
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XX XXXX

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the
IEEE by sending a request to pubs-permissions@ieee.org.

Abstract—A potential threat to embedded systems is the

execution of unknown or malicious software capable of triggering

harmful system behaviour, aimed at theft of sensitive data or

causing damage to the system. Commercial off-the-shelf

embedded devices, such as embedded medical equipment, are

more vulnerable as these type of products cannot be amended

conventionally or have limited resources to implement protection

mechanisms. In this paper, we present a Self-Organising Map

based approach to enhance embedded system security by

detecting abnormal program behaviour. The proposed method

extracts features derived from processor’s Program Counter and

Cycles per Instruction, and then utilises the features to identify

abnormal behaviour using the SOM. Results achieved in our

experiment show that the proposed method can identify

unknown program behaviours not included in the training set

with over 98.4% accuracy.

Index Terms—Embedded system security, abnormal

behaviour detection, intrusion detection, Self-Organising Map.

I. INTRODUCTION

he widespread use of embedded systems today has

significantly changed the way we create, destroy, share,

process and manage information. For instance, an embedded

medical device often processes sensitive information or

performs critical functions for multiple patients.

Consequently, security of embedded systems is emerging as

an important concern in embedded system design [1, 2].

Although security has been extensively explored in the context

of general purpose computing and communications systems,

for example via cryptographic algorithms and security

protocols [3], such security solutions usually are often

incompatible with particular embedded architectures. The

Manuscript received October 01, 2014. Manuscript revised March 27,

2015. Manuscript accepted March 29, 2015. This work was supported by the

UK Engineering and Physical Sciences Research Council under grant

EP/K004638/1 and the EU ERDF Interreg IVA 2 Mers Seas Zeeën Cross-
border Cooperation Programme – SYSIASS project: Autonomous and

Intelligent Healthcare System.

S. Ehsan, H. Hu, D. Gu, and K. McDonald-Maier are with the School of
Computer Science and Electronic Engineering, University of Essex,

Colchester, UK (e-mail: { sehsan, hhu, dgu, kdm}@essex.ac.uk).

X. Zhai was with University of Essex, Colchester, UK. He is now with the
Department of Engineering, University of Leicester (e-mail:

xz151@leicester.ac.uk)

K. Appiah was with University of Essex, Colchester, UK. He is now with
the School of Science and Technology, Nottingham Trent University (e-mail:

kofi.appiah@ntu.ac.uk).

G. Howells is with the School of Engineering and Digital Arts, University

of Kent, Canterbury, UK (e-mail: w.g.j.howells@kent.ac.uk).

reason for this is, that embedded architectures use custom

firmware or operating systems, and are normally specific to a

certain function with limited cost and resource, which makes

e.g. conventional antivirus (AV) programs difficult to

implement. Generally, the protection of embedded systems

can be developed either at hardware or/and at software level.

From hardware perspective, Physical Unclonable Function

(PUF) [4] or hardware intrinsic security [5], has been

proposed to secure embedded devices physically. The

manufacturing process variation is first used to identify the

integrated circuits, and then the identifications are

subsequently used for cryptography. There are also works

focusing on detecting software failure, tampering and

malicious codes in embedded architectures [1, 6]. The main

disadvantage of these approaches is that they require storing

sensitive data in the system as “valid” samples or templates.

For example, a basic-block control-flow graph (CFG) is

usually stored and used to exam the running program.

Embedded devices that are used in the medical and

industrial domains usually perform a small number of

repetitive functions or operate in a simplified state space. The

execution space may include activities such as actuating an

electrical relay, controlling a pump, or collecting sensor

readings [7]. This intrinsic behaviour makes them unsuitable

for conventional AV and exposes deviation in normal program

execution as a means of detecting compromised activities.

There are currently alternative solutions that may secure

vulnerable embedded architectures [8], [9], where machine

learning and pattern recognition algorithms are employed on

human-machine interaction. ICMetrics (Integrated Circuit

metrics) [10], is one of the on-going research areas into

embedded security, which relies on the unique trace

Peripheral D

Peripheral C

Peripheral B

Peripheral A

Embedded

System
User Interaction,

Environmental Variance,

Malicious Program,

Network Attack,

…….

Application Environment

Interference

Information
Metrics

Key Cryptography
Feature Extraction,

Feature Analysis,

Classification

ICmetrics System

System Identifier

Software

Embedded

Processor

Fig. 1. A typical embedded system and ICMetrics system.

A Method for Detecting Abnormal Program

Behaviour on Embedded Devices

Xiaojun Zhai, Kofi Appiah, Shoaib Ehsan, Gareth Howells, Huosheng Hu, Dongbing Gu and Klaus

McDonald-Maier

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

generated on the embedded architecture by its regular user or

environment. The concept of ICMetrics is akin to biometrics

in humans. Fig. 1 exhibits a typical embedded system and

ICMetrics system.

The ICMetrics based system can offer multiple advantages

over traditional static AV approach like scanning executable,

instruction sequences and CFG of an application, which does

not need to store user data or template and supports from

operating systems. Our approach is suitable for embedded

devices predominantly used in the medical and automation

industry, which have limited cost and resource in the systems.

In this paper, we use Cycle per Instruction (CPI) to extract

corresponding Program Counter (PC) values, and use it as

ICMetrics features for correct program identification

allowable to execute on the embedded architecture, and an

unsupervised Self-Organising Map (SOM) is used to classify

the behaviour of the embedded system. Results achieved in

our experiment show that the proposed method can identify

unknown program behaviours not included in the training set

with great accuracy.

The remainder of the paper is structured as follows: Section

II discusses the related work in this domain. The threat model

utilized for this work is introduced in Section III. A SOM-

based abnormal behaviour detection algorithm is presented in

Section IV. To demonstrate the usefulness of the presented

technique, Section V details the experimental design and

results performed on an ARM Cortex-M3 embedded

processor. Finally, the conclusions are presented in Section

VI.

II. RELATED WORK

This section provides a brief overview of the previous work

related to embedded systems security. As mentioned in

Section I, information digitization to facilitate quick access

has rendered digital privacy an important issue in protecting

personal data [11]. While we believe our work to be the first

demonstration of how on-chip debug information [12] can be

used to identify anomalies in embedded system program

execution, previous research has investigated the behaviour

and prevalence of code modified with the intent of harming a

system or its user. Arora et al [1] addressed secure program

execution by focusing on the specific problem of ensuring that

the program does not deviate from its intended behaviour. In

their work, properties of an embedded program is extracted

and used as the basis for enforcing permissible program

behaviour.

Software piracy has enormous economic impact [13],

making it important to protect software intellectual property

rights. Software watermarks, a unique identifier embedded in

a protected software to discourage intellectual property theft is

presented by Collberg and Thomborson [14]. In [15],

Kolbitsch et al proposed a malware detection system to

complement conventional AV software by matching

automatically generated behaviour models against the runtime

behaviour of unknown programs. Similar to [1], Rahmatian et

al [5] used a CFG to detect intrusion for secured embedded

systems by detecting behavioural differences between the

correct system and malware. In their system, each executing

process is associated with a finite state machine (FSM) that

recognizes the sequences of system calls generated by the

correct program. Attacks are detected if the system call

sequence deviates from the known sequence. The system

promises the ability to detect attacks in most application-

specific embedded processors. Wang et al [12] proposed a

system call dependence graph (SCDG) birthmark software

theft detection system. Software birthmarks have been defined

as unique characteristics that a program possesses and can be

used to identify the program. Without the need for source

code, a dynamic analysis tool is used in [16] to generate

system call trace and SCDGs to detect software component

theft.

