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Abstract

Empirical evidence from time series methods which assume the usual I(0)/I(1) paradigm suggests
that the effi cient market hypothesis, stating that spot and futures prices of a commodity should co-
integrate with a unit slope on futures prices, does not hold. However, these statistical methods are
known to be unreliable if the data are fractionally integrated. Moreover, spot and futures price data
tend to display clear patterns of time-varying volatility which also has the potential to invalidate
the use of these methods. Using new tests constructed within a more general heteroskedastic
fractionally integrated model we are able to find a body of evidence in support of the effi cient
market hypothesis for a number of commodities. Our new tests are wild bootstrap implementations
of score-based tests for the order of integration of a fractionally integrated time series. These
tests are designed to be robust to both conditional and unconditional heteroskedasticity of a quite
general and unknown form in the shocks. We show that the asymptotic tests do not admit pivotal
asymptotic null distributions in the presence of heteroskedasticity, but that the corresponding tests
based on the wild bootstrap principle do. A Monte Carlo simulation study demonstrates that very
significant improvements in finite sample behaviour can be obtained by the bootstrap vis-à-vis the
corresponding asymptotic tests in both heteroskedastic and homoskedastic environments.

Keywords: Bootstrap; effi cient market hypothesis; fractional integration; score tests; spot and
futures commodity prices; time-varying volatility

J.E.L. Classifications: C12, C22, C58, G13, G14.

1 Introduction

A large body of empirical literature has developed aimed at assessing to what extent futures commodity
markets are effi cient. Suppose we let st denote the (log) spot price of a particular commodity at time
t, and let f (k)

t denote the (log) price of the corresponding k-period futures contract at time t, with
k a positive constant. Then, in its simplest form, the Effi cient Market Hypothesis (EMH, hereafter)
states that in a frictionless market f (k)

t is an unbiased predictor of st+k; that is,

f
(k)
t = E (st+k|It) , (1.1)
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Humanities Research Council of Canada (SSHRC), and the Center for Research in Econometric Analysis of Time Series
(CREATES, funded by the Danish National Research Foundation, DNRF78) for financial support. Cavaliere and Taylor
thank the Danish Council for Independent Research, Sapere Aude | DFF Advanced Grant (Grant nr: 12-124980) for
financial support. Correspondence to: Robert Taylor, Essex Business School, University of Essex, Wivenhoe Park,
Colchester, CO4 3SQ, UK. Email: rtaylor@essex.ac.uk
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where It denotes the available information set; that is, the sigma-algebra generated by current and
past values of xt := (st, ft)

′. Equivalently, letting u(k)
t := f

(k)
t−k − st denote the so-called forward

premium, the relation (1.1) can be reformulated as

E(u
(k)
t+k|It) = 0, (1.2)

which asserts that the expected forward risk premium is zero. Under the standard assumption of (log)
spot prices being well approximated by (possibly heteroskedastic) I(1) processes, the relations in (1.1)
and (1.2) imply that: (i) f (k)

t is I(1); (ii) st+k and f
(k)
t are co-integrated; (iii) the co-integrating vector

has the form β = (1,−1)′; (iv) the co-integrating residuals (or spread), st − f (k)
t−k, form a (possibly

heteroskedastic) martingale difference sequence. Weaker forms of the EMH require that, due to time
varying risk premia, interest rates and storage costs, in equilibrium, the right-hand side of (1.2) is
equal to some arbitrary (possibly nonzero) constant (see, e.g., Luo, 1998), and that in place of (iv)
we have the weaker condition (iv’) u(k)

t can be described as a mean reverting, stationary (aside from
possible heteroskedasticity) process. Observe that this need not therefore be an I(0) process, as, for
example, any fractionally integrated I(d) process with d < 1/2 satisfies condition (iv’).

Despite widespread acceptance of the EMH in theory, the long-run one-for-one relationship between
spot and futures prices it postulates has proven diffi cult to verify empirically; see e.g. Baillie and
Bollerslev (1994) and Figuerola-Ferretti and Gonzalo (2010) for detailed discussions of early and more
recent empirical evidence, respectively. Although the presence of unit roots in both spot and futures
prices tends to be supported for most commodities when data are analyzed by means of standard
stationarity and unit root tests, most of the early empirical evidence based on the usual I(0)/I(1)
paradigm rejected the hypothesis of co-integration between spot and future prices; see the discus-
sion in Westerlund and Narayan (2013) and the references therein. While more recent approaches,
although still in the standard I(0)/I(1) paradigm, do often find some form of co-integration for most
commodities, they still, however, tend to reject the (1,−1)′ co-integrating vector in (iii); see inter alia
Figuerola-Ferretti and Gonzalo (2010), Westerlund and Narayan (2013), and the references therein.

