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The seasonal production of fruit and seeds is akin to opening a feeding station, such as a restaurant. Agents coming to feed on
the fruit are like customers attending the restaurant; they arrive at a certain rate and get served at a certain rate following some
appropriate processes. The same applies to birds and animals visiting and feeding on ripe fruit produced by plants such as the
strawberry plant.This phenomenon underpins the seed dispersion of the plants. Modelling it as a queuing process results in a seed-
based search/optimisation algorithm. This variant of the Plant Propagation Algorithm is described, analysed, tested on nontrivial
problems, and compared with well established algorithms. The results are included.

1. Introduction

Plants have evolved a variety of ways to propagate. Propaga-
tion with seeds is perhaps the most common of them all and
one which takes advantage of all sorts of agents ranging from
wind to water, birds, and animals. In [1] a Plant Propagation
Algorithm based on the way the strawberry plant propagates
using runners has been introduced. Here, we consider the
case where the strawberry plant uses seeds to propagate.

Plants rely heavily on the dispersion of their seeds to
colonise new territories and to improve their survival [2, 3].
There are a lot of studies and models of seed dispersion
particularly for trees [2–6]. Dispersion by wind and ballistic
means is probably the most studied of all approaches [7–
9]. However, in the case of the strawberry plant, given the
way the seeds stick to the surface of the fruit (Figure 1(a))
[10], dispersion by wind or mechanical means is very limited.
Animals, however, and birds in particular are the ideal agents
for dispersion [2, 3, 11, 12] in this case.

There are many biologically inspired optimization algo-
rithms in the literature [13, 14]. The Flower Pollination
Algorithm (FPA) is inspired by the pollination of flowers
through different agents [8]; the swarm data clustering algo-
rithm is inspired by pollination by bees [15]; Particle Swarm
Optimization (PSO) is inspired by the foraging behavior of

groups of animals and insects [16, 17]; the Artificial Bee
Colony (ABC) simulates the foraging behavior of honey bees
[18, 19]; the Firefly algorithm is inspired by the flashing
fireflies when trying to attract a mate [20, 21]; the Social
Spider Optimization (SSO) algorithm is inspired by the
cooperative behavior of social spiders [22]. The list could
easily be extended.

The Plant Propagation Algorithm (PPA) also known as
the strawberry algorithm was inspired by the way plants and
specifically the strawberry plants propagate using runners
[1, 23]. The attraction of PPA is that it can be implemented
easily for all sorts of optimization problems. Moreover, it has
few algorithm specific arbitrary parameters. It follows the
principle that plants in good spots with plenty of nutrients
will send many short runners. They send few long runners
when in nutrient poor spots. With long runners PPA tries
to explore the search space while short runners enable it to
exploit the solution space well. In this paper, we investigate
an alternative PPAwhich is entirely based on the propagation
by seeds of the strawberry plant. Because of the periodic
nature of fruit and seed production, it amounts to setting up a
feeding station for the attention of potential seed-dispersing
agents [24], Hence the feeding station model used here and
the resulting Seed-Based Plant Propagation Algorithm or
SbPPA.
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(a) Strawberry fruit with seeds (b) Strawberry flower (c) A strawberry eaten by bird(s)

(d) A bird eating strawberries (e) Strawberry plants showing runners and seeded
fruit

Figure 1: Strawberry plant propagation: through seed dispersion [25–28].

SbPPA is tested on both unconstrained and constrained
benchmark problems also used in [22, 29, 30]. Experimental
results are presented in Tables 4–7 in terms of best, mean,
worst, and standard deviation for all algorithms. The paper
is organised as follows. In Section 2 we briefly introduce
the feeding station model representing strawberry plants in
fruit and the main characteristics of the paths followed by
different agents that disperse the seeds. Section 3 presents
the SbPPA in pseudocode form. The experimental settings,
results, and convergence graphs for different problems are
given in Section 4.

2. Aspects of the Feeding Station Model

Some animals and plants depend on each other to conserve
their species [31].Thus,many plants require, for effective seed

dispersal, the visits of frugivorous birds or animals according
to a certain distribution [2, 3, 32, 33].

Seed dispersal by different agents is also called “seed
shadow” [32]; this shows the abundance of seeds spread
globally or locally around parent plants. Here a queuing
model is used which, in the context of a strawberry feeding
station model, involves two parts:

(1) the quantity of fruit or seeds available to agents which
implies the rate at which the agents will visit the
plants,

(2) a probability density function that tells us about the
service rate with which the agents are served by the
plants.

The model estimates the quantity of seeds that is spread
locally compared to that dispersed globally [34–38]. There
are two aspects that need to be balanced: exploitation, which
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is represented by the dispersal of seeds around the plants,
and exploration which ensures that the search space is well
covered.

Agents arrive at plants in a random process. Assume
that at most one agent arrives to the plants in any unit of
time (orderliness condition). It is further supposed that the
probability of arrivals of agents to the plants remains the
same for a particular period of time.This period corresponds
to when the plants are in fruit and during which time
the number of visitors is stable (stationarity condition).
Furthermore, it is assumed that the arrival of one agent does
not affect the rest of arrivals (independence).

With these assumptions in mind, the arrival of agents
to plants follows a Poisson process [39, 40], which can be
formally described as follows. Let 𝑋󸀠 be the random variable
representing the number of arrivals per unit of time 𝑡. Then,
the probability of 𝑘 arrivals over 𝑡 is

𝑃 (𝑋
󸀠
= 𝑘) =

(𝜆𝑡)
𝑘
𝑒
−𝜆𝑡

𝑘!
, (1)

where 𝜆 denotes the mean arrival rate of agents per time unit
𝑡. On the other hand, the time taken by agents in successfully
eating fruit and leaving to disperse its seeds, in other words
the service time for agents, is expressed by a random variable
which follows the exponential probability distribution [41].
This can be expressed as follows:

𝑆 (𝑡) = 𝜇𝑒
−𝜇𝑡
, (2)

where 𝜇 is the average number of agents that can feed at time
𝑡. Let us assume that the arrival rate of agents is less than the
fruits available on all plants per unit of time; therefore 𝜆 < 𝜇.

We assume that the system is in steady state. Let𝐴 denote
the average number of agents in the strawberry field (some
already eating and the rest waiting to feed) and𝐴

𝑞
the average

number of agents waiting to get the chance to feed. If we
denote the average number of agents eating fruits by𝜆/𝜇, then
by Little’s formula [42], we have

𝐴 = 𝐴
𝑞
+
𝜆

𝜇
. (3)

Since the plant needs to maximise dispersion, this is
equivalent to having a large 𝐴

𝑞
in (3). Therefore, from this

equation, we need to solve the following problem:

Maximize 𝐴
𝑞
= 𝐴 −

𝜆

𝜇
,

subject to 𝑔
1
(𝜆, 𝜇) = 𝜆 < 𝜇 + 1,

𝜆 > 0, 𝜇 > 0,

(4)

where 𝐴 = 10, which represents the population size in the
implementation.The simple limits on the variables are 0 < 𝜆,
𝜇 ≤ 100. The optimum solution to this particular problem is
𝜆 = 1.1, 𝜇 = 0.1, and 𝐴

𝑞
= 1.