Yang et al [17] presented an interesting approach for

detecting digital audio forgeries mainly in MP3. Using a

passive approach, they are able to detect doctored MP3 audio

by checking frame offsets. Their work proves that frame

offsets detected by the identification of quantization

characteristics are good indication for locating forgeries.

Experiment conducted on 128 MP3 speech and music clips

shows 94% rate of correctly detecting deletion and insertion

using frame offset. Panagakis and Kotropoulos [18] proposed

the random spectral features (RSFs) and the labelled spectral

features (LSFs) as intrinsic fingerprints suitable for device

identification. The unsupervised RSFs reduce the

dimensionality of the mean spectrogram of recorded speech,

whiles the supervised LSFs derives a mapping between the

feature space where the mean spectrograms lie onto the label

space. Experimental result shows that RSFs and LSFs are able

to identify a telephone handset with up to 97.58% accuracy.

Information hiding can be used in authentication, copyright

management as well as digital forensics [19]. Swaminathan et

al [19] proposed an enhanced computer system performance

with information hiding in the compiled program binaries. The

system-wide performance is improved by providing additional

information to the processor without changing the instruction

set architecture. The proposed system employs look-up-tables

for data embedding and extraction, which is subsequently

stored in the program header and loaded into run-time memory

at the beginning of program execution. In [20], Boufounos and

Rana demonstrate with the use of signal processing and

machine learning techniques, how to securely determine

whether two signals are similar to each other. They also show

how to utilize an embedding scheme for privacy-preserving

nearest neighbour search by presenting protocols for clustering

and authenticating applications.

As indicated above, software birthmarks are unique

characteristic that a program possesses and can be used to

identify the program [12]. Similarly, ICMetrics can be defined

as a unique characteristic that a program possesses when

running on a particular embedded device and can be used to

identify the program and hardware. Let p, q be programs. Let

f (p) be a set of characteristics extracted from p when running

on hardware f. We say f (p) is the ICMetrics of p, only if the

following two conditions are satisfied:

1) f (p)is obtained from p running on f.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

2) Program q is a copy of p => f (p) = f (q).

The limitations with the use of system calls for program

identification [1], 5] have been pointed out in [12] and are

more prevalent in embedded systems settings, which typically

have no operating system. The mentioned limitations are:

1) Programs with little or no system calls such as programs

solely based on arithmetic operation and

2) Programs which do not have unique system call behaviours

may fail to exhibit a birthmark.

Using an unsupervised SOM to reduce the dimensionality

of PC values, we introduce an offset rule similar to that

presented in [17] to detect compromised programs. Thus using

machine learning techniques [20] we are able to determine

whether two PC values are similar to each other, with the use

of the program binaries [19] and no prior knowledge of the

source code. Our main contributions of this paper can be

summarised as follows:

1) We introduce a novel SOM based anomaly detection

system, which can be used to combine with an ICMetrics

system in the embedded devices predominantly adopted in

the medical and automation industry.

2) Our approach introduces a way to extract and analyse the

useful low level hardware information, and used them as a

feature to identify an embedded system’s abnormal

behaviour, which allows our system to be used in a wider

range of embedded systems, as it is independent to the

high level software environments (e.g. Operating system,

source programs).

3) In terms of performance, the results achieved in our

experiment show that our approach also outperforms other

existing SOM based anomaly detection systems that utilise

the high level software information.

III. THREAT MODEL

Embedded systems are used in a variety of applications in our

daily life and enable sophisticated features for their users.

However, these sophisticated features increase system

complexity, which in turn results in a higher occurrence of

bugs that require software updates to fix. Embedded systems

with network access and code update support are therefore

becoming increasingly mainstream. Unfortunately, this

flexibility substantially increases the risk of malicious code

injection in embedded systems. For example, there is a steady

increase in the number and complexity of embedded

processors in vehicular embedded networks (GPS, in-car

entertainment, safety systems, car communication systems).

This in turn has raised major software integrity issues, and it is

critical to ensure that the executing instructions have not been

changed by an attack.

Attacks that are harming software integrity are generally

known as code injection attacks, since they inject and execute

malicious code instead of correct programs. A well-known

code injection attack is stack smashing. If a function does not

validate whether the length of the input exceeds the buffer

size, an attacker can easily overflow the buffer. By

overflowing the buffer, any location on the stack in the

address space after the start of the buffer can be overwritten,

including the return address of the susceptible function. Using

this technique, an attacker can insert malicious code sequence,

and overwrite the return address to point to the malicious

code. Other attacks may overflow buffers stored on the heap,

or exploit integer errors, dangling pointers, or format string

vulnerabilities. Most programs with these vulnerabilities are

also susceptible to so-called return-into-libc attacks, where an

attacker modifies a code pointer to point to the existing code,

usually the library code. Return-into-libc attacks are also

called arc injection, since they inject an arc in a control flow

graph of a program.

The proposed system is designed to protect against the

execution of malicious code that the system designer does not

intend to execute. Our interest is to ensure that the software

running continuously on an embedded device has essentially

the same behaviour as the original program for the purposes of

security and detect any possible changes on the trusted

software. The basis of our proposed system of ICMetrics is

akin to dynamic systems analysis, which analyse the execution

of a program on an embedded architecture. Thus the system

presented is mainly for flagging rather than directly stopping

execution of untrusted code.

A common theme among many security attacks is hijacking

the trusted code at run-time, so even if the original code is not

malicious by intent, it can be manipulated by the attacker [6].

As mentioned above, a very common method is the

exploitation of a buffer overflow to overwrite a return address,

altering program control flow to a malicious code. We assume

that the unexpected software running on the embedded device

will result in a significant behavioural difference compared to

the original program. The proposed system monitors the

executing program continuously, while constructing its

behaviour to detect any changes. It is observed that any

behavioural difference in the program execution trace, for

example in medical devices can be detrimental and must be

flagged in real-time by monitoring the system behaviour. The

proposed intrusion detection method will not prevent buffer

overflow, but it could detect the abnormal behaviour caused

by buffer overflow by monitoring system behaviour.

IV. ALGORITHM FOR ABNORMAL PROGRAM BEHAVIOUR

DETECTION

Generally, from a software architecture point of view, there

are three structural levels in a program: (a) function call level,

as represented by function call relationship; (b) internal

control flow for each function, represented by a basic-block

CFG; and (c) instruction stream within each CFG [1]. From a

hardware point of view, the processor’s architecture and

performance can affect the execution of instructions. For

instance, multi-cycle function calls or condition branches

could decrease the performance of a processor. On the other

hand, as the PC register indicates where a program is in its

code sequence, it can be used to represent the instruction

sequence within the CFG. Consequently, we could first detect

the function call and CFG based on the variance of the

processor’s performance, then analyse the PC values within

each CFG. Finally, an overall evaluation could indicate

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

whether the system is compromised or not. In the proposed

work, we measure the average CPI as a parameter of the

processor’s performance. A block diagram of the architecture

of the proposed abnormal program behaviour detection system

is shown in Fig. 2.

PC Register

Average CPI

Calculator

Clock Cycle

Counter
Phase

Localiser

Peak Detector

Function call

and conditional

branch locations

SOM Similarity

Analyser

Overall

Evaluation
Validation

Fig. 2. Overall block diagram of the proposed abnormal program behaviour

detection algorithm.