Most of the empirical evidence is based on the assumptions that the data are well described by
I(d) processes with d = 0 or d = 1 and that the degree of possible (conditional and unconditional)
heteroskedasticity in the series is small enough to guarantee that standard statistical procedures for
(co-)integrated conditionally i.i.d. data apply. Both assumptions, however, would appear to be at odds
with the empirical features of price series in both spot and futures markets, and indeed in financial data
more generally.1 Regarding the first assumption, researchers have reasonably claimed that data seem
to be better characterised by fractional integration, i.e. by a general I(d) process, in particular where
the forward premium u

(k)
t is concerned; see, e.g., Baillie and Bollerslev (1994, 2000). Consequently,

inference methods which do not allow for the possibility of fractional integration in the data will be
biased where it is present, in the sense that they will tend to reject (1,−1)′ co-integration between
spot and forward prices; see Maynard and Phillips (2001). Regarding the second assumption, it is
now a well established fact that the existence of time-varying conditional and unconditional volatility
can seriously affect standard inference procedures for unit root and co-integration tests (Cavaliere
and Taylor, 2007, 2008a, 2009, and Cavaliere, Rahbek and Taylor, 2014). Hence, existing evidence
against co-integration and/or a (1,−1)′ co-integration relation between spot and futures prices is likely
to be affected by time-varying conditional and/or unconditional volatility in the data. Moreover, as
we show in this paper, inference on the fractional integration order is very likely to be affected by
time-varying behaviour in the volatility process; that is, existing evidence of fractional integration in
futures markets may also be driven by non-stationarity in the second-order moments.

In response to these issues we test fractional co-integration with co-integrating vector (1,−1) im-
posed, by testing the degree of fractional integration the the spread or forward premium. Thus, we
focus on the problem of conducting inference on the fractional integration (long memory) parameter,
based around the score or Lagrange multiplier [LM] principle, in univariate autoregressive fractionally
integrated moving average [ARFIMA] time series which display time-variation in the volatility process

1For example, Sensier and van Dijk (2004) report that over 80% of the real and price variables in the Stock and
Watson (1999) data-set reject the null of constant innovation variance, while Loretan and Phillips (1994) report evidence
against the constancy of unconditional variances in stock market returns and exchange-rate data.
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of the driving shocks. We allow for both unconditional heteroskedasticity (often referred to as non-
stationary volatility in the literature) and conditional heteroskedasticity in our analysis. The score
test for fractional integration was pioneered by Robinson (1991, 1994) and has been applied in early
empirical work by, e.g., Gil-Alana and Robinson (1997), among numerous other studies. The clas-
sical likelihood-based tests, and in particular the score-based tests, for inference on the long memory
parameter have been derived under the assumption of conditionally (and, hence, unconditionally) ho-
moskedastic shocks; see, among others, Robinson (1994), Agiakloglou and Newbold (1994), Tanaka
(1999), Nielsen (2004), Lobato and Velasco (2007), and Johansen and Nielsen (2010). Very few con-
tributions in the fractional integration literature investigate the impact of time-varying volatility on
inference in long memory series. A small number of papers have considered the case where the shocks
can display certain forms of conditional heteroskedasticity (but maintaining the assumption of uncon-
ditional homoskedasticity); see, for example, Robinson (1991), Baillie, Chung, Tieslau (1996), Ling
and Li (1997), Ling (2003), Demetrescu, Kuzin and Hassler (2008) and Hassler, Rodrigues and Rubia
(2009). To the best of our knowledge, the only paper in this literature which explicitly allows for
non-stationary volatility is Kew and Harris (2009) who extend the idea of Demetrescu, Kuzin and
Hassler (2008) to use heteroskedasticity-robust White (1980)-type standard errors when computing
regression-based tests for fractional integration. They apply this approach to the tests proposed in
Dolado, Gonzalo and Mayoral (2002) and Lobato and Velasco (2006, 2007), Agiakloglou and Newbold
(1994) and Breitung and Hassler (2002).

