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Abstract

We present a model in which patent citations occur as new ideas are produced

from combinations of existing ideas. An idea’s usability in this process is rep-

resented as an interval in a variety space of ideas, whose length determines the

likelihood of citation. This process endogenously derives exponential aging of

patents, which is consistent with empirical observations. The endogeneity of ag-

ing sets our process apart from the standard preferential attachment literature.
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1. Introduction

Citation patterns between academic papers or patents have received consid-

erable attention. They have been analyzed predominantly with network models

based on preferential attachment or intrinsic fitness in which papers/patents

are nodes, and citations directed links between them (Atalay (2013), Barabási

et al. (1999), Jackson and Rogers (2007), Peterson et al. (2010), Valverde et al.

(2007)). In these models the probability to link to an existing node is propor-

tional to a scalar quantity, e.g., intrinsic fitness or the number of past citations.

However, without the introduction of a specific aging function they are not
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able to match the observed aging of patents, see Figure 1 or Marco (2007). In

particular, with pure preferential attachment citation rates are only negatively

affected by the total network size which provides a weak form of aging.

[Figure 1 here]

Figure 1: Citation Dynamics. Non-parametrically estimated population

hazard rates of being cited for USPTO patents that have received 1, 5, and 10

citations respectively.

We rather leave preferential attachment and model the attachment process

between patents as random, guided by the applicability of patents, representing

intrinsic heterogeneity. We model applicability in a way that leads to aging

very naturally through a behavioral choice of innovators. In our model, patents

represent ideas, which are built from combination of older ideas as in Auerswald

et al. (2000), Ghiglino (2012), or Weitzman (1998). Innovations arrive to inno-

vators, who decide which ideas to combine to realize the innovation. This choice

is largely driven by technological identity of ideas. In particular, we model a

patent as an interval in the variety space of ideas, which represents its applica-

bility range. More broadly applicable patents thus are more likely to be cited.

The choice of the innovator that leads to aging is simple: If there exist multiple

ideas that may be used as inputs for his innovation, he chooses the youngest.

Such behavior might be justied if innovators do not know perfectly which input

idea is best for them to use.

2. The model

We model patents/ideas as nodes in a network, and citations among them as

directed links. A link from node i to j thus signifies that j is an input idea to i.

Ideas are of different varieties, and the support of the variety space is a circle of

circumference 1. At time t there are N(t) nodes. Time is continuous and new

nodes arrive sequentially, as a Poisson process with arrival rate of 1. Each node

i is characterized by an interval Ii ⊂ (0, 1], a set of m scalars, μi
k ∈ (0, 1] with
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k = 1, ..., m, and its birth date ti. We assume that each μi
k is extracted from

a uniform distribution on (0, 1], and Ii is extracted from a distribution Ψ such

that the position (middle point) of the (connected) interval is extracted from a

uniform distribution on (0, 1], and |Ii| ∈ (0, 1
m ).

A necessary condition for the existence of a link from i to j, is that for at

least one k = 1, ..., m, μk ∈ Ij and tj ≤ ti, in which case j is a feasible input for

i. However, there might be several nodes that satisfy this condition. Let the

set of these nodes be Îk. A sufficient and necessary condition for a link from i

to j is that j ∈ Îk and tj > tj′ for all j′ ∈ Îk. As nodes are added sequentially

there is, at most, only one such node. The attachment process is illustrated in

Figure 2 for m = 3.

[Figure 2 here]

Figure 2: Attachment process. Node i enters the system, with μi =

{μj, μk, μl}. Nodes c, e, and g will receive links.

We proceed to obtain the probability for a node to receive a link. First, note

that a given node j has m chances to receive an additional edge from a newly

entered node i. For each of these, as μk is uniformly extracted from (0, 1], the

probability that j fulfills the necessary condition that j ∈ Îk is equal to

Pr(μk ∈ Ij) = |Ij |. (1)

In turn, the probability that tj > tj′ for all j′ ∈ Îk, is the probability that

between tj and t, no other node j′ has entered the system for which μk ∈ Ij′ .

Given the Poisson arrival process of ideas, the mean arrival rate of such nodes

j′ is given by the average interval length, denoted Ī,

Pr(tj > tj′ |j, j′ ∈ Îk) = e−Ī(t−tj). (2)

Let kj(t) be the number of edges that node j has received up to t (its

in-degree). The expected change in kj(t) is computed assuming that kj(t) is
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continuous and that the mean-field approximation holds (see, e.g., Barabási

et al. (1999) or Jackson and Rogers (2007)), which allows us to denote the

expected rate of change as the actual one. Consequently, the probability that

node j’s in-degree will increase by at least one at t, Π(Ij , tj , t) (the hazard rate

of node j),1 can be expressed as the continuous rate of change of kj(t):

Π(Ij , tj , t) =
∂kj(t)

∂t
= m · |Ij | · e−Ī(t−tj). (3)

The predictions of (3) are in line with stylized facts of patent citations:

citation rates vary across patents and older patents are less likely to be cited.

In contrast to preferential attachment models the likelihood to receive an edge

depends on the age of a node, rather than on time t itself, and is independent of

the current number of edges. Note that the model does not attempt to describe

the increase in the likelihood of receiving an edge that is observed early in the

life of patents. Instead, it predicts exponential aging of patents, which we now

test against available patent citation data.