The average CPI calculator in Fig. 2 is first used to

calculate average CPI value, and it continually reads clock

cycle and PC data from the time counter and PC register.

Sequentially, the average CPI values are used to obtain phase

and peak information in the Phase and Peak Point Detector

module respectively, and the information indicates where

function calls or the conditional branch occur in the executing

program. Afterwards, the obtained locations and their

corresponding PC sequence are used in a SOM based

similarity analyser for abnormal program behaviour detection.

If the phase’s information and the PC sequences deviate from

a known program, the SOM based classifier asserts the

intrusion detected output. In the last stage, the results of SOM

are validated by comparing with their expected property table

(i.e. number of peak within each phase and associated network

node).

A. Average CPI Calculator Module

CPI is one of the most commonly used parameter for

measuring processor’s performance, which indicates the

complexity of instructions executed within a particular period

of time. Average CPI of a processor can be calculated based

on (1):

C

CPI
I

 (1)

where I is the total number of executed instructions, C is the

number of cycles for executing I instructions. As number of

cycles can be calculated by time elapsed and maximum clock

frequency of a processor, the CPI can easily be accessed by

modern debug facilities. In Fig. 3, an average CPI profile is

generated while a program is running in an ARM cortex-M3

processor, where I and the maximum frequency are set to 211

and 120 MHz respectively.

In Fig. 3, the program consists of five different functions,

and each function is called in a sequence. While a new

function is called, the CPI value is significantly increased,

which means the performance of the processor is decreased

accordingly. The main reason for that is that the PC jumps to

other memory location in order to execute the newly called

function (as illustrated in Fig. 7 (a)), where it usually involves

many multi-clock cycles instructions. As a result, the average

CPI value is significantly changed. Similarly, the CPI values

vary within each function, and the number of executed

instructions I decides the resolution of the average CPI profile,

the value of I varies from [1 n], where n is the total length of

programme. The larger number of I used in the CPI profile,

the less details of the CPI profile, which means some of

potential abnormal behaviour of the monitored programme

may not be detected. However, although with smaller number

of I, we could have more sensitive of the detection

mechanism, it would significantly increase the computational

cost of the detection system. For instance, if I uses ‘1’, which

means that every single instruction in the programme will be

examined and it does not contain any continuous pattern that

can be used to identify the characteristics of the monitored

programme Therefore, in this paper, the value of I is set to 211,

which gives a gives the best balance of the accuracy and

computational complexity of the proposed system. In the

following sub-sections, we introduce a method to

automatically obtain the position information of the phases

(i.e. function calls) and peaks (i.e. branch conditions).

Fig. 3. Example of average CPI profile.

B. Phase and Peak Point Detector Module

The main task of this module is to obtain the locations of

the phase and peak within the average CPI profile. There are

two sub-blocks: local and global critical point localisers are

used to localise the peak and phase positions.

1) Local Critical Point Localiser

The local critical point localiser is used to localise the local

significant variance points from the average CPI profile. The

proposed method first calculates absolute differences between

adjacent elements in the average CPI profile, and then

localises the peak value within a 1×3 rectangular range.

Let fmean denotes averaged CPI, absolute differences between

adjacent elements of fmean can then be calculated by:

 () (1) ()mean meand n f n f n (2)

where 1 ,n N N is the total numbers of elements in array

fmean, d(n) is nth element in an array of absolute differences

between adjacent elements of fmean(n).

After obtained d(n), a 1×3 rectangular window is used as a

mask to scan all the elements in d(n). Let d(n-1), d(n) and

d(n+1) denote the three elements within the 1×3 rectangular

window respectively, and the locations of the detected peaks

can be calculated by:

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

Samples of CPI

C
P

I

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 (') for () (1) () (1)p n n d n d n and d n d n (3)

where p(n’) is nth element in an array of detected peak

locations.

The main advantage of the proposed local critical point

localiser is adaptively detecting the peaks without the need of

setting any fixed threshold, hence the proposed local critical

point localiser would not be limited on any particular scenario,

and it can also detect the peaks that have minor variance. Fig.

4 shows resulting diagram after applying the local critical

point localiser on the points in Fig.3.

Fig. 4 Resulting diagram after applying the local critical point localiser.

2) Global Critical Point Localiser

The global critical point localiser is used to localise the

global significant variance points from the average CPI

profile, which indicate the locations of each phase.

Step 1: Localising the elements in d(n) that are greater than

(max(d) + min(d)) / 2. These elements represent the boundary

points at each adjacent phase. The selected elements are stored

in array p’.

Step 2: Calculating absolute differences between adjacent

elements of array 'p , if the absolute differences between kth

and (k+1)th elements are greater than t, then store p’(k) and

p’(k+1) into array
hp , where t is the number of CPI samples

in a phase. The value of t depends on the minimum accepted

phase length of the training programme. The smaller the value

of t is, the more details of the average CPI profile can be

obtained. On the other hand, in consequence the complexity of

the proposed algorithm would be increased. In this paper, t is

set to 50 in order to balance the complexity and performance

of the proposed algorithm.

 Step 3: Checking absolute difference between every

adjacent phase (2 ')hp k and (2 ' 1)hp k , if the difference is

greater than ‘2’ or equal to ‘0’, then (2 ' 1)hp k = (2 ')hp k +1.

The main purpose of this step is to make sure that the adjacent

phases do not include the overlapped boundaries.

Fig. 5 Resulting diagram after applying the global critical point localiser.

Fig. 5 shows resulting diagram after applying the global

critical points localiser on Fig. 3.

The obtained peak and phase locations are first converted

into their corresponding locations in PC profile by (3):

(') 1

(')

(') 1

(' 1)

s

e

hs h

he h

p I p n

p I p n I

p I p k

p I p k

 (3)

where ps and pe are the start and end locations in PC profile for

the n’th peak respectively. phs and phe are the start and end

locations in PC profile for the k’th phase respectively. I is the

total number of executed instructions used to calculate average

CPI profile.

The converted locations are used to select appropriate PC

patterns for training and testing of the similarity analyser.

C. SOM based Similarity Analyser Module

The designed similarity analyser is capable of classifying

and recognising between known and unknown programs while

the programs are running. There are two major levels of the

classification and recognition process: the function call level

and the PC pattern level, where each phase and peak is

measured to ascertain the originality of the program in

execution. Any significant difference shows that the numbers

of function calls differ, characteristic of function call and PC

signature are different to the original program, and an

abnormal behaviour notification could be signified. The main

advantage of the proposed similarity analyser is that it governs

the classification and recognition at two different levels: 1)

phase and peak level, and 2) the PC pattern level. Phase and

peak level are statistically analysed, and the corresponding PC

patterns are classified in SOM. Consequently, even if the

malicious codes have similar information of the phase and

peak, it is very difficult to have the exactly same PC pattern as

the original code.

Kohonen’s SOM [21] is a common pattern recognition and

clustering process, where intrinsic inter- and intra-pattern

relationships among the stimuli and responses are learnt

without the presence of a potentially biased or subjective

external influence is presented, and would be adopted in this

work as the basis for our classifier. We utilize the k−means

nature of the SOM, to partition the extracted PC signatures

into a user-specified number of clusters, k (number of groups).