This paper makes two distinct contributions. The first is to the theoretical econometrics liter-
ature. Here we examine the impact of time-varying conditional and/or unconditional volatility on
standard score-based tests for the long memory parameter. Our analysis is based on a new frame-
work which includes the general form of non-stationary volatility considered in Cavaliere and Taylor
(2008a) as a special case and also includes a set of conditional heteroskedasticity conditions similar
to those employed in Robinson (1991), Demetrescu, Kuzin and Hassler (2008) and Hassler, Rodrigues
and Rubia (2009), among others. Neither of these conditions involve specifying a parametric model
for the volatility process. We show that the limiting distributions of the score test statistics under
both the null and local alternatives are non-pivotal with their functional form depending on nuisance
parameters which derive from the heteroskedasticity present in the shocks. Consequently, inference
based on conventional asymptotic critical values leads to tests which are not in general asymptotic-
ally correctly sized under the null when heteroskedasticity is present. In response to this we propose
wild bootstrap implementations of the score statistics2 which are shown to correctly replicate their
(first order) limiting null distributions. As a result, asymptotically valid bootstrap inference can be
performed in the presence of time-varying volatility using wild bootstrap implementations of these
tests. Simulation evidence is reported which clearly demonstrates the superior finite sample proper-
ties of our proposed bootstrap tests over their asymptotic counterparts in both homoskedastic and
heteroskedastic environments.

Our second contribution is to employ our new bootstrap tests to re-analyse the sample of daily
data covering the period 2005—2011 for four commodities — gold, silver, platinum and crude oil —
recently analysed in Westerlund and Narayan (2013). As Narayan, Huson and Narayan (2012) point
out, these four commodities together constitute 76% of total commodities trading, with crude oil
the most commonly traded. Westerlund and Narayan (2013) find strong evidence of conditional
heteroskedasticity in both the spot and futures prices of each of these commodities and, as a result,
recommend using weighted least squares, based on the assumption that volatility follows a finite-order
ARCH process, to estimate the co-integrating relationship between the spot and futures prices, again
within an I(0)/I(1) paradigm. In recognition of the financial crisis, and the associated increase in
the unconditional volatility apparent in all of these series, they also consider splitting the sample at
September 2008. The methods developed in this paper can control for a wide class of conditionally
heteroskedastic processes without the need to specify a parametric model, unlike Westerlund and
Narayan (2013), and simultaneously to allow for changes in the unconditional volatility of the process,

2An i.i.d. bootstrap implementation is also considered in the working paper version, see Cavaliere, Nielsen, and Taylor
(2013). As would be expected, it correctly replicates the asymptotic null distribution of the statistics only under constant
volatility so that inference with the i.i.d. bootstrap is not valid under heteroskedasticity.
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including any associated with the recent financial crisis. Our methods also allow us to move beyond
the strictures of the pure I(0)/I(1) paradigm, thereby permitting valid testing on condition (iv’)
in cases where the spread is stationary but not I(0). We find significant evidence of conditional
heteroskedasticity in all of the series and of unconditional heteroskedasticity in all but the silver
series. The results from our bootstrap tests suggest that (the weak form of) the EMH holds within a
standard I(1) to I(0) co-integrated relationship for silver and platinum. For gold the EMH is accepted
but within a fractionally co-integrated stationary relationship. For oil, our results suggest the spread is
fractionally co-integrated but non-stationary. A rolling sub-sample analysis of the data is also reported
and this does not appear to uncover any major within-sample departures from these conclusions.

The remainder of the paper is organised as follows. Section 2 outlines our heteroskedastic, frac-
tionally integrated ARFIMA model. Section 3 analyses the effects of time-varying volatility on the
large sample behaviour of the standard (asymptotic) score-based tests for hypotheses on the fractional
integration parameter. The bootstrap algorithm and related bootstrap score-based tests are outlined
in section 4, and the large sample properties of these are established. The results of a Monte Carlo
study are given in section 5. Section 6 contains the empirical analysis of the EMH for futures markets,
and section 7 concludes. Mathematical proofs are contained in the appendix.

In the following, w→ denotes weak convergence,
p→ convergence in probability, Lr→ convergence in

Lr-norm, and
w→p weak convergence in probability, in each case as T → ∞; for any space A, int(A)

denotes the interior of A; I(·) denotes the indicator function; x := y indicates that x is defined by y;
for any square matrix, A, ‖A‖ is used to denote the norm ‖A‖2 := tr {A′A}; for any vector, x, ‖x‖
denotes the usual Euclidean norm, ‖x‖ := (x′x)1/2; for any matrix, A, (A)m,n denotes its (m,n)’th
element and for any vector, x, (x)m denotes its m’th element; for any real number, x, bxc denotes the
integer part of x. Throughout, we use the notation K for a generic, finite constant.

2 The Heteroskedastic ARFIMA Model

Consider the real-valued, fractionally integrated stochastic process {yt, t = 1, 2, ..., T} generated by

∆d
+yt = ut, (2.1)

where the operator∆d
+ is given by∆d

+zt := ∆dztI (t ≥ 1) =
∑t−1

i=0 πi (−d) zt−i with πi (v) := Γ(v+i)
Γ(v)Γ(1+i) =

(i!)−1(v(v+1) . . . (v+i−1)) denoting the coeffi cients in the usual binomial expansion of (1−z)−v. The
unobserved shock process {ut} is assumed to have the following ARMA(p, q) generating mechanism

c (L,ψ)ut = εt, (2.2)

where c (z, ψ) := a (z, ψ) /b (z, ψ) and a (z, ψ) and b (z, ψ) are polynomial functions (of orders p and q,
respectively) in the complex variate z, depending on the k × 1 parameter vector ψ. The parameters
of the model are collected in the vector γ := (d, ψ′)′ with true value denoted by γ0 := (d0, ψ

′
0)′. The

polynomials a (z, ψ) and b (z, ψ) are assumed to satisfy the following standard conditions.

Assumption R The parameter space for ψ is Ψ, which is convex, compact, and such that, for all
ψ ∈ Ψ, the polynomial functions a (z, ψ) and b (z, ψ) of the complex variate z have no common roots
and all their roots lie strictly outside the unit circle.

The innovation process {εt} is taken to satisfy the following assumption, which embodies both
unconditional heteroskedasticity (part (a)) and conditional heteroskedasticity (part (b)).

Assumption V The innovations {εt} are such that εt = σtzt, where {σt} and {zt} satisfy the
conditions in parts (a) and (b), respectively, below:

(a) {σt}t∈Z is non-stochastic and uniformly bounded, and satisfies σt := σ (t/T ) > 0 for all t =
1, ..., T , where σ (·) ∈ D[0, 1], the space of càdlàg functions on [0, 1].

(b) {zt} is a martingale difference sequence with respect to the natural filtration Ft, the sigma-field
generated by {zs}s≤t, such that Ft−1 ⊆ Ft for t = ...,−1, 0, 1, 2, ..., and satisfies

(i) E(z2
t ) = 1,
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(ii) τr,s := E(z2
t zt−rzt−s) is uniformly bounded for all t ≥ 1, r ≥ 0, s ≥ 0, where also τr,r > 0

for all r ≥ 0,

(iii) For all integers q such that 3 ≤ q ≤ 8 and for all integers r1, ..., rq−2 ≥ 1, the q’th order
cumulants κq(t, t, t − r1, . . . , t − rq−2) of (zt, zt, zt−r1 , . . . , zt−rq−2) satisfy the requirement
that supt

∑∞
r1,...,rq−2=1 |κq(t, t, t− r1, . . . , t− rq−2)| <∞.

A special case of Assumption V, where σ (·) is constant and {zt} is conditionally homoskedastic,
is, in addition to a higher-order moment condition, the following classical assumption.

Assumption H The innovations {εt} form a martingale difference sequence with respect to the
filtration Ft, where, almost surely, E

(
ε2
t |Ft−1

)
= σ2.

Assumption H is a conditional homoskedasticity requirement for martingale differences, dating
back to, at least, Hannan (1973), and is rather standard in the time series literature. Conversely,
Assumption V allows both conditional and unconditional heteroskedasticity of very general forms.

The conditions in part (a) of Assumption V, see Cavaliere and Taylor (2008a), imply that the
unconditional innovation variance σ2

t is only required to be bounded and to display at most a countable
number of jumps, therefore allowing for an extremely wide class of potential models for the behaviour
of the unconditional variance of εt. Models of single or multiple variance shifts satisfy part (a) of
Assumption V with σ (·) piecewise constant; e.g., the case of a single break at time bTτc obