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1. Summary
The processing of visual information by the nervous system
requires significant metabolic resources. To minimize the energy
needed, our visual system appears to be optimized to encode
typical natural images as efficiently as possible. One consequence
of this is that some atypical images will produce inefficient, non-
optimal responses. Here, we show that images that are reported
to be uncomfortable to view, and that can trigger migraine attacks
and epileptic seizures, produce relatively non-sparse responses
in a model of the primary visual cortex. In comparison with the
responses to typical inputs, responses to aversive images were
larger and less sparse. We propose that this difference in the neural
population response may be one cause of visual discomfort in the
general population, and can produce more extreme responses in
clinical populations such as migraine and epilepsy sufferers.

2. Introduction
The high metabolic cost of neural computation means that
it is only possible for a small fraction of cortical neurons
to be active at any one time. Lennie [1] estimated that, in
the visual cortex, this fraction is less than 2%. It is therefore
important that visual information is encoded efficiently. One
way of accomplishing this is to ensure a sparse distribution of
responses across the population of cortical neurons. This is a
response in which information is conveyed by strong activity in a
small proportion of neurons, while the majority remain relatively
inactive. It is possible to create metabolically efficient, sparse
responses to natural images [2] by exploiting their statistical
redundancy [3]. There is clear evidence that the mammalian
visual system responds sparsely to natural images. For example,
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Figure 1. (a) A sine grating. (b) A filtered noise pattern. (c) Results of discomfort studies replotted: filled circles represent discomfort
judgements of striped patterns of varying spatial frequency [17], open circles represent discomfort judgements of filtered noise patterns
of varying spatial frequency content [18]. The results have been normalized to a maximum value of 1.

models of populations of neurons with properties similar to those found in the visual cortex have been
shown to produce sparse responses to natural image inputs [4]. Equally, learning algorithms that seek to
generate sparse responses to natural image samples produce units with receptive fields that are strikingly
similar to those found in the visual cortex [5]. This suggests that sparse coding might, indeed, be a
strategy used by the human visual system to maximize information transfer with minimum metabolic
cost. It is important to note, however, that an encoding that produces sparse responses to natural images
may respond non-sparsely to other inputs.

Most research on natural image statistics has sought to establish how efficient coding of this type
is achieved. Such research has proved extremely valuable in understanding visual processing across
many dimensions, including luminance, contrast, colour, motion [6] and binocular disparity [7]. One
property typical of natural images is that they show little variation in their spatial frequency content:
typically, this can be characterized as a 1/f β amplitude spectrum, where β varies between 0.8 and 1.2
[8]. Natural images with these properties are generally judged to be comfortable to look at [9]. There
is also a growing literature suggesting that artwork is pleasing to the eye as its statistical properties
occupy a narrower range within this bracket, and therefore these stimuli can be even more optimally,
and sparsely, encoded [9–13]. An important, and hitherto neglected consequence of this specialization
is that the responses to images with atypical statistical properties will be non-optimal. Thus, some
images will exist that create inefficient, non-sparse responses. Here, we show that images that create
discomfort, and that can trigger epileptic seizures [14] and migraine attacks [15], produce relatively
non-sparse responses.

It is well established that images with some types of statistical structure produce adverse reactions,
including headaches, eye-strain and illusions of shape, colour and motion, when viewed, which is
referred to as ‘visual discomfort’ [16]. Such images have excessively high amplitude at midrange spatial
frequencies in comparison with natural images. In particular, striped gratings (see figure 1a for an
example) with a spatial frequency within an octave of four cycles per degree have been found to
be more uncomfortable than ones with a higher or lower spatial frequency [17]. These findings are
replotted in figure 1c. Spatial frequency content is also critical to the amplitude of the cortical response in
epilepsy sufferers [19]. The spatial frequency content of images other than striped patterns is important
in determining the degree of visual discomfort that they will induce [20,21]. Filtered noise patterns (see
figure 1b for an example) with spatial frequency content typical of natural images tend to be judged as
more comfortable than those with spatial frequency content that deviates from that typical of natural
images [18,20,21], as shown in figure 1c.

Here, we show that the types of images that create visual discomfort, and that trigger migraine
attacks and epileptic seizures, will produce excessively large, non-sparse responses in the primary
visual cortex. To do this, we apply and modify the techniques pioneered by Field [4] in the analysis
of the visual system’s responses to natural images. Field argued that the goal of sensory coding is to
produce a sparse response, across the population of cortical visual neurons, to natural images. Field
modelled cortical neurons as a population of log-Gabor wavelet functions. These functions, which have
receptive fields that are localized in space and tuned to spatial frequency and orientation, provide an
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Figure 2. The stimulus (a) was filtered to take account of the contrast sensitivity function (b), before filtering with (c) model neurons
with Gabor receptive fields. The probability distributions of tuning for (d) spatial frequency (e) orientation and (f ) phasewere taken from
physiological data.

accurate model of simple cells in cortical area V1. Field [4] calculated the responses of populations
of these model neurons to the raw information present in natural images and to a model population
of retinal neurons. Field found that subsequent stages of neural processing created increasingly sparse
responses to natural images. We used this approach to assess the magnitude and sparesness of responses
to the types of artificial images that have been associated with visual discomfort. Our logic is that, if
it is important that the population response of visual neurons to natural images is sparse, then those
stimuli that create non-sparse responses will be challenging for the visual system to encode. In particular,
stimuli that create large, non-sparse responses would place excessive metabolic demands on the visual
system. It is these excessive demands that are associated with discomfort [22], and are increased in
migraine [23,24].

In our analysis, we made an important change to the modelling approach developed by Field [4].
In his analysis, images were convolved with 16 filters, with tuning to two spatial frequencies, four
orientations and two phases. This can be used to simulate the population response of neurons with
this range of tunings, at all locations in the image. It is important to remember that the responses
of individual filters to each image are jointly determined by the image and the tuning of the filter.
The population response therefore depends crucially on the tunings of the filters. While the log-
Gabor filters used by Field [4] were carefully chosen to match the shapes of the receptive fields
of cortical neurons, the distribution of the tunings of the filters to parameters such as orientation
and spatial frequency was not. This is an important consideration, because the distributions of these
parameters will have a strong influence on both the magnitude and population sparseness of the
neural response.

We modelled the responses of populations of neurons with distributions of frequency, orientation
and phase tunings based on those found in physiological recordings. These are shown in figure 2d–f.
Of particular interest in the current context is that the distribution of spatial frequency tunings is very
non-uniform, with many more neurons tuned to midrange frequencies around two to six cycles per
degree. This means that images in which power is concentrated around these frequencies will produce
strong responses in many neurons, resulting in large, non-sparse population responses. Our analysis
provides a potential explanation for why images with these characteristics are associated with both large
haemodynamic and electromagnetic responses, and visual discomfort.
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3. Methods
3.1. Stimuli

3.1.1. Sinewave gratings

Pixel images of sinewave gratings (1024 × 1024) were created, with a resolution of one pixel per arc min
of visual angle. Gratings with spatial frequencies of 0.25, 0.5, 1, 2, 4, 8 and 12 cycles per degree were used.

3.1.2. Filtered noise

Filtered noise stimuli were created following previous work on visual discomfort [18,20]. Pixel Gaussian
white noise images (1024 × 1024) were created, again with a resolution of 1 pixel per arc min. These
images were then filtered in the Fourier frequency domain to have a 1/f amplitude spectrum, with a
peak at a particular frequency that was created by multiplication with a raised radial cosine filter:

H(f ) =
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2
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)
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)
,

(3.1)

where T is 0.9, β is the roll-off factor of 0.5, f is spatial frequency and f0 is the centre frequency of the
peak, ranging from 0.25 to 12 cycles per degree.

3.1.3. Natural images

One hundred natural images were sampled at random from the van Hateren database [5]. Images with
a linear luminance function were used.

3.2. Model neurons
V1 cortical cells were modelled using Gabor functions:

G(k) = A exp

(
−

x2
p

2σ 2
1

−
y2

p

2σ 2
2

)
cos(2π fxp + φ), (3.2)

where σ1 = 7.81/f and σ2 = 15.61/f , and yp and xp are defined as

xp = x cos θ − y sin θ (3.3)

yp = x sin θ + y cos θ . (3.4)

Here, f is the preferred spatial frequency of the model cell, θ the preferred orientation and φ is the phase.
For each stimulus, 250 000 model neurons were created.

For natural images, the spatial frequency, orientation and phase tunings of the neurons were set in
two ways. In the first simulation, we used the values for these parameters that were used by Field [4].
We used filters tuned to two spatial frequencies (20 and 40 cycles per image), four orientations (10, 55,
100 and 145 degrees) and two phases (0 and 90 degrees).

In our second simulation, the distributions of the tuning of our model neurons for spatial frequency
[25], orientation [26] and phase [27] were based on physiological data from single cell recordings
(figure 2d–f ). The data for spatial frequency were recorded from neurons with receptive fields in the
fovea in macaque monkeys. The data for orientation were recorded from neurons with receptive fields
in the central 15 degrees of the visual field in cats. The data for phase were recorded in the macaque; the
locations of the receptive fields were not reported in this study. The values of σ1 and σ2 used produced
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a spatial frequency bandwidth of 1.4 octaves, and receptive fields that were two times longer in the
direction parallel to the orientation tuning of the filter than in the orthogonal direction. For each stimulus,
we calculated the distribution of the responses of our model neurons. We were interested in both the
magnitude and sparseness of the population response. Magnitude was simply the total response across
all model neurons, and sparseness was quantified as the kurtosis of the population response [4]. For
distributions such as ours, which are peaked around zero, high kurtosis represents a sparse population
response, in which the majority of neurons respond weakly. Conversely, a low kurtosis indicates a less
sparse response.

3.3. Simulating neural responses
To calculate the responses of the model neurons, the receptive field was positioned at a randomly chosen
location in the image. The luminance value for each pixel within the receptive field was multiplied by
the receptive field’s weighting function at that point, and all such values were summed across space to
give the neuron’s response.

In the second simulation, in which we compared responses with sinewave and filtered-noise stimuli
with responses to natural images, we pre-filtered our images to take account of the contrast sensitivity
function [28]. This is an important characteristic of the early visual system, and is determined, in part,
by the optical modulation transfer function, and the bandpass filtering that occurs in the retina [29,30].
These pre-cortical filtering stages will affect the population response in ways that depend on the spatial
frequency content of the stimuli, and it is important therefore to understand the contribution of this
filtering, as well as the distribution of cortical tuning for spatial frequency, on the results that we obtained.
We therefore performed a third simulation in which we did not attempt to take the contrast sensitivity
function into account. All images were first scaled, so that the luminance values varied between 1 and
255. The original Field model was applied just to natural images, to allow for a comparison between the
two models with different tunings. The modified model (second and third simulation) was applied to all
of the stimuli. All simulations were performed using MATLAB.

4. Results
Figure 3 shows the distribution of responses to natural images, simulated using the original Field model
parameters, and also the modified model, which has parameters based on physiological data. For both
models, there is an overall peak in the response at zero, showing that the activity of most units is low.
The responses of our modified, physiology-based model are clearly more concentrated around zero than
those for the original, unmodified model. This is reflected in both the mean of the absolute values of the
responses (53% of the value of those for the original Field model parameters) and the population excess
kurtosis (149 for the modified model, 6.2 for the original model). These results suggest that the sparesness
of neural population responses, when the distributions of cells are taken into account, is much greater
than suggested by Field’s original model. These results demonstrate the important role played by the
combination of the statistics of the input image and the properties of cortical filters in determining the
nature of the neural response.

The overall distribution of modified model responses to natural images, gratings and filtered noise can
be seen in figure 4a. Figure 4 shows results only for the model in which the tuning functions of neurons
are based on physiological data. For all classes of stimuli, there is an overall peak in the response at 0,
showing that the activity of most units is low. The shapes of the distributions are broadly similar. This
similarity to the responses to natural images is critical in allowing us to compare measures of response
kurtosis and overall response magnitude. The response magnitude for both grating and filtered noise
stimuli was generally larger than for natural images, and depended on spatial frequency, as shown in
figure 4b. The magnitude peaks at two cycles per degree for both stimuli. This is in close agreement with
discomfort judgements [17,18]. The response kurtosis shows that this increase in response magnitude
partly reflects a response that is less sparse. The kurtosis of the population response is shown in figure 4c.
Kurtosis showed clear spatial frequency tuning, with the least sparse response occurring at three cycles
per degree for sinewaves, and at two cycles per degree for filtered noise. Thus, uncomfortable images
tended to produce excessive, non-sparse responses in comparison with typical natural images.

In the second simulation, we pre-filtered our images to take account of the contrast sensitivity
function. To determine the importance of this filtering, the simulations were repeated without it.
This third simulation produced similar results (figure 4d–f ), indicating that our findings reflect the
interaction between the properties of the input stimuli and the model architecture. For both types of
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stimulus, the tuning of response magnitude now peaked at a lower spatial frequency, reflecting the
importance of the contrast sensitivity function. Our results thus reflect the combined effects of contrast
sensitivity, and the distribution of spatial-frequency tuning of cortical neurons.
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5. Discussion
All of the model response distributions showed a similar shape to that obtained with natural images [4],
however response magnitude and kurtosis differed, depending on the input stimuli. The population
response kurtosis was used as a measure of the population sparesness [4]. The total magnitude of
the population response was also calculated, as a large cortical response has been proposed as a
possible cause of discomfort [21]. These are measures of the distribution and magnitude of responses
across the population of neurons, to a particular input stimulus. This is in contrast to measures of the
lifetime sparseness and response magnitude, which can be used to characterize the responses of each
individual neuron to different input stimuli. Because we are interested in characterizing the overall
cortical response, and how this differs across images, it is measures of the population response that
are of interest in the current context.

Our results indicate that stimuli previously judged to be uncomfortable produce both higher
responses and reduced sparesness compared with natural images. This provides a potential explanation
for visual discomfort in both normal and clinical populations. Excessive responses to uncomfortable
images have been found using both fMRI [23] and MEG [22]. In clinical cases, these excessive responses
may be the cause of both migraine attacks and epileptic seizures.

The model was an extension of the work of Field [4], to include the relative distributions of cortical
cells, and a gain control weighting function to represent the contrast sensitivity function. The location of
the peak of the response distribution was affected by the contrast sensitivity function, but not the overall
shape of the response. This could go some way to explaining the variation in discomfort judgements—
some studies find the maximum discomfort around four cycles per degree [17], others slightly lower [24].
This could potentially be explained by differences in contrast in the stimuli.

A sparse code represents one possible method of efficient coding. One limitation of this model is
that it does not address the decoding part of the information transfer, which is important for the system
to recognize what is in the image, for example. In order to be useful, information that is sufficient to
accurately undertake subsequent tasks must be transmitted. This is a much more difficult problem, which
has not yet been answered. Additionally, there are no data on how much information the visual system
can transmit with a given amount of metabolic energy ([31, pp. 77–78]). Lennie [1] suggested 1/50th of
the units can be strongly active, but this tells us nothing of the quality of information transmitted.

In summary, as natural images are optimally processed by the visual system, we demonstrate that,
in a model of primary visual cortex, stimuli that have previously been shown to produce discomfort
produce large, non-sparse responses. It has been suggested that visual discomfort may be the result of
multiple causes [16]. We propose that one such cause is stimuli that are challenging and metabolically
costly to process.

Data accessibility. MATLAB code is available from figshare: http://dx.doi.org/10.6084/m9.figshare.1288820.
Author contributions. Both authors contributed to the design and implementation of the research, and to the writing of
the manuscript.
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