In the proposed work, the analyser uses SOM to measure

similarity between known and executing programs in terms of

PC pattern. The value of k should at minimum be equal to the

total number of programs intended to run on the embedded

hardware. The value of k used in this work is set to two times

(2x) the number of known programs that can legitimately run

on the embedded processor. This value of k is to handle the

linear separating boundaries between known program

behaviours as defined in K-means clustering; avoiding the

computational overheads associated with a nonlinear kernel K-

means. Specifically, we extract static properties of an

embedded program to enforce permissible program behaviour

at run time. The PC patterns are a set of N-dimensional

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

Samples of CPI

C
P

I

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

Samples of CPI

C
P

I

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

vectors, where the size of the vectors N is equal to number of

executed instructions I. The size N of the vector, if set too

large will add significant performance overhead to the

application that it represents. Similarly, if it is set too small, it

will not be robust enough to distinguish between applications.

Thus choosing the right size of N is very important.

The best value of N is the minimum number of PC values

that offers the best analyser performance. The value of N

should define the permissible behaviour of a program by

identifying suitable properties or invariants that are indicators

of untampered execution, thus very unlikely to be violated

when program is compromised. After a number of empirical

experiments, the value of N in this work has been set to 211

following an examination of the test data.

To enable continuous analysis, the system presented here

requires just 211 PC values at a time to infer its corresponding

application. Because the system is based on a SOM, a variant

of the k−means algorithm, the value of k should also be set.

The value of k is set depending on the total number of

algorithms or programs under investigation, and the number of

distinct phases in any particular application. At minimum, the

value of k should be equal or greater to the number of

algorithms under investigation. The value of k in this work has

been set to 20 as the testing database has 10 different

programs. However, this can naturally be adapted to

requirement of different usage scenarios according to the

above given guidelines.

PC values extracted from the PC profile, corresponding to

the peaks in the CPI profile are used as inputs to the SOM

during training and testing. For a given network with k neurons

and N-dimensional input vector Ki, the distance from the jth

neuron with weight vector wj (j<k) is given by

2

2

1

N
i

j l jl

l

D K w

 (4)

where wjl is the lth component of weight vector wj. The vector
components of the winning neuron wk with minimum distance
Dk are updated as follows, where (0,1) is the learning rate.

 i

k kw K w (5)

The update is done only at the training phase. Additionally,

for every neuron in the network we maintain four extra

parameters: the minimum, maximum, mean and standard

deviation of distances of all input vectors associated with any

particular neuron.

After training, the next step is to associate each of the

network neurons with the corresponding program or sub-

program. In this work, we use Vector Quantization (VQ) [21]

to assign labels to neurons in the network as follows:

1) Assign labels to all training data. The label is an identifier

for the program from which the training data has been

extracted.

2) Find the neuron in the network with the minimum distance

to the labelled input data.

3) For each input data maintain the application label, the

corresponding neuron and the distance measured. The

distance is maintained as a tie breaker for applications that

share similar address space.

In each phase of the original training program, we first

count a group of input vectors that are associated with each

neuron, and then calculate mean value and standard deviation

of the group of distances, alongside the minimum and

maximum distances (Dmin and Dmax) by:

1

1 n

i

i

D
n

 (6)

 2

min

1

1
(1) (D)

1

n

i

i

D
n

 (7)

 2

max

1

1
(1) (D)

1

n

i

i

D
n

 (8)

where D denotes the group of distances, α denotes errors of

the standard deviation to accommodate any quantization errors

in the calculation process. The value of α in this work has

been set to 2.5%.

Sequentially, a statistical table Tk is generated for the kth

phase, where detailed attribute information (e.g. minimum and

maximum distances, number of input vectors that are

associated with each neuron and their standard deviation) are

recorded for the phase. On the same principle, each phase is

associated with its corresponding statistical table.

In the testing stage, each input vector is assigned to a

neuron that has the shortest distance. Let Ki denotes the input

vector and it is assigned to the jth neuron with distance Di, the

proposed algorithm first compares the distance Di with the

minimum and maximum distances of the jth neuron from all the

statistical tables, and then decides whether the input vector

belongs to the phase. Generally, the successful input vector

should meet the following two conditions:

1) The distance Di should meet the condition Dmin< Di <Dmax,

where Dmin and Dmax are minimum and maximum distance

of the jth neuron at the kth phase.

2) The jth neuron is a dominant neuron in the kth phase, which

means the occupancy of the neuron in the original statistical

table is greater than 3% of total numbers of input vectors.

The successful candidate neurons are labelled to reflect their

corresponding phase numbers. Otherwise, the candidate is

marked as ‘-1’, which indicates the input vector is unknown.

Consequently, the known program’s phase should consist of a

set of known phase number; the dominant phase number to

indicate the result of the phase. After obtaining the results of

each phase, another statistical table Tk’ is generated, which

contains the same type of information as Tk. A validation

process is performed in the next stage to examine the

similarity of these tables.

D. Validation Module

The validation module is designed to validate the results from

the SOM analyser. Usually, most of the input vectors can be

classified using the SOM analyser. However, due to the

variance of circumstances, the trace of program cannot always

be exactly the same as the original training program, thus a

global validation stage becomes necessary to improve the

overall classification results.

In general, the results from the SOM analyser could consist

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 6 Overall flow chart of the validation module.

of two categories: known and unknown samples. For the

known samples, the SOM reports their potential phase

number. For the unknown samples, the SOM analyser marks

the phase number with ‘-1’. Thus, the validation module

processes the two cases separately. Fig. 6 shows flow chart of

the validation module.

As shown in Fig. 6, the main task is to validate the similarity

between the testing statistical table T’ and the original

statistical table T. In order to examine the similarity of two

tables, histograms of the associated neurons from the two

tables are used. Pseudo-codes for calculating the similarity of

the statistical tables are summarised as follows:

Calculating the similarity of the statistical tables:

1. Input: Tk and Tk’’ are statistical tables for the original phase k and the

testing phase k’ respectively.

2. Output: Similarity between phase k and k’.

3. sort the Tk by descending order of neuron’s occupancy;

4. /* look-up the statistical table Tk */

5. for all neuron nodes in Tk do

6. if occupancy of the jth neuron > 3% then

7. d(i) = j; /* record the number of the neuron in array d */

8. i ++;

9. end

10. end

11. /* look-up the statistical table Tk’’ */

12. for all neuron nodes in Tk’’ do

13. if occupancy of the jth neuron > 3% then

14. d’(i)=j; /*record the number of the neuron in array d’ */

15. i ++;

16. end

17. end

18. x d d’; /* x is the intersection of d and d’ */

19. /*generate output*/

20. if length(x)/length(d) > 80% then

21. the phase k’ is similar to the phase k;

22. else

23. the phase k’ is not similar to the phase k;

24. end

After comparing the statistical tables, the difference of the

number of peaks in the original phase k and testing phase k’ is

then calculated. If the difference is less than 10% of total

number of peaks in the original phase, it confirms the phase

number is k.

In general, the SOM analyser could locally calculate the

similarity for a pair of input vectors (i.e. peaks). However, it

has limitation on globally indicating a group of peaks (i.e.

phases). The validation stage can be used to remedy this

problem. In the experimental result section, we show the

improvement of the SOM results when the validation stage is

applied subsequently.