Frugivores may travel far away from the plants and hence
will disperse the seeds far and wide. This feeding behaviour
typically follows a Lévy distribution [43–45]. In the following
we present some basic facts about it.

2.1. Lévy Distribution. The Lévy distribution is a probability
density distribution for random variables. Here the random
variables represent the directions of flights of arbitrary birds.
This function ranges over real numbers in the domain
represented by the problem search space.

The flight lengths of the agents served by the plants follow
a heavy tailed power law distribution [14], represented by

𝐿 (𝑠) ∼ |𝑠|
−1−𝛽

, (5)

where 𝐿(𝑠) denotes the Lévy distribution with index 𝛽 ∈

(0, 2). Lévy flights are unique arbitrary excursions whose step
lengths are drawn from (5). An alternative form of Lévy
distribution is [14]

𝐿 (𝑠, 𝛾, 𝜇) =

{{{{{{

{{{{{{

{

√
𝛾

2𝜋
(

1

(𝑠 − 𝜇)
)

3/2

⋅ exp[−
𝛾

2 (𝑠 − 𝜇)
] , 0 < 𝜇 < 𝑠 < ∞,

0, Otherwise.

(6)

This implies that

lim
𝑠→∞

𝐿 (𝑠, 𝛾, 𝜇) ≈ √
𝛾

2𝜋
(
1

𝑠
)

3/2

. (7)

In terms of the Fourier transform [14], the limiting value of
𝐿(𝑠) can be written as

lim
𝑠→∞

𝐿 (𝑠) =
𝛼𝛽Γ (𝛽) sin (𝜋𝛽/2)

𝜋 |𝑠|
1+𝛽

, (8)

where Γ(𝛽) is the Gamma function [46], defined by

Γ (𝛽) = ∫

∞

0

𝑥
𝛽−1

𝑒
−𝑥
𝑑𝑥. (9)

The steps 𝐿(𝑠) are generated by Mantegna’s algorithm [14].
This algorithm ensures that the behaviour of Lévy flights is
symmetric and stable as shown in Figure 3(b).

3. Strawberry Plant Propagation Algorithm:
The Feeding Station Model

We assume that the arrival of different agents (birds and
animals) to the plants to feed is according to the Poisson
distribution [40]. As per the solution of problem (4), the
mean arrival rate is 𝜆 = 1.1, and NP = 10 is the size of
the agents population. Let 𝑘 = 1, 2, . . . , 𝐴 be the possible
numbers of agents visiting the plants per unit time. With
these assumptions the graphic representation of (1) results in
Figure 2.

As already stated, it is essential in this algorithm to
balance exploration and exploitation. To this end, we choose
a threshold value of the Poisson probability that dictates
how much exploration and exploitation are done during
the search. The probability Poiss(𝜆) < 0.05 means that
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Figure 2: Distribution of agents arriving at strawberry plants to eat
fruit and disperse seeds.

exploitation is covered. In this case, (10) below is used, which
helps the algorithm to search locally:

𝑥
∗

𝑖,𝑗
=

{{{{

{{{{

{

𝑥
𝑖,𝑗
+ 𝜉
𝑗
(𝑥
𝑖,𝑗
− 𝑥
𝑙,𝑗
) if PR ≤ 0.8; 𝑗 = 1, 2, . . . , 𝑛;

𝑖, 𝑙 = 1, 2, . . . ,NP; 𝑖 ̸= 𝑙,

𝑥
𝑖,𝑗
, Otherwise,

(10)

where PR denotes the rate of dispersion of the seeds locally,
around SP; 𝑥∗

𝑖,𝑗
and 𝑥

𝑖,𝑗
∈ [𝑎
𝑗
𝑏
𝑗
] are the 𝑗th coordinates of

the seeds 𝑋∗
𝑖
and𝑋

𝑖
, respectively; 𝑎

𝑗
and 𝑏
𝑗
are the 𝑗th lower

and upper bounds defining the search space of the problem
and 𝜉
𝑗
∈ [−1 1]. The indices 𝑙 and 𝑖 are mutually exclusive.

On the other hand, if Poiss(𝜆) ≥ 0.05 then global disper-
sion of seeds becomes more prominent. This is implemented
by using the following equation:

𝑥
∗

𝑖,𝑗
=

{{{{{{{

{{{{{{{

{

𝑥
𝑖,𝑗
+ 𝐿
𝑖
(𝑥
𝑖,𝑗
− 𝜃
𝑗
) if PR ≤ 0.8, 𝜃

𝑗
∈ [𝑎
𝑗
𝑏
𝑗
] ,

𝑖 = 1, 2, . . . ,NP;

𝑗 = 1, 2, . . . , 𝑛,

𝑥
𝑖,𝑗
, Otherwise,

(11)

where 𝐿
𝑖
is a step drawn from the Lévy distribution [14] and

𝜃
𝑗
is a random coordinate within the search space. Equations

(10) and (11) perturb the current solution, the results of which
can be seen in Figures 3(a) and 3(b), respectively.

As mentioned in Algorithm 1, we first collect the best
solutions from the first NP trial runs to form a population
of potentially good solutions denoted by popbest. The conver-
gence rate of SbPPA is shown in Figures 4 and 5 for different
test problems used in our experiments (see Appendices). The
statistics values best, worst, mean, and standard deviation are
calculated based on popbest.

The seed-based propagation process of SP can be repre-
sented in the following steps.
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Figure 3:Overall performance of SbPPAonSpringDesignProblem.

(1) The dispersal of seeds in the neighbourhood of the
SP, as shown in Figure 1(e), is carried out either by
fruits fallen from strawberry plants after they become
ripe or by agents. The step lengths for this phase are
calculated using (10).

(2) Seeds are spread globally through agents, as shown
in Figures 1(c) and 1(d). The step lengths for these
travelling agents are drawn from the Lévy distribution
[14].

