the classifiers is
tested on TS. The above process is repeated 30 runs with all the samples in T randomly shuffled
in each run. We perform algorithms on T for subject 1, 3, 6, 7 and 9 (20 trials for DI and 380
trials for DF ), and subject 2, 4, 5 and 8 (40 trials for DI and 360 trials for DF ).

3.2 Preprocessing and Feature Extraction

The EEG signals are further band-pass filtered between 8Hz and 30Hz and zero centered. The
well-known common spatial patterns (CSP) algorithm is adopted to extract features between 3
s and 6 s for each trial. More details on the application of common spatial patterns to BCI
are described in the literatures [16, 17]. In this paper, we use OAA for CSP feature extraction
of four classes. For each binary problem, the choice of pairs of CSP features is set to 2 for
Dataset 2a, which means after CSP transformation only the first two rows and the last two rows
of the projected signals are used for extracting four features that are the normalized logarithmic
variances of the four projected signals, which result in a total of 16 features for each sample. This
is because a greater choice of pairs did not significantly improve classification accuracy [18].

3.3 Experimental Results

To verify the effectiveness of ALNACD on the BCI data with a four-class classification problem,
we compare the performance of ALNACD on 9 subjects with the Random Sampling (RS) and
active SVM [5] that is based on the OAA formulation of binary classifiers. In the RS approach,
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at each iteration, a batch of h samples (h = m × n) are randomly selected from the unlabeled
data set DF , assigned with true labels, and then added into labeled data set DI for updating the
classifiers. In our implementation of active SVM, we adopt SVM classifiers with RBF (Gaussian)
kernel and use the LIBSVM library to implement the algorithm [19]. The parameter pair (C, g) is
searched with the one with the best cross-validation accuracy. The C and g, respectively, denotes
the regularization parameter and the RBF (Gaussian) kernel. We implement all algorithms in
MATLAB on a 3.2 GHz 2 GB PC.

In here, we set m = 2 and β = 60%, which respectively denotes 2 samples are selected to update
each binary classifier and only 60% number of initial unlabeled samples with most informative
are queried by NACD method for improving classification accuracy. Fig. 3 shows the average
classification accuracies provided by different methods versus the number of iterations. One can
see that the proposed ALNACD always produces better classification accuracy than the RS.
However, our algorithm shows lower classification accuracy than active SVM in the previous
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Fig. 3: Average classification accuracies provided by the proposed ALNACD, active SVM and RS for
each of 9 subjects. Fig. 3 (a) to Fig. 3 (i) respectively represents the performance from Subject 1 to
Subject 9
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iterations and obtains similar accuracy with active SVM in later iterations for most subjects.
From Fig. 3, we also can see that our algorithm and active SVM can yield similar accuracies with
the RS but the former uses less samples than latter. However, subject 2 and 5 on classification
accuracy are the exception.

In Table 1, we report the number of examples required for our algorithm and active SVM which
attain similar accuracy as the RS after 60% number of unlabeled samples are queried. The results,
tabulated in Table 1, show that our algorithm yields similar accuracy with the RS using 72.00%,
18.52%, 32.14%, 37.04%, 11.11%, 14.29%, 42.86%, 40.74% and 64.29% less samples, and active
SVM can yield similar accuracy compared with the RS using 82.14%, 0.00%, 64.29%, 55.56%,
0.00%, 25.00%, 57.14%, 92.59% and 67.86% less samples for each of 9 subjects. The ultimate
goal of active learning is to attain the similar accuracy with as little labeled data as possible.
The average reduction number compared with RS in Table 1 for ALNACD is quite close to that
for Active SVM, it needed 137.78 samples as compared with about 111.11 samples for the latter.
This is not too much more. From Table 1, we also can see that the active SVM is not more
effective than the RS and ALNACD for subject 2 and 5 and even use more or the same number
of samples for attaining similar classification accuracy with the ALNACD or the RS respectively.
Nevertheless, for most subjects, the performance of the ALNACD and active SVM still meets
the ultimate goal of active learning which is to attain high classification accuracy with as little
labeled data as possible.

Table 1: The reduction in the number of training samples needed for ALNACD and active SVM

Subject ALNACD active SVM RS
Reduction needed

for ALNACD (%)

Reduction needed for

active SVM (%)

1 56 40 224 75.00 84.14

2 176 216 216 18.52 0.00

3 152 80 224 32.14 64.29

4 136 96 216 37.04 55.56

5 192 216 216 11.11 0.00

6 192 168 224 14.29 25.00

7 128 96 224 42.86 57.14

8 128 16 216 40.74 92.59

9 80 72 224 64.29 67.86

Average 137.78 111.11 220.44 37.33 49.62

It is worth noticing that the difference between the number of samples needed by our ALNACD
algorithm and active SVM is not too much for most subjects. However, the time needed for the
training is much less for our ALNACD algorithm as compared with the active SVM for each of 9
subjects as shown in Table 2.

4 Conclusion

In this paper, we propose a novel active learning method based the nearest average-class distance
(ALNACD) for solving multi-class problems with LDA classifiers, which initially only needs a
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Table 2: Comparison of training time over 30 runs for ALNACD, active SVM and the RS

Subject ALNACD (s) active SVM (s) RS (s)

1 5.82 16.53 4.60

2 6.50 18.78 4.49

3 5.80 15.58 4.61

4 5.59 20.03 4.47

5 5.66 27.72 4.53

6 6.00 19.27 4.65

7 5.80 17.56 4.68

8 5.89 17.60 4.52

9 5.84 19.73 4.60

Average 5.88 19.20 4.57

small set of labeled samples to train classifiers and effectively reduces the expenses and time
of obtaining labeled data. A query function called Nearest Average-class Distance (NACD) is
proposed to identify and use only those samples with high uncertainty in the learning process.
Experimental results show that the proposed method always provides better accuracies than the
RS at each iteration and obtains similar classification accuracies as the RS by using less samples.
It also can provide competitive results compared with active SVM, but use less time than active
SVM in terms of the training. As we known, SVM is an advanced method and can usually achieve
better classification results than LDA when the appropriate parameters are used [20]. However,
the proposed NACD strategy based LDA can select more informative samples and even use much
less time than active SVM, which further demonstrates the effective of the NACD.

Although the performance of the proposed method is satisfactory, the method does not include
any diversity criterion for selecting multiple samples. This should be done by defining a diversity
criterion that can be implemented for avoiding losing one of the most important properties of the
proposed method in future research.
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