V. EXPERIMENTAL SETUP AND RESULTS

An embedded system based on a Keil MCBSTM32F200

evaluation board equipped with an ARM 32-bit Cortex-M3

processor-based microcontroller is used in the proposed work

[22], which consists of various peripheral interfaces (e.g.

touchscreen, Ethernet port, serial port, analogue voltage

control for Analogue-to-digital converter (ADC) input and

debug interface). A combination of KEIL µVision IDE, and

ULINKpro Debug and Trace Unit [23] is used to download

the program and trace the instructions executed in the

microcontroller. High-speed data and instruction trace are

streamed directly to the host computer allowing off-line

analysis of the program behaviour [23]. MATLAB is used to

implement the proposed method prior to hardware

implementation. It is worth noting that the experimental

platform is a typical low cost ARM-based embedded

development board, and it comes with only 128KB of on-chip

RAM and 2MB of external SRAM, for which only 1MB is

usable when the tracing port is enabled. Thus we can only

analyse a limited number of programs at a time, and the

complexity of the tested programs are also limited. These

limitations fall within the scope of our initial embedded

architecture, expected to have minimal memory, power and

Start

if phase number k
!= ‘-1’

yes

if T’ is similar to Tk

Confirm the phase

number is k

yes

k’ = 1
no

if k’<=max(k)

no

if T’ is similar to
Tk’

Confirm the phase

number is k’

yes

yes

no

no

k’++

if there is no
confirmed phase k’

Confirm the phase

number is “unknown”
End

yes

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

computational resources. The concept presented here is

naturally scalable; as the available resources increase, the

complexity of applications can also be increased.

A. Benchmark Test Suite

In the proposed work, seven algorithms from the

automotive package of the widely recognised EEMBC

benchmark suite [24] are selected, in which five algorithms

(i.e. the first five benchmarks in Table I) are used to train and

test the SOM analyser and the other benchmarks are only used

in the testing. Details of the used benchmarks are presented in

Table I.

As can be seen from Table I, the seven benchmarks are set

with different parameters and performing various functions.

For instance, the benchmark “a2time” is used to perform angle

to time calculation, where “NUM_TEST” indicates the

number of sets of input test data stimuli, and

“TENTH_DEGREES” indicates the number of 1/10 degrees

in a circle. Overall, they do not only have different

complexities and characteristics, but also contain similar sub-

functions, which make them suitable test candidates for the

proposed experiments.

In order to train with all five benchmarks, they are mixed

together to form a new program, where each benchmark is

treated as a separate function call. The new program is

executed twice in order to generate enough training samples.

For testing, a random function call generator is used to switch

between benchmarks form the test samples. The next section

explains how the random function call switching works.

TABLE I

DETAILS OF THE USED BENCHMARKS

Benchmarks Description Parameters

a2time
Angle to Time

Conversion

NUM_TESTS: 500

TENTH_DEGREES: 3600

rspeed Road Speed Calculation
NUM_TESTS: 500

SPEED_SCALE_FAC: 36000

bitmnp Bit Manipulation

NUM_TESTS: 128

INPUT_CHARS: 20

CHAR_COLUMNS: 5

idctrn
Inverse Discrete Cosine

Transform

NUM_TESTS: 8192

COS_SCALE_FAC: 4096

COS_SCALE_EXP: 12

puwmod Pulse Width Modulation
NUM_TESTS: 2420

MAX_PHASE: 20

tblook
Table lookup and

interpolation

NUM_TESTS: 232

NUM_X_ENTRIES: 50

NUM_Y_ENTRIES: 50

ttsprk Tooth to Spark
NUM_TESTS: 200

CYLINDERS: 4

B. Random Function Call Generator

In order to check the performance of the proposed system

for complex test samples in a variety of scenarios, a random

function call generator is used to randomly select the

benchmarks and form a new program. Thus, the function call

sequence of the new program is varied at every run.

Consequently, a set of unique test programs can be generated.

In addition, since the testing program is combined with

different function calls and randomly mixed during the run-

time of the embedded system, the testing methodology could

be used to verify the performance of the proposed system in

the scenarios that have dynamic variance (e.g. different

program flow, interrupt, inputs, etc.).

The random function call generator mainly consists of two

components: a true random number generator and a switch

statement. In order to generate true random numbers, an ADC

and a potentiometer are used to generate a random seed, which

is subsequently used as an input seed for a pseudo-random

number generator. In general, the ADC reads the voltage from

the potentiometer and converts it into a 12-bit digital number.

As the voltage of the potentiometer is adjustable and sensitive,

the voltage value is not constant, even without turning the

potentiometer. Thus, after the conversion, the digital number

is always different, which allows the pseudorandom number

generator to create a true random number. For instance, if a

program consists of n different function calls, a random

number x is first generated, where 1 < x < n. Subsequently, the

random number x is used to select which benchmark will be

called. The generated random number is used in a switch

statement, which actives the corresponding function call (e.g.

if x = 1, “a2time” will be called). In this experiment, the

potentiometer is manually adjusted for every run, which

further ensures the voltage is completely different from the

previous one.

In addition, the random function call generator can also

record the function call sequence for every execution, which

means a complete reference table can be generated at the end

of testing. With comparing the test output of the SOM with the

expected output from reference table, an accurate and

complete evaluation result can be generated.

C. Program Database

A total of 104 programs are generated using the random

function call generator presented in the previous section. The

104 programs used for testing can further be divided into the

following three subcategories:

1) Programs with original function call sequence: Programs

in this category consist of fixed function call sequence,

which are the same as the one used in training. There are

21 programs, out of the 104, which are taken from this

category.

2) Programs with random generated function call sequence

(known): Programs in this category consist of randomly

generated function calls in the sequence, with all the

functions drawn from the training samples. The number of

samples in this category is 42.

3) Programs with randomly generated function call

sequence (unknown): Programs in this category consist of

randomly generated function calls in the sequence with

two unknown functions included. The number of samples

in this category is 41.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Fig. 7. Examples of PC profiles from the used program database. (a) Program used for training; (b) Program from category 1; (c) and (d) Programs from category

2; (e) and (f) Programs from category 3.

In the experiment, the first category is used to simulate

instances where the embedded system is not modified, such as

programs running with factory setting. The second category is

used to simulate the circumstances of an embedded system

with normal behaviour; for instance, the programs with

legitimate credentials to run on the embedded system. Finally,

the last category is used to simulate tampered systems with

unknown programs; for example, the system may launch some

unknown programs, triggered by buffer overflow attack. Thus,

our threat model is well covered by the three set of categories.

Fig. 7 shows some examples of PC profiles extracted from test

programs.

In Fig. 7, numbers inside the red cycles are labels for the

different benchmarks, where ‘1’, ‘2’, ‘3’, ‘4’, and ‘5’ represent

the five known benchmarks respectively with ‘x’ and ‘y’

representing the two unknown benchmarks. As can be seen

from Fig. 7 (a) and (b), although they contain exactly the same

benchmark codes and sequences, the PC addresses and

outlines of each benchmark are slightly different. Especially,

when the sequence of the benchmark is randomly mixed (for

example, Fig. 7 (c) and (d)), the resulting PC profiles are

completely different. This could help with examination of the

trained SOM analyser on false negative rate. In Fig. 7 (e) and

(f), the profile of the unknown programs ‘x’ and ‘y’ are quite

similar to the known programs ‘1’ and ‘2’ respectively, which

is used to simulate the possible attacks that try to model their

peaks and phase information like the genuine programme

Using the true/false positive and negative rates from the

trained SOM analyser, different programs with similar profiles

can further be examined.

D. System Implementation

The abnormal program behaviour detection system has been

successfully implemented in MATLAB for off-line data

analysis. The system implementation is divided into three

parts:

1) CPI-related module

This module is first used to extract useful information from

the program’s tracing file, and then it calculates the average

CPI for every run. The program’s tracing file contains two

types of information: PC address and time tag for every

executed instruction. The PC addresses are only recorded in a

file that will be used in the SOM-based similarity analyser

module. However, the corresponding time tags are used to

calculate CPI profile for the executed programs. In this work,

the number of instructions is set to 2048. The frequency of the

ARM cortex-M3 microcontroller used runs at 120 MHz, thus,

the average CPI for every 2048 instructions can then be

0 1 2 3 4 5 6
6

134210k

134220k

134230k

134240k

134250k

134260k

134270k

Samples of PC

P
C

 A
d
d
re

ss

0 2 4 6 8 10 12

x 10
6

134210k

134220k

134230k

134240k

134250k

134260k

134270k

Samples of PC

P
C

 A
d
d
re

ss

0 2 4 6 8 10 12

x 10
6

134210k

134220k

134230k

134240k

134250k

134260k

134270k

Samples of PC

P
C

 A
d
d
re

ss

0 1 2 3 4 5 6 7 8 9 10

x 10
6

134210k

134220k

134230k

134240k

134250k

134260k

134270k

Samples of PC

P
C

 A
d
d
re

ss

0 2 4 6 8 10 12 14

x 10
6

134210k

134220k

134230k

134240k

134250k

134260k

134270k

Samples of PC

P
C

 A
d
d
re

ss

0 2 4 6 8 10 12 14 16

x 10
6

134210k

134220k

134230k

134240k

134250k

134260k

134270k

Samples of PC

P
C

 A
d
d

re
ss

(a) (b)

(c) (d)

(e) (f)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

2 1 2 4 2 5 1 5 4 2

4 4 4 4 4 x x 1 y y

4 4 4 43 5 2552

x 10

y 5 2 x y y x x xy

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

calculated by (1). Subsequently, the phase and peak point

detector localises the peaks and phases from the average CPI

profile. The obtained peak and phase locations are finally

converted into their corresponding locations in PC profile by

(3).

2) SOM-based similarity analyser module

The start and end locations of each peak can be used to

select a serial of PC addresses, and this forms an input vector

with 1×2048 elements which is subsequently fed into the

SOM-based similarity analyser. The maximum number of

nodes and iterations for the SOM are set to 20 and 1000

respectively. A statistical table for each phase and estimated

outputs for each peak are generated after the training process.

The same process is repeated during the testing. The generated

results are then used in the validation module.

3) Validation and evaluation module

The algorithm stated in Section IV-D is implemented in this

module. Based on the validation results, the peaks and phases

of each input program are finally classified. The final

evaluation result consists of two levels: peak and phase levels.

At the peak level, the final report does not only include results

for every single program, but also the entire database. The

measurements of the evaluation mainly includes correct

recognition rate (true positive (Tp) and true negative (Tn)), rate

of misclassified samples (false positive (Fp)), and rate of

samples incorrectly classified as unknown (false negative

(Fn)). Based on the measurements, accuracy, precision and

recall rates for the proposed system can be calculated.

Accuracy

It is the rate of correctly labelled samples, which can be

calculated by (Tp+ Tn) / total number of samples.

Precision

It is the rate of positively labelled samples whose labels are

correct, which measures the classifier’s resistance to false

positives and can be calculated by Tp / (Tp +Fp).

Recall

It is the rate of samples that should have been positively

labelled that are correctly positively labelled, which

measures the classifier’s resistance to false negatives and

can be calculated by Tp / (Tp +Fn).

A classifier’s precision and recall results provide insight

into what types of errors the classifier tends to make, rather

than only reporting the number of misclassified samples.

E. Experimental Results

In this experiment, the proposed system classifies the

programs’ peaks and phases into different categories, where

the known peaks and phases will be assigned their

corresponding names and unknown ones will be labelled as ‘-

1’. Overall, the proposed system has 99.9% and 97.7%

successful identification rates for 1040 program phases and

145763 peaks respectively. Additionally, the proposed system

identifies unknown programs’ peaks that were not in the

training set with over 98.4% accuracy. In the following sub-

sections, the analyses of the experimental results are

categorised by program type.

1) Programs with original function call sequence

In this category, there are total 21 programs, which include

31884 peak samples. Overall, the proposed system has 97.9%

successful identification rates for the peaks. Results of

accuracy, precision and recall rates for each program are

illustrated in Fig. 8.

Fig. 8. Results of accuracy, precision and recall rates for category 1.

2) Programs with random generated function call sequence

(include only known benchmarks):

In this category, there are 42 programs, which include

57242 peak samples. Overall, the proposed system has 97.1%

successful identification rates for the peaks. Results of

accuracy, precision and recall rates for each program are

illustrated in Fig. 9.

3) Programs with random generated function call sequence

(include known and unknown benchmarks):

In this category, there are 41 programs, which include

56637 peak samples. Overall, the proposed system has 97.5%

successful identification rates for the peaks. Results of

accuracy, precision and recall rates for each program are

illustrated in Fig. 10.

In general, as the complexity of the test categories are

varied, the first category has the smoothest and best accuracy,

precision and recall rates. In contrast, the accuracy, precision

and recall rates of the second and third categories are

relatively lower, than the first one. Also, the types and the

lengths of each tested program in the last two categories are

different, which causes the resulting rates of each program

have relatively higher variance than the first one.

As indicated in Table I, the database employed mainly

consists of seven different benchmarks, where five of them are

in the training set and the remainder are not in the training set.

Table II summarises the results of each benchmark in terms of

accuracy, precision and recall rates.

As can be seen from Table II, the overall performance of

the proposed system with validation process is much higher

than without the validation process. The reason is that the

extra similarity comparisons between original and test

statistical tables help the proposed system to re-estimate the

results of the SOM analyser. Especially, when there is a

unknown benchmark with similar sample peaks to the known

benchmark that appears in the test program. The result of

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
a

te

Program

Accuracy

Precision

Recall

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

TABLE II

PERFORMANCE RESULTS FOR THE USED BENCHMARKS

Benchmarks

Without Validation With Validation

Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%)

a2time 8.1 94.2 8.1 98.0 99.5 98.5

rspeed 37.7 95.3 38.5 94.9 98.1 96.7

bitmnp 76.2 99.7 76.5 97.6 99.7 97.9

idctrn 87.7 99.8 87.8 98.2 99.8 98.4

puwmod 47.6 98.2 48.1 97.0 99.1 97.8

tblook 98.4 0 0 98.4 0 0

ttsprk 99.1 0 0 99.1 0 0

Overall

Performance
68.0 99.3 66.2 97.7 99.5 98.0

Fig. 9. Results of accuracy, precision and recall rates for category 2.

Fig. 10. Results of accuracy, precision and recall rates for category 3.

using validation process is significant higher than without

validation process in the system, for example, the accuracy

and recall rates of the first benchmark ‘a2time’ is significantly

lower than by using validation process. The reason is that

‘a2time’ and ‘tblook’ have very similar distances to the sample

SOM node, which cause them to be classified into same

cluster. For the known benchmarks, as the test samples are not

exactly the same as the samples in the training set, the

accuracy and recall rates are also lower, than the result using

the validation process. For the unknown benchmarks, the

results with and without validation are constant, as there are

no positive samples in the sets, the precision and recall rates

are zero.

It is worth noting that our work is independent of the

processor’s architecture or operating system’s kernel, thus

making it compatible with most modern embedded systems.

Hence, the proposed work is particularly suitable for providing

possible security solutions to commercial off-the-shelf

(COTS) products, where the products have many restrictions

on modifying their internal programs or hardware

architectures. The proposed system can be run on a non-

intrusive debug facility, a non-intrusive infrastructure that is

generally used during device software development at present

in all production devices, that connects to the targeted

embedded device through a debug interface [25], [26], which

means that the proposed system would not affect the

performance of the monitored embedded system in terms of

additional memory and processor usage. When an end user

downloads a new program in the embedded device, a training

process will start; the new trained parameters of the SOM and

the statistic information of monitored program can then be

generated and stored in the debug facility, which can only be

accessed by the debug facility. The proposed system naturally

combines the embedded system’s hardware and software

together, introducing a new potential direction to secure an

embedded device. In one of the authors’ previous works [27],

an implementation of the conventional SOM on a Xilinx

Virtex-4 with 40 neurons required only 22.1% of the available

5,184 Kb Block RAM. The debug facility targeted for our

initial on-chip prototyping is utilising a mid-range Xilinx

Virtex-6 FPGA having 25,344 Kb (max.) Block RAM; thus a

similar implementation should utilise approximately 5% of the

available Block RAM. Again, the Virtex-4 design

implementation clocked at 25MHz could train with

approximately 10,000 patterns per second. As a result of this,

the hardware implementation of the SOM produces a

significant speed improvement, which is 30 times faster than

the original SOM implemented on a state-of-art PC [27].

Hence, the preferred implementation is to follow a hardware

acceleration approach that facilitated rapid SOM processing

suitable for real-time execution.

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

R
a

te

Program

Accuracy
Precision
Recall

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

R
a

te

Program

Accuracy

Precision

Recall

42

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

VI. CONCLUSIONS

In this paper, a Self-Organising Map based approach is

proposed to enhance embedded system security by detecting

abnormal behaviour, in which features derived from internal

embedded processor are extracted and used in the SOM to

identify abnormal behaviour in embedded devices. The

proposed method can also be combined with ICMetrics

system, as different behaviours can be represented with

different basic numbers, hence, different encryption keys can

be generated by the key cryptography mechanism, using the

recall phase. Results achieved in our experiment show that the

proposed method can identify unknown behaviours not in the

training set with over 98.4% accuracy. The proposed work

provides protection at different levels for embedded

architectures such as function call sequence, internal control

flow and instruction stream within each function. Since the

main aim of this research work is to implement a real-time

security solution for complex embedded computer

architectures, more evaluation on realistic attacks for the

proposed algorithms will further be investigated. For

evaluation of real-time detection system, the proposed method

can also be implemented with a soft-core processor on FPGA

as part of an on-line protection system, and subsequently

halting the program to prevent abnormal behaviours in the

system, or even alongside existing debug IP in a direct

Systems-on-Chip implementation.

REFERENCES

[1] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, "Secure embedded

processing through hardware-assisted run-time monitoring," in

Proceedings Design, Automation and Test in Europe, 2005, pp. 178-

183
[2] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, "Hardware-Assisted

Run-Time Monitoring for Secure Program Execution on Embedded

Processors," IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, pp. 1295-1308, 2006.

[3] P. Dongara and T. N. Vijaykumar, "Accelerating private-key

cryptography via multithreading on symmetric multiprocessors," in
IEEE International Symposium on Performance Analysis of Systems

and Software, 2003, pp. 58-69.

[4] G. E. Suh and S. Devadas, "Physical Unclonable Functions for Device
Authentication and Secret Key Generation," in 44th ACM/IEEE Design

Automation Conference, 2007, pp. 9-14.

[5] H. Handschuh, G.-J. Schrijen, and P. Tuyls, "Hardware Intrinsic
Security from Physically Unclonable Functions," in Towards

Hardware-Intrinsic Security, A.-R. Sadeghi and D. Naccache, Eds., ed:

Springer Berlin Heidelberg, 2010, pp. 39-53.

[6] M.Rahmatian, H. Kooti, I. G. Harris, and E. Bozorgzadeh, "Hardware-

Assisted Detection of Malicious Software in Embedded Systems,"

IEEE Embedded Systems Letters, vol. 4, pp. 94-97, 2012.
[7] Shane S. Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau,

Jacob Sorber, Kevin Fu, et al., "WattsUpDoc: Power Side Channels to

Nonintrusively Discover Untargeted Malware on Embedded Medical
Devices," in Proceedings of USENIX Workshop on Health Information

Technologies, 2013.

[8] D. Garcia-Romero and C. Y. Espy-Wilson, "Automatic acquisition
device identification from speech recordings," in IEEE International

Conference onAcoustics Speech and Signal Processing 2010, pp. 1806-

1809.
[9] C. Hanilci, F. Ertas, T. Ertas, and O. Eskidere, "Recognition of Brand

and Models of Cell-Phones From Recorded Speech Signals," IEEE

Transactions on Information Forensics and Security vol. 7, pp. 625-
634, 2012.

[10] Y. Kovalchuk, K. D. McDonald-Maier, and G. Howells, "Overview of
ICmetrics technology-security infrastructure for autonomous and

intelligent healthcare system," International Journal of u- and e-

Sevice, Science and Technology, vol. 4, pp. 49-60, 2011.
[11] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen, "A

privacy threat analysis framework: supporting the elicitation and

fulfillment of privacy requirements," Requirements Engineering, vol.
16, pp. 3-32, 2011/03/01 2011.

[12] K. D. Maier, "On-chip debug support for embedded Systems-on-Chip,"

in Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003
International Symposium on, 2003, pp. V-565-V-568 vol.5.

[13] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn,

et al., "Dynamic path-based software watermarking," in Proceedings of
the ACM SIGPLAN 2004 conference on Programming language design

and implementation, 2004, pp. 107-118.

[14] C. Collberg and C. Thomborson, "Software watermarking: models and
dynamic embeddings," presented at the Proceedings of the 26th ACM

SIGPLAN-SIGACT symposium on Principles of programming

languages, San Antonio, Texas, USA, 1999.
[15] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X.

Wang, "Effective and efficient malware detection at the end host,"

presented at the Proceedings of the 18th conference on USENIX
security symposium, Montreal, Canada, 2009.

[16] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, "Behavior based software theft

detection," presented at the Proceedings of the 16th ACM conference
on Computer and communications security, Chicago, Illinois, USA,

2009.

[17] R. Yang, Z. Qu, and J. Huang, "Detecting digital audio forgeries by
checking frame offsets," presented at the Proceedings of the 10th ACM

workshop on Multimedia and security, Oxford, United Kingdom, 2008.
[18] Y. Panagakis and C. Kotropoulos, "Telephone handset identification by

feature selection and sparse representations," in IEEE International

Workshop on Information Forensics and Security (WIFS), 2012, pp. 73-
78.