(3) The probabilities, Poiss(𝜆), that a certain number 𝑘 of
agents will arrive to SP to eat fruits and disperse it,
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(1) NP← Population size, 𝑟 ← Counter of trial runs, MaxExp ←Maximum experiments
(2) for 𝑟 = 1: MaxExp do
(3) if 𝑟 ≤ NP then
(4) Create a random population of seeds pop = {𝑋

𝑖
| 𝑖 = 1, 2, . . . ,NP},

using (12) and collect the best solutions from each trial run, in popbest.
(5) Evaluate the population pop.
(6) end if
(7) while 𝑟 > NP do
(8) Use updated population popbest.
(9) end while
(10) while (the stopping criteria is not satisfied) do
(11) for 𝑖 = 1 to NP do
(12) if Poiss(𝜆)

𝑖
≥ 0.05, then, ⊳ (Global or local seed dispersion)

(13) for 𝑗 = 1 to 𝑛 do ⊳ (𝑛 is number of dimensions)
(14) if rand ≤ PR then, ⊳ (PR = Perturbation Rate)
(15) Update the current entry according to (11)
(16) end if
(17) end for
(18) else
(19) for 𝑗 = 1 to 𝑛 do
(20) if rand ≤ PR then,
(21) Update the current entry according to (10)
(22) end if
(23) end for
(24) end if
(25) end for
(26) Update current best
(27) end while
(28) Return: Updated population and global best solution.
(29) end for

Algorithm 1: Seed-based Plant Propagation Algorithm (SbPPA) [47].

is used as a balancing factor between exploration and
exploitation.

For implementation purposes, we assume that each SP
produces one fruit, and each fruit is assumed to have one
seed; by a solution𝑋

𝑖
wemean the current position of the 𝑖th

seed to be dispersed. The number of seeds in the population
is denoted by NP. Initially we generate a random population
of NP seeds using

𝑥
𝑖,𝑗
= 𝑎
𝑗
+ (𝑏
𝑗
− 𝑎
𝑗
) 𝜂
𝑗
, 𝑗 = 1, . . . , 𝑛, (12)

where 𝑥
𝑖,𝑗

∈ [𝑎
𝑗
𝑏
𝑗
] is the 𝑗th coordinate of solution 𝑋

𝑖
, 𝑎
𝑗

and 𝑏
𝑗
are the 𝑗th coordinates of the bounds describing the

search space of the problem, and 𝜂
𝑗
∈ (0 1). This means that

𝑋
𝑖
= [𝑥
𝑖,𝑗
], for 𝑗 = 1, . . . , 𝑛, represents the position of the 𝑗th

seed in population pop.

4. Experimental Settings and Discussion

In our experiments we tested SbPPA against some recently
developed algorithms and somewell established and standard
ones. Our set of test problems includes benchmark con-
strained and unconstrained optimization problems [22, 30,
48, 49]. The results are compared in terms of statistics (best,
worst, mean and standard deviation) for solutions obtained

by SbPPA; ABC [18, 50]; PSO [51]; FF [21]; HPA [29]; SSO-
C [22]; Classical Evolutionary Programming (CEP) [30]; and
Fast Evolutionary Programming (FEP) [30]. The detailed
descriptions of these problems are given in Appendices.

In Tables 4 and 7, the significance of results is shown in
terms of win/tie/loss (see Table 2 in [52]) according to the
following notations:

(i) (+) when SbPPA is better;
(ii) (≈) when the results are approximately the same as

those obtained with SbPPA;
(iii) (−) when SbPPA is worse.

Moreover, in Tables 5 and 6 the significance of results
obtained with SbPPA is highlighted.

4.1. Parameter Settings. The parameter settings are given in
Tables 1–3.

5. Conclusion

In this paper, a new metaheuristic referred to as the Seed-
Based Plant Propagation Algorithm (SbPPA) [47] has been
proposed. Plants have evolved a variety of ways to propagate.
Propagation through seeds is perhaps the most common
of them all and one which takes advantage of all sorts of
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Figure 4: Performance of SbPPA on unconstrained global optimization problems.
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Figure 5: Performance of SbPPA on constrained global optimization problems (see Appendices).
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Table 2: Experimental setup used for each algorithm for solving
unconstrained global optimization problems 𝑓

11
–𝑓
26
. All experi-

ments are repeated 50 times.

CEP [30, 53, 54] FEP [30] SbPPA
Population size
𝜇 = 100

Population size
𝜇 = 100

NP = 10

Tournament size
𝑞 = 10

Tournament size
𝑞 = 10 PR = 0.8

𝜂 = 3.0 𝜂 = 3.0 Poiss(𝜆) = 0.05

agents ranging from wind to water, birds, and animals. The
strawberry plant uses both runners and seeds to propagate.
Here we consider the propagation through seeds that the
strawberry plant has evolved, to design an efficient optimiza-
tion algorithm.

To capture the dispersal process, we adopt a queuing
approach which, given the extent of fruit produced, indicates
the extent of seeds dispersed and hence the effectiveness
of the search/optimization algorithm based on this process.
Looking at the random process of agents using the plants
(feeding station) it is reasonable to assume that it is of the
Poisson type. On the other hand, the time taken by agents
in successfully eating fruit and leaving to disperse its seeds,
in other words the service time for agents, is expressed by a
random variable which follows the exponential probability
distribution. To this end, we choose a threshold value of
the Poisson probability that dictates how much exploration
and exploitation are done during the search. An alternative
strategy has been adopted here. This strategy consists in
making sure that the initial population is as good as the
user can afford it to be by using best solutions found so
far. The effects of this strategy on convergence are shown
through convergence plots of Figures 4 and 5, for some of the
solved problems. SbPPA is easy to implement as it requires
less arbitrary parameter settings than other algorithms. The
success rate of SbPPA increases as it gets its population of best
solutions. It has been implemented for both unconstrained
and constrained optimization problems. Its performance,
compared to that of other algorithms, points to SbPPA as
being superior.

Appendices

A. Unconstrained Global
Optimization Problems

See Tables 8 and 9.

B. Set of Constrained Global Optimization
Problems Used in Our Experiments

B.1. CP1. Consider the following:

Min 𝑓 (𝑥) = 5

4

∑

𝑑=1

𝑥
𝑑
− 5

4

∑

𝑑=1

𝑥
2

𝑑
−

13

∑

𝑑=5

𝑥
𝑑
,

subject to 𝑔
1
(𝑥) = 2𝑥

1
+ 2𝑥
2
+ 𝑥
10
+ 𝑥
11
− 10 ≤ 0,

𝑔
2
(𝑥) = 2𝑥

1
+ 2𝑥
3
+ 𝑥
10
+ 𝑥
12
− 10 ≤ 0,

𝑔
3
(𝑥) = 2𝑥

2
+ 2𝑥
3
+ 𝑥
11
+ 𝑥
12
− 10 ≤ 0,

𝑔
4
(𝑥) = −8𝑥

1
+ 𝑥
10
≤ 0,

𝑔
5
(𝑥) = −8𝑥

2
+ 𝑥
11
≤ 0,

𝑔
6
(𝑥) = −8𝑥

3
+ 𝑥
12
≤ 0,

𝑔
7
(𝑥) = −2𝑥

4
− 𝑥
5
+ 𝑥
10
≤ 0,

𝑔
8
(𝑥) = −2𝑥

6
− 𝑥
7
+ 𝑥
11
≤ 0,

𝑔
9
(𝑥) = −2𝑥

8
− 𝑥
9
+ 𝑥
12
≤ 0,

(B.1)

where bounds are 0 ≤ 𝑥
𝑖
≤ 1 (𝑖 = 1, . . . , 9, 13), 0 ≤

𝑥
𝑖
≤ 100 (𝑖 = 10, 11, 12). The global optimum is at 𝑥∗ =

(1, 1, 1, 1, 1, 1, 1, 1, 1, , 3, 3, 3, 1), 𝑓(𝑥∗) = −15.