3. Results

Our dataset consists of a random sample of N = 214, 071 patents granted

by the United States Patent and Trademark Office (USPTO) between 1975 and

1999, made available by the National Bureau of Economic Research. We observe

each patent whenever it gets cited and at the end of the 25 year period, which

provides a total of n = 1, 059, 475 observations. We measure time as the number

of patents granted, i.e., it coincides with the number of patents in the system.

We test our model by comparing the predicted hazard rates from (3) against

the empirically estimated citation rates. To do so, we first integrate (3) subject

to kj(tj) = 0, which yields

1While theoretically, node j can be cited multiple times by i, we find that the distribution
of |Ij | makes this probability negligible.
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kj(t) = m
|Ij |
Ī

(
1 − e−Ī(t−tj)

)
. (4)

This allows us to calculate |Ij | as

|Ij | = kj(t) · Ī · 1
m

(
1 − e−Ī(t−tj)

) . (5)

With the exception of Ī , the variables in (5) are directly observable in the

data, e.g., m = 7.72. As shown in Appendix 1, Ī can be obtained numerically

as a fixed point associated to (5). We find Ī = 9.22 · 10−7 and use this value to

derive individual |Ij |’s.2 Figure 3 shows that the hazard rates from (3) follow

the citation rates very closely:

[Figure 3 here]

Figure 3: Fit of the Model. The hazard rates from Figure 1 (solid, dotted,

and dashed lines) are plotted against the calculated hazard rates of our model

(triangles).

Individual, rather than population, hazard rates can be estimated with Sur-

vival Analysis, using the specification delivered by our model:

ln hj(t) = β1 ln(m) + β2 ln(|Ij |) + β3(t − tj). (6)

The results of the estimation are given in Table 1, column 1. Our model

predicts β1 = β2 = 1, and β3 = −Ī. Column 2 imposes the restriction β3 = −Ī.

Under both specifications, the coefficient estimates are extremely close to the

predicted ones.

To appreciate the success of the model, we re-do the same analysis for a

preferential attachment citation process as in Jackson and Rogers (2007). The

2Equation (4) also allows us to derive the distribution of in-degrees as t → ∞, which is

f(k) = g
(

kĪ
m

)
, where g(·) denotes the distribution of interval lengths.
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equivalent to (6) is

lnhj|JR(t) = β1 ln(t) + β2 ln(1 + r) + β3 ln(rm + kj(t)), (7)

where r is the ratio of random to network-based meetings.3

Table 1: Survival Analysis estimates

(1) (2) (3) (4)

ln(m) 1.259∗∗∗ 1.262∗∗∗

(0.007) (0.007)

ln(Ij) 1.021∗∗∗ 1.029∗∗∗

(0.001) (0.001)

t − tj −1.04 · 10−6∗∗∗ −9.22 · 10−7

(2.58 · 10−9) (n/a)

ln(t) −6.026∗∗∗ −1
(0.011) (n/a)

ln(1 + r) 39.808∗∗∗ −5.384∗∗∗

(0.096) (0.007)

ln (kj(t) + m · r) 3.523∗∗∗ 3.334∗∗∗

(0.003) (0.003)

n 1, 053, 738 1, 053, 557 1, 053, 557 1, 053, 557
N 214, 071 214, 071 214, 071 214, 071
AIC −1, 345, 045 −1, 342, 796 −758, 793 −556, 400
BIC −1, 345, 009 −1, 342, 772 −758, 757 −556, 376

N denotes patents, n observations.

Standard errors in parentheses, significance: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Regressions were run without a constant, only observations where t − tj > 250, 000 are included.

The estimation is reported in column 3, and the predicted coefficients are

β1 = β2 = −1, and β3 = 1. Column 4 imposes β3 = 1. We find a statistically

worse fit to the data, and coefficient estimates that are incompatible with their

3Matching the distribution of in-degrees, we find r ≈ 4.5.
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predicted values.

4. Conclusion

The proposed model of patent citations introduces endogenous aging of

patents and provides an excellent fit to empirical citation rates. Indeed, it

fits the data better than power law aging, as predicted by standard preferential

attachment models.
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Appendix 1

To numerically solve for the value of Ī that can be seen as a fixed point

associated to equation (5), we use the following algorithm:

1. Guess a value of Ī. Our initial guess is Ī = 9 · 10−7.

2. Use the guessed value of Ī in equation (5) to calculate for each patent the

implied |Ij |. For patents that have not been cited at all, set kj(t) = 0.0001.

3. Calculate the average |Ij | in the dataset at the end of the observed period,

which is t = 6, 009, 554.

4. Calculate the difference between the guessed Ī and the one calculated in

step 3, denoted x.

5. Replace the guess of Ī with Īnew = Īold − x
2 .

6. Repeat steps 2-5 until |x| ≤ 10−10.

Equation (5) assumes that the citations a patent receives is a continuous

variable. However, in the data it is discrete, which is why for each patent we

observe one value of |Ij | for each t at which we observe the patent, which is

at each citation and at the end of the dataset. We calculate the average |Ij |

from the data at the very end of our observed period as we believe that at this

point, the data provide the most accurate estimate of |Ij |, as patents have been

observed for the longest time.

We can instead look at the empirical average of (5) over all observations in

our data in step 3 of our algorithm. That is, for each patent we take the average

value of |Ij | calculated from (5), and then average these across patents. In this

case, we find that Ī = 9.07 · 10−7. None of our qualitative results are sensitive

to our choice between these values of Ī.
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