[19] A. Swaminathan, Y. Mao, M. Wu, and K. Kailas, "Data Hiding in

Compiled Program Binaries for Enhancing Computer System
Performance," in Information Hiding. vol. 3727, M. Barni, J. Herrera-

Joancomartí, S. Katzenbeisser, and F. Pérez-González, Eds., ed:

Springer Berlin Heidelberg, 2005, pp. 357-371.
[20] P. Boufounos and S. Rane, "Secure binary embeddings for privacy

preserving nearest neighbors," in IEEE International Workshop on

Information Forensics and Security (WIFS), 2011, pp. 1-6.
[21] T. Kohonen, "Learning vector quantization," in The handbook of brain

theory and neural networks, A. A. Michael, Ed., ed: MIT Press, 1998,

pp. 537-540.
[22] STMicroelectronics. STM32F207IG Data Sheet. Available:

http://www.st.com/internet/mcu/product/245085.jsp

[23] KEIL. Keil µVision IDE Data Sheet. Available:
http://www.keil.com/uvision/

[24] The Embedded Microprocessor Benchmark Consortium (EEMBC).

(2013). AutoBench™ 1.1 Benchmark Software. Available:
http://www.eembc.org/benchmark/automotive_sl.php

[25] A. Hopkins and K. D. McDonald-Maier, "Debug Support Strategy for

Systems-on-Chips with Multiple Processor Cores," IEEE Transactions
on Computers, vol. 55, issue 2, pp. 174-184, 2006.

[26] A. Hopkins and K. D. McDonald-Maier, "Debug Support for Complex

Systems-on-Chip: A Review," IEE Proceedings-Computers and Digital
Techniques, vol. 153, no. 4, pp. 197-207, 2006.

[27] K. Appiah, A. Hunter, P. Dickinson and H. Meng, "Implementation and

Applications of Tri-State Self-Organizing Maps on FPGA," IEEE
Transactions on Circuits and Systems for Video Technology, vol. 22,

no. 8, pp. 1150-1160, 2012.

Xiaojun Zhai received a BSc degree in Communication

Engineering from North China University of
Technology, Beijing, China, in 2006 and an MSc degree

in Embedded Intelligent Systems from the University of

Hertfordshire, U.K. in 2009. After that, he completed
his PhD degree in Electronic and Electrical Engineering

at the University of Hertfordshire, U.K., in 2013, where

he also worked on part-time basis as a visiting lecturer
until February 2013. After completing the PhD, he

joined the Embedded and Intelligent Systems (EIS) Research Group at the

University of Essex in Colchester as a Senior Research Officer in January
2013. He is currently appointed as a research associate in the Embedded

Systems and Communications Research Group at the University of Leicester,

http://www.st.com/internet/mcu/product/245085.jsp
http://www.keil.com/uvision/
http://www.eembc.org/benchmark/automotive_sl.php

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

U.K. His research interests mainly include Custom Computing using FPGAs,

Embedded Systems, System-on-Chip (SoC) design, Real-time Image
Processing, Intelligent Systems, and Neural Networks.

Kofi Appiah (M'04) received the MSc degree in
Computer Science from University of Oxford, UK

and an MSc in Electronic Engineering degree from

Royal Institute of Technology, Sweden. He
completed his PhD at University of Lincoln, UK in

2010, where he also worked on three research

projects as a Research Assistant. He joined the
Embedded and Intelligent Systems (EIS) Research

Group at University of Essex in Colchester as Senior

Research Officer in December 2012. Kofi also
worked on part-time basis as a Development

Engineer with Metrarc Ltd, Cambridge, before joining NTU in November

2013 as a lecturer. His current research interests include embedded computer
vision and security, and highly parallel software/hardware architectures.

Shoaib Ehsan received his BSc Electrical
Engineering degree from the University of

Engineering and Technology, Taxila, Pakistan in

2003. He completed his PhD in Computing and
Electronic Systems (with specialization in computer

vision) at the University of Essex, Colchester, UK in

2012. He has extensive industrial and academic
experience in the areas of embedded systems,

embedded software design, computer vision and
image processing. His current research interests are in intrusion detection for

embedded systems, local feature detection and description techniques, image

feature matching and performance analysis of vision systems. He is a recipient
of the University of Essex Post Graduate Research Scholarship and the

Overseas Research Student Scholarship. He is a winner of the prestigious

Sullivan Doctoral Thesis Prize awarded annually by the British Machine
Vision Association.

 Dr. Gareth Howells is a Reader in Secure Electronic

Systems at the University of Kent,UK. He has been

involved in research relating to security, biometrics
and pattern classification techniques for over twenty

five years and has been instrumental in the

development of novel ICMetric based security
technology deriving secure encryption keys from the

operating characteristics of digital systems. He has

been awarded, either individually or jointly, several
major research grants relating to the pattern

classification and security fields, publishing over 160

papers in the technical literature. Recent work has been directed towards the
development of secure device authentication systems which has received

significant funding from several funding bodies and is currently in the process

of being commercially exploited.

Huosheng Hu is Professor in the School of

Computer Science and Electronic Engineering at the
University of Essex, leading the robotics research. He

received the MSc degree in industrial automation

from the Central South University in China and the
PhD degree in robotics from the University of

Oxford in the U.K. His research interests include

behaviour-based robotics, human-robot interaction,
service robots, embedded systems, data fusion,

learning algorithms, mechatronics, and pervasive

computing. He has published over 450 papers in journals, books and
conferences in these areas, and received a number of best paper awards. Prof.

Hu is a Fellow of Institute of Engineering & Technology, a Fellow of Institute

of Measurement & Control, a senior member of IEEE, a founding member of
IEEE Robotics & Automation Society Technical committee on Networked

Robots. He has been a Program Chair or a member of Advisory/Organising

Committee for many international conferences such as IEEE IROS, ICRA,
ICMA, ROBIO, and IASTED RA and CA conferences. He is currently Editor-

in-Chief for International Journal of Automation and Computing, Editor-in-

Chief for Robotics Journal, and Executive Editor for International Journal of
Mechatronics & Automation.

Dongbing Gu received the B.Sc. and M.Sc. degrees

in control engineering from the Beijing Institute of

Technology, Beijing, China, and the Ph.D. degree in
robotics from the University of Essex, Essex, UK. He

was an Academic Visiting Scholar with the
Department of Engineering Science, University of

Oxford, Oxford, UK, from October 1996 to October

1997. In 2000, he joined the University of Essex as a
Lecturer. Currently, he is a Professor with the School

of Computer Science and Electronic Engineering,

University of Essex. His current research interests include multiagent systems,
wireless sensor networks, distributed control algorithms, distributed

information fusion, cooperative control, reinforcement learning, fuzzy logic

and neural network-based motion control, and model predictive control.

Klaus D. McDonald-Maier received Dipl.-Ing. and
MS degrees in electrical engineering from the

University of Ulm, Germany, and the École

Supérieur de Chimie Physique Électronique de Lyon,
France, in 1995, respectively. In 1999, he received a

doctorate in computer science from the Friedrich

Schiller University, Jena, Germany. Klaus
McDonald-Maier worked as a systems architect on

reusable microcontroller cores and modules at

Infineon Technologies AG's Cores and Modules
Division in Munich, Germany and as a lecturer in electronic engineering at the

University of Kent, Canterbury, United Kingdom. In 2005, he joined the

University of Essex, Colchester, United Kingdom, where he is a Professor in
the School of Computer Science and Electronic Engineering. His current

research interests include embedded systems and system-on-chip (SoC)

design, security, development support and technology, parallel and energy
efficient architectures and the application of soft computing and image

processing techniques for real world problems. He is a member of the VDE

and the BCS, a senior member of the IEEE and a Fellow of the IET.