B.2. CP2. Consider the following:

Min 𝑓 (𝑥) = 5.3578547𝑥
2
+ 0.8356891𝑥

1
𝑥
5

+ 37.293239𝑥
1
− 40792.141,

subject to 𝑔
1
(𝑥) = 85.334407 + 0.0056858𝑥

2
𝑥
5

+ 0.0006262𝑥
1
𝑥
4
− 0.0022053𝑥

3
𝑥
5

− 92 ≤ 0,

𝑔
2
(𝑥) = −85.334407 − 0.0056858𝑥

2
𝑥
5

− 0.0006262𝑥
1
𝑥
4
+ 0.0022053𝑥

3
𝑥
5

≤ 0,

𝑔
3
(𝑥) = 80.51249 + 0.0071317𝑥

2
𝑥
5

+ 0.0029955𝑥
1
𝑥
2
− 0.0021813𝑥

2

− 110 ≤ 0,

𝑔
4
(𝑥) = −80.51249 − 0.0071317𝑥

2
𝑥
5

+ 0.0029955𝑥
1
𝑥
2
− 0.0021813𝑥

2

+ 90 ≤ 0,

𝑔
5
(𝑥) = 9.300961 − 0.0047026𝑥

3
𝑥
5

− 0.0012547𝑥
1
𝑥
3
− 0.0019085𝑥

3
𝑥
4

− 25 ≤ 0,

𝑔
6
(𝑥) = −9.300961 − 0.0047026𝑥

3
𝑥
5

− 0.0012547𝑥
1
𝑥
3
− 0.0019085𝑥

3
𝑥
4

+ 20 ≤ 0,

(B.2)
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Table 3: Parameters used for each algorithm for solving constrained optimization problems. All experiments are repeated 30 times.

PSO [51] ABC [50] FF [21] SSO-C [22] SbPPA [47]
𝑀 = 250 SN = 40 Fireflies = 25 𝑁 = 50 NP = 10
𝐺max = 300 MCN = 6000 Iteration number = 2000 Iteration number = 500 Iteration number = 800
𝑐
1
= 2 MR = 0.8 𝑞 = 1.5 PF = 0.7 PR = 0.8

𝑐
2
= 2 — 𝛼 = 0.001 — Poiss(𝜆) = 0.05

Weight factors = 0.9 to 0.4 — — — —

Table 4: Results obtained by SbPPA, HPA, PSO, and ABC. All problems in this table are unconstrained.

Fun. Dim Algorithm Best Worst Mean SD

𝑓
1

4

ABC (+) 0.0129 (+) 0.6106 (+) 0.1157 (+) 0.111

PSO (−) 6.8991𝐸 − 08 (+) 0.0045 (+) 0.001 (+) 0.0013

HPA (+) 2.0323𝐸 − 06 (+) 0.0456 (+) 0.009 (+) 0.0122

SbPPA 1.08𝐸 − 07 7.05𝐸 − 06 3.05𝐸 − 06 3.14𝐸 − 06

𝑓
2

2

ABC (+) 1.2452𝐸 − 08 (+) 8.4415𝐸 − 06 (+) 1.8978𝐸 − 06 (+) 1.8537𝐸 − 06

PSO (≈) 0 (≈) 0 (≈) 0 (≈) 0

HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0

SbPPA 0 0 0 0

𝑓
3

2

ABC (≈) 0 (+) 4.8555𝐸 − 06 (+) 4.1307𝐸 − 07 (+) 1.2260𝐸 − 06

PSO (≈) 0 (+) 3.5733𝐸 − 07 (+) 1.1911𝐸 − 08 (+) 6.4142𝐸 − 08

HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0

SbPPA 0 0 0 0

𝑓
4

2

ABC (≈) −1.03163 (≈) −1.03163 (≈) −1.03163 (≈) 0

PSO (≈) −1.03163 (≈) −1.03163 (≈) −1.03163 (≈) 0

HPA (≈) −1.03163 (≈) −1.03163 (≈) −1.03163 (≈) 0

SbPPA −1.031628 −1.031628 −1.031628 0

𝑓
5

6

ABC (≈) −50.0000 (≈) −50.0000 (≈) −50.0000 (−) 0

PSO (≈) −50.0000 (≈) −50.0000 (≈) −50.0000 (−) 0

HPA (≈) −50.0000 (≈) −50.0000 (≈) −50.0000 (−) 0

SbPPA −50.0000 −50.0000 −50.0000 5.88𝐸 − 09

𝑓
6

10

ABC (+) −209.9929 (+) −209.8437 (+) −209.9471 (+) 0.044

PSO (≈) −210.0000 (≈) −210.0000 (≈) −210.0000 (−) 0

HPA (≈) −210.0000 (≈) −210.0000 (≈) −210.0000 (+) 1

SbPPA −210.0000 −210.0000 −210.0000 4.86𝐸 − 06

𝑓
7

30

ABC (+) 2.6055𝐸 − 16 (+) 5.5392𝐸 − 16 (+) 4.7403𝐸 −16 (+) 9.2969𝐸 − 17

PSO (≈) 0 (≈) 0 (≈) 0 (≈) 0

HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0

SbPPA 0 0 0 0

𝑓
8

30

ABC (+) 2.9407𝐸 − 16 (+) 5.5463𝐸 − 16 (+) 4.8909𝐸 − 16 (+) 9.0442𝐸 − 17

PSO (≈) 0 (≈) 0 (≈) 0 (≈) 0

HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0

SbPPA 0 0 0 0

𝑓
9

30

ABC (≈) 0 (+) 1.1102𝐸 − 16 (+) 9.2519𝐸 − 17 (+) 4.1376𝐸 − 17

PSO (≈) 0 (+) 1.1765𝐸 − 01 (+) 2.0633𝐸 − 02 (+) 2.3206𝐸 − 02

HPA (≈) 0 (≈) 0 (≈) 0 (≈) 0

SbPPA 0 0 0 0

𝑓
10

30

ABC (+) 2.9310𝐸 − 14 (+) 3.9968𝐸 − 14 (+) 3.2744𝐸 − 14 (+) 2.5094𝐸 − 15

PSO (≈) 7.9936𝐸 − 15 (+) 1.5099𝐸 − 14 (+) 8.5857𝐸 − 15 (+) 1.8536𝐸 − 15

HPA (≈) 7.9936𝐸 − 15 (+) 1.5099𝐸 − 14 (+) 1.1309𝐸 − 14 (+) 3.54𝐸 − 15

SbPPA 7.994𝐸 − 15 7.99361𝐸 − 15 7.994𝐸 − 15 7.99361𝐸 − 15
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Table 5: Results obtained by SbPPA, CEP, and FEP. All problems in this table are unconstrained [30].

Function number Algorithm Maximum generations Mean SD

𝑓
11

CEP
2000

2.60𝐸 − 03 1.70𝐸 − 04

FEP 8.10𝐸 − 03 7.70𝐸 − 04

SbPPA 9.45E − 13 4.08E − 12

𝑓
12

CEP
5000

2 1.2

FEP 0.3 0.5

SbPPA 3.93E − 02 3.76E − 02

𝑓
13

CEP
20000

6.17 13.61

FEP 5.06 5.87

SbPPA 1.86𝐸 + 01 2.25𝐸 + 00

𝑓
14

CEP
1500

577.76 1125.76

FEP 0 0

SbPPA 0 0

𝑓
15

CEP
3000

1.80𝐸 − 02 6.40𝐸 − 03

FEP 7.60𝐸 − 03 2.60𝐸 − 03

SbPPA 3.61E − 03 1.31E − 03

𝑓
16

CEP
9000

−7.92𝐸 + 03 6.35𝐸 + 02

FEP −1.26𝐸 + 04 5.26𝐸 + 01

SbPPA −1.16𝐸 + 04 6.04𝐸 + 01

𝑓
17

CEP
5000

89 23.1

FEP 4.60𝐸 − 02 1.20𝐸 − 02

SbPPA 8.73E + 00 9.88E − 01

𝑓
18

CEP
100

0.398 1.50𝐸 − 07

FEP 0.398 1.50𝐸 − 07

SbPPA 3.98𝐸 − 01 0

Table 6: Results obtained by SbPPA, CEP, and FEP. All problems in this table are unconstrained [30].

Function number Algorithm Maximum generations Mean SD

𝑓
19

CEP
100

3 0

FEP 3.02 0.11

SbPPA 3 3.05E − 15

𝑓
20

CEP
100

−3.86𝐸 + 00 1.40𝐸 − 02

FEP −3.86𝐸 + 00 1.40𝐸 − 05

SbPPA −3.86𝐸 + 00 2.75E − 15

𝑓
21

CEP
200

−3.28𝐸 + 00 5.80𝐸 − 02

FEP −3.27𝐸 + 00 5.90𝐸 − 02

SbPPA −3.32E + 00 2.91E − 14

𝑓
22

CEP
100

−6.86𝐸 + 00 2.67𝐸 + 00

FEP −5.52𝐸 + 00 1.59𝐸 + 00

SbPPA −1.02E + 01 4.30E − 09

𝑓
23

CEP
100

−8.27 2.95

FEP −5.52 2.12

SbPPA −1.04E + 01 7.73E − 09

𝑓
24

CEP
100

−9.1 2.92

FEP −6.57 3.14

SbPPA −1.05E + 01 1.03E − 07

𝑓
25

CEP
100

1.66 1.19

FEP 1.22 0.56

SbPPA 9.98E − 01 1.13E − 16

𝑓
26

CEP
4000

4.70𝐸 − 04 3.00𝐸 − 04

FEP 5.00𝐸 − 04 3.20𝐸 − 04

SbPPA 3.07E − 04 6.80E − 15
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Table 7: Results obtained by SbPPA, PSO, ABC, FF, and SSO-C. All problems in this table are standard constrained optimization problems.

Fun. name Optimal Algorithm Best Mean Worst SD

CP1 −15

PSO (≈) −15 (≈) −15 (≈) −15 (−) 0

ABC (≈) −15 (≈) −15 (≈) −15 (−) 0

FF (+) 14.999 (+) 14.988 (+) 14.798 (+) 6.40𝐸 − 07

SSO-C (≈) −15 (≈) −15 (≈) −15 (−) 0

SbPPA −15 −15 −15 1.95𝐸 − 15

CP2 −30665.539

PSO (≈) −30665.5 (+) −30662.8 (+) −30650.4 (+) 5.20𝐸 − 02

ABC (≈) −30665.5 (+) −30664.9 (+) −30659.1 (+) 8.20𝐸 − 02

FF (≈) −3.07𝐸 + 04 (+) −30662 (+) −30649 (+) 5.20𝐸 − 02

SSO-C (≈) −3.07𝐸 + 04 (≈) −30665.5 (+) −30665.1 (+) 1.10𝐸 − 04

SbPPA −30665.5 −30665.5 −30665.5 2.21𝐸 − 06

CP3 −6961.814

PSO (+) −6.96𝐸 + 03 (+) −6958.37 (+) −6942.09 (+) 6.70𝐸 − 02

ABC (−) −6961.81 (+) −6958.02 (+) −6955.34 (−) 2.10𝐸 − 02

FF (+) −6959.99 (+) −6.95𝐸 + 03 (+) −6947.63 (−) 3.80𝐸 − 02

SSO-C (−) −6961.81 (+) −6961.01 (+) −6960.92 (−) 1.10𝐸 − 03

SbPPA −6961.5 −6961.38 −6961.45 0.043637

CP4 24.306

PSO (−) 24.327 (+) 2.45𝐸 + 01 (+) 24.843 (+) 1.32𝐸 − 01

ABC (+) 24.48 (+) 2.66𝐸 + 01 (+) 28.4 (+) 1.14

FF (−) 23.97 (+) 28.54 (+) 30.14 (+) 2.25

SSO-C (−) 24.306 (−) 24.306 (−) 24.306 (−) 4.95𝐸 − 05

SbPPA 24.34442 24.37536 24.37021 0.012632

CP5 −0.7499

PSO (≈) −0.7499 (+) −0.749 (+) −0.7486 (+) 1.20𝐸 − 03

ABC (≈) −0.7499 (+) −0.7495 (+) −0.749 (+) 1.67𝐸 − 03

FF (+) −0.7497 (+) −0.7491 (+) −0.7479 (+) 1.50𝐸 − 03

SSO-C (≈) −0.7499 (≈) −0.7499 (≈) −0.7499 (−) 4.10𝐸 − 09

SbPPA 0.7499 0.749901 0.7499 1.66𝐸 − 07

Spring Design Problem Not known

PSO (+) 0.012858 (+) 0.014863 (+) 0.019145 (+) 0.001262

ABC (≈) 0.012665 (+) 0.012851 (+) 0.01321 (+) 0.000118

FF (≈) 0.012665 (+) 0.012931 (+) 0.01342 (+) 0.001454

SSO-C (≈) 0.012665 (+) 0.012765 (+) 0.012868 (+) 9.29𝐸 − 05

SbPPA 0.012665 0.012666 0.012666 3.39𝐸 − 10

Welded beam design problem Not known

PSO (+) 1.846408 (+) 2.011146 (+) 2.237389 (+) 0.108513

ABC (+) 1.798173 (+) 2.167358 (+) 2.887044 (+) 0.254266

FF (+) 1.724854 (+) 2.197401 (+) 2.931001 (+) 0.195264

SSO-C (≈) 1.724852 (+) 1.746462 (+) 1.799332 (+) 0.02573

SbPPA 1.724852 1.724852 1.724852 4.06𝐸 − 08

Speed reducer design optimization Not known

PSO (+) 3044.453 (+) 3079.262 (+) 3177.515 (+) 26.21731

ABC (+) 2996.116 (+) 2998.063 (+) 3002.756 (+) 6.354562

FF (+) 2996.947 (+) 3000.005 (+) 3005.836 (+) 8.356535

SSO-C (≈) 2996.113 (≈) 2996.113 (≈) 2996.113 (+) 1.34𝐸 − 12

SbPPA 2996.114 2996.114 2996.114 0
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Table 8: Unconstrained global optimization problems (Set-1) used in our experiments.

Fun. Fun. name 𝐷 𝐶 Range Min Formulation

𝑓
1 Colville 4 UN [−10 10]

𝐷 0 𝑓 (𝑥) = 100 (𝑥
2

1
− 𝑥
2
) + (𝑥

1
− 1)
2

+ (𝑥
3
− 1)
2

+ 90 (𝑥
2

3
− 𝑥
4
)
2

+10.1((𝑥
2
− 1)
2
+ (𝑥
4
− 1)
2

) + 19.8(𝑥
2
− 1)(𝑥

4
− 1)

𝑓
2 Matyas 2 UN [−10 10]

𝐷 0 𝑓(𝑥) = 0.26(𝑥
2

1
+ 𝑥
2

2
) − 0.48𝑥

1
𝑥
2

𝑓
3 Schaffer 2 MN [−100 100]

𝐷 0 𝑓(𝑥) = 0.5 +

sin2 (√∑𝑛
𝑖=1

𝑥
2

𝑖
) − 0.5

(1 + 0.001 (∑
𝑛

𝑖=1
𝑥
2

𝑖
))
2

𝑓
4

Six Hump
Camel Back 2 MN [−5 5]

𝐷
−1.03163 𝑓(𝑥) = 4𝑥

2

1
− 2.1𝑥

4

1
+
1

3
𝑥
6

1
+ 𝑥
1
𝑥
2
− 4𝑥
2

2
+ 4𝑥
4

2

𝑓
5 Trid6 6 UN [−36 36]

𝐷
−50 𝑓(𝑥) =

6

∑

𝑖=1

(𝑥
𝑖
− 1)
2

−

6

∑

𝑖=2

𝑥
𝑖
𝑥
𝑖−1

𝑓
6 Trid10 10 UN [−100 100]

𝐷
−210 𝑓(𝑥) =

10

∑

𝑖=1

(𝑥
𝑖
− 1)
2

−

10

∑

𝑖=2

𝑥
𝑖
𝑥
𝑖−1

𝑓
7 Sphere 30 US [−100 100]

𝐷
0 𝑓(𝑥) =

𝑛

∑

𝑖=1

𝑥
2

𝑖

𝑓
8 SumSquares 30 US [−10 10]

𝐷
0 𝑓(𝑥) =

𝑛

∑

𝑖=1

𝑖𝑥
2

𝑖

𝑓
9 Griewank 30 MN [−600 600]

𝐷
0 𝑓(𝑥) =

1

4000

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1

𝑓
10 Ackley 30 MN [−32 32]

𝐷
0 𝑓(𝑥) = −20 exp(−0.2√ 1

𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
) − exp(1

𝑛

𝑛

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒

where 78 ≤ 𝑥
1

≤ 102, 33 ≤ 𝑥
2

≤ 45, and
27 ≤ 𝑥

𝑖
≤ 45 (𝑖 = 3, 4, 5). The optimum solution is

𝑥
∗
= (78, 33, 29.995256025682, 45, 36.775812905788), where

𝑓(𝑥
∗
) = −30665.539. Constraints 𝑔

1
and 𝑔

6
are active.

B.3. CP3. Consider the following:

Min 𝑓 (𝑥) = (𝑥
1
− 10)
3

+ (𝑥
2
− 20)
3

,

subject to 𝑔
1
(𝑥) = − (𝑥

1
− 5)
2

− (𝑥
2
− 5)
2

+ 100 ≤ 0,

𝑔
2
(𝑥) = (𝑥

1
− 6)
2

+ (𝑥
2
− 5)
2

− 82.81 ≤ 0,

(B.3)

where 13 ≤ 𝑥
1

≤ 100 and 0 ≤ 𝑥
2

≤ 100. The
optimum solution is 𝑥∗ = (14.095, 0.84296) where 𝑓(𝑥∗) =
−6961.81388. Both constraints are active.

B.4. CP4. Consider the following:

Min 𝑓 (𝑥) = 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
1
𝑥
2
− 14𝑥

1
− 16𝑥

2

+ (𝑥
3
− 10)
2

+ 4 (𝑥
4
− 5)
2

+ (𝑥
5
− 3)
2

+ 2 (𝑥
6
− 1)
2

+ 5𝑥
2

7
+ 7 (𝑥

8
− 11)
2

+ 2 (𝑥
9
− 10)
2

+ (𝑥
10
− 7)
2

+ 45,

subject to 𝑔
1
(𝑥) = −105 + 4𝑥

1
+ 5𝑥
2
− 3𝑥
7
+ 9𝑥
8
≤ 0,

𝑔
2
(𝑥) = 10𝑥

1
− 8𝑥
2
− 17𝑥

7
+ 2𝑥
8
≤ 0,

𝑔
3
(𝑥) = −8𝑥

1
+ 2𝑥
2
+ 5𝑥
9
− 2𝑥
10
− 12 ≤ 0,

𝑔
4
(𝑥) = 3 (𝑥

1
− 2)
2

+ 4 (𝑥
2
− 3)
2

+ 2𝑥
2

3

− 7𝑥
4
− 120 ≤ 0,

𝑔
5
(𝑥) = 5𝑥

2

1
+ 8𝑥
2
+ (𝑥
3
− 6)
2

− 2𝑥
4

− 40 ≤ 0,

𝑔
6
(𝑥) = 𝑥

2

1
+ 2 (𝑥

2
− 2)
2

− 2𝑥
1
𝑥
2
+ 14𝑥

5

− 6𝑥
6
≤ 0,

𝑔
7
(𝑥) = 0.5 (𝑥

1
− 8)
2

+ 2 (𝑥
2
− 4)
2

+ 3𝑥
2

5

− 𝑥
6
− 30 ≤ 0,

𝑔
8
(𝑥) = −3𝑥

1
+ 6𝑥
2
+ 12 (𝑥

9
− 8)
2

− 7𝑥
10
≤ 0,

(B.4)

where −10 ≤ 𝑥
𝑖
≤ 10 (𝑖 = 1, . . . , 10). The global optimum

is 𝑥∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,
1.430574, 1.321644, 9.828726, 8.280092, 8.375927), where
𝑓(𝑥
∗
) = 24.3062091. Constraints 𝑔

1
, 𝑔
2
, 𝑔
3
, 𝑔
4
, 𝑔
5
, and 𝑔

6
are

active.

B.5. CP5. Consider the following:

Min 𝑓 (𝑥) = 𝑥
2

1
+ (𝑥
2
− 1)
2

,

subject to 𝑔
1
(𝑥) = 𝑥

2
− 𝑥
2

1
= 0,

(B.5)

where 1 ≤ 𝑥
1
≤ 1, 1 ≤ 𝑥

2
≤ 1. The optimum solution is

𝑥
∗
= (±1/√(2), 1/2), where 𝑓(𝑥∗) = 0.7499.
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Table 9: Unconstrained global optimization problems (Set-2) used in our experiments [30].

Fun.
number Range 𝐷 Function Formulation 𝑓min

𝑓
11

[−10, 10]𝐷 30
Schwefel’s
Problem
2.22

𝑓(𝑥) =

𝑛

∑

𝑖=1

|𝑥
𝑖
| +

𝑛

∏

𝑖=1

|𝑥
𝑖
| 0

𝑓
12

[−100, 100]𝐷 30
Schwefel’s
Problem
2.21

𝑓(𝑥) = max
𝑖
{|𝑥
𝑖
|, 1 ≤ 𝑖 ≤ 𝑛} 0

𝑓
13

[−10, 10]𝐷 30 Rosenbrock 𝑓 (𝑥) =

𝑛−1

∑

𝑖=1

[100 (𝑥
𝑖+1

− 𝑥
2

𝑖
)
2

+ (𝑥
𝑖
− 1)
2

] 0

𝑓
14

[−100, 100]𝐷 30 Step 𝑓(𝑥) =

𝑛

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2 0

𝑓
15

[−1.28, 1.28]𝐷 30 Quartic
(noise)

𝑓(𝑥) =

𝑛

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random[0, 1) 0

𝑓
16

[−500, 500]𝐷 30 Schwefel 𝑓(𝑥) = −

𝑛

∑

𝑖=1

𝑥
𝑖
sin(√󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨) −12569.5

𝑓
17

[−5.12, 5.12]𝐷 30 Rastrigin 𝑓(𝑥) = [𝑥
2

𝑖
− 10cos(2𝜋𝑥

𝑖
) + 10] 0

𝑓
18

[−5, 10] × [0, 15] 2 Branin 𝑓(𝑥) = (𝑥
2
−
5.1

4𝜋2
𝑥
2

1
+
5

𝜋
𝑥
1
− 6)

2

+ 10 (1 −
1

8𝜋
) cos𝑥

1
+ 10 0.398

𝑓
19

[−2, 2]𝐷 2 Goldstein-
Price

𝑓 (𝑥) = [1 + (𝑥
1
+ 𝑥
2
+ 1)
2

(19 − 14𝑥
1
+ 3𝑥
2

1
− 14𝑥

2
+ 6𝑥
1
𝑥
2
+ 3𝑥
2

2
)]

× [30 + (2𝑥
1
− 3𝑥
2
)
2

(18 − 32𝑥
1
+ 12𝑥

2

1
+ 48𝑥

2
− 36𝑥

1
𝑥
2
+ 27𝑥

2

2
)]

3

𝑓
20

[0, 1]𝐷 4
Hartman’s
Family
(𝑛 = 3)

𝑓 (𝑥) = −

4

∑

𝑖=1

𝑐
𝑖
exp[

3

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
− 𝑝
𝑖𝑗
)
2

] −3.86

𝑓
21

[0, 1]𝐷 6
Hartman’s
Family
(𝑛 = 6)

𝑓(𝑥) = −

4

∑

𝑖=1

𝑐
𝑖
exp[

6

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
− 𝑝
𝑖𝑗
)
2

] −3.32

𝑓
22

[0, 10]𝐷 4
Shekel’s
Family
(𝑚 = 5)

𝑓(𝑥) = −

5

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
)(𝑥 − 𝑎

𝑖
)
𝑇

+ 𝑐
𝑖
]
−1

−10

𝑓
23

[0, 10]𝐷 4
Shekel’s
Family
(𝑚 = 7)

𝑓(𝑥) = −

7

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
) (𝑥 − 𝑎

𝑖
)
𝑇

+ 𝑐
𝑖
]
−1

−10

𝑓
24

[0, 10]𝐷 4
Shekel’s
Family
(𝑚 = 10)

𝑓(𝑥) = −

10

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
) (𝑥 − 𝑎

𝑖
)
𝑇

+ 𝑐
𝑖
]
−1

−10

𝑓
25

[−65.536, 65.536]𝐷 2 Shekel’s
Foxholes 𝑓(𝑥) = [

[

1

500
+

25

∑

𝑗=1

1

𝑗 + ∑
2

𝑖=1
(𝑥
𝑖
− 𝑎
𝑖𝑗
)
6

]

]

−1

1

𝑓
26

[−5, 5]𝐷 4 Kowalik 𝑓(𝑥) =

11

∑

𝑖=1

[𝑎
𝑖
−
𝑥
1
(𝑏
2

𝑖
+ 𝑏
𝑖
𝑥
2
)

𝑏
2

𝑖
+ 𝑏
𝑖
𝑥
3
+ 𝑥
4

]

2

0.0003075

B.6. Welded Beam Design Optimisation. The welded beam
design is a standard test problem for constrained design
optimisation [55, 56]. There are four design variables: the
width 𝑤 and length 𝐿 of the welded area and the depth
𝑑 and thickness ℎ of the main beam. The objective is to
minimise the overall fabrication cost, under the appropriate
constraints of shear stress 𝜏, bending stress 𝜎, buckling load
𝑃, and maximum end deflection 𝛿. The optimization model
is summarized as follows, where 𝑥𝑇 = (𝑤, 𝐿, 𝑑, ℎ):

Minimise 𝑓 (𝑥) = 1.10471𝑤
2
𝐿 + 0.04811𝑑ℎ (14.0 + 𝐿) ,

subject to 𝑔
1
(𝑥) = 𝑤 − ℎ ≤ 0,

𝑔
2
(𝑥) = 𝛿 (𝑥) − 0.25 ≤ 0,

𝑔
3
(𝑥) = 𝜏 (𝑥) − 13, 600 ≤ 0,

𝑔
4
(𝑥) = 𝜎 (𝑥) − 30, 000 ≤ 0,

𝑔
5
(𝑥) = 1.10471𝑤

2
+ 0.04811𝑑ℎ (14.0 + 𝐿)

− 5.0 ≤ 0,

𝑔
6
(𝑥) = 0.125 − 𝑤 ≤ 0,

𝑔
7
(𝑥) = 6000 − 𝑃 (𝑥) ≤ 0,

(B.6)
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where

𝜎 (𝑥) =
504, 000

ℎ𝑑2
, 𝐷 =

1

2

√𝐿2 + (𝑤 + 𝑑)
2
,

𝑄 = 6000 (14 +
𝐿

2
) , 𝛿 =

65, 856

30, 000ℎ𝑑3
,

𝐽 = √2𝑤𝐿(
𝐿
2

6
+
(𝑤 + 𝑑)

2

2
) , 𝛼 =

6000

√2𝑤𝐿

,

𝛽 =
𝑄𝐷

𝐽
, 𝑃 = 0.61423 × 10

6 𝑑ℎ
3

6
(1 −

𝑑
√30/48

28
) ,

𝜏 (𝑥) = √𝛼2 +
𝛼𝛽𝐿

𝐷
+ 𝛽2.

(B.7)

B.7. Speed Reducer Design Optimization. The problem of
designing a speed reducer [57] is a standard test problem.
It consists of the design variables as face width 𝑥

1
, module

of teeth 𝑥
2
, number of teeth on pinion 𝑥

3
, length of the first

shaft between bearings 𝑥
4
, length of the second shaft between

bearings 𝑥
5
, diameter of the first shaft 𝑥

6
, and diameter

of the first shaft 𝑥
7
(all variables are continuous except 𝑥

3

that is integer). The weight of the speed reducer is to be
minimized subject to constraints on bending stress of the gear
teeth, surface stress, transverse deflections of the shafts, and
stresses in the shaft [55].Themathematical formulation of the
problem, where 𝑥𝑇 = (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
), is as follows:

Minimise 𝑓 (𝑥) = 0.7854𝑥
1
𝑥
2

2

⋅ (3.3333𝑥
2

3
+ 14.9334𝑥

3
43.0934)

− 1.508𝑥
1
(𝑥
2

6
+ 𝑥
3

7
)

+ 7.4777 (𝑥
3

6
+ 𝑥
3

7
)

+ 0.7854 (𝑥
4
𝑥
2

6
+ 𝑥
5
𝑥
2

7
) ,

subject to 𝑔
1
(𝑥) =

27

𝑥
1
𝑥
2

2
𝑥
3

− 1 ≤ 0,

𝑔
2
(𝑥) =

397.5

𝑥
1
𝑥
2

2
𝑥
2

3

− 1 ≤ 0,

𝑔
3
(𝑥) =

1.93𝑥
3

4

𝑥
2
𝑥
3
𝑥
4

6

− 1 ≤ 0,

𝑔
4
(𝑥) =

1.93𝑥
3

5

𝑥
2
𝑥
3
𝑥
4

7

− 1 ≤ 0,

𝑔
5
(𝑥) =

1.0

110𝑥
3

6

√(
745.0𝑥

4

𝑥
2
𝑥
3

)

2

+ 16.9 × 106

− 1 ≤ 0,

𝑔
6
(𝑥) =

1.0

85𝑥
3

7

√(
745.0𝑥

5

𝑥
2
𝑥
3

)

2

+ 157.5 × 106

− 1 ≤ 0,

𝑔
7
(𝑥) =

𝑥
2
𝑥
3

40
− 1 ≤ 0,

𝑔
8
(𝑥) =

5𝑥
2

𝑥
1

− 1 ≤ 0,

𝑔
9
(𝑥) =

𝑥
1

12𝑥
2

− 1 ≤ 0,

𝑔
10
(𝑥) =

1.5𝑥
6
+ 1.9

𝑥
4

− 1 ≤ 0,

𝑔
11
(𝑥) =

1.1𝑥
7
+ 1.9

𝑥
5

− 1 ≤ 0.

(B.8)

The simple limits on the design variables are 2.6 ≤ 𝑥
1
≤ 3.6,

0.7 ≤ 𝑥
2
≤ 0.8, 17 ≤ 𝑥

3
≤ 28, 7.3 ≤ 𝑥

4
≤ 8.3, 7.8 ≤ 𝑥

5
≤ 8.3,

2.9 ≤ 𝑥
6
≤ 3.9, and 5.0 ≤ 𝑥

7
≤ 5.5.

B.8. Spring Design Optimisation. The main objective of this
problem [58, 59] is to minimize the weight of a ten-
sion/compression string, subject to constraints of minimum
deflection, shear stress, surge frequency, and limits on outside
diameter and on design variables. There are three design
variables: the wire diameter 𝑥

1
, the mean coil diameter 𝑥

2
,

and the number of active coils 𝑥
3
[55]. The mathematical

formulation of this problem, where 𝑥𝑇 = (𝑥
1
, 𝑥
2
, 𝑥
3
), is as

follows:

Minimize 𝑓 (𝑥) = (𝑥
3
+ 2) 𝑥

2
𝑥
2

1
,

subject to 𝑔
1
(𝑥) = 1 −

𝑥
3

2
𝑥
3

7, 178𝑥
4

1

≤ 0,

𝑔
2
(𝑥) =

4𝑥
2

2
− 𝑥
1
𝑥
2

12, 566 (𝑥
2
𝑥
3

1
) − 𝑥
4

1

+
1

5, 108𝑥
2

1

− 1 ≤ 0,

𝑔
3
(𝑥) = 1 −

140.45𝑥
1

𝑥
2

2
𝑥
3

≤ 0,

𝑔
4
(𝑥) =

𝑥
2
+ 𝑥
1

1.5
− 1 ≤ 0.

(B.9)

The simple limits on the design variables are 0.05 ≤ 𝑥
1
≤ 2.0,

0.25 ≤ 𝑥
2
≤ 1.3, and 2.0 ≤ 𝑥

3
≤ 15.0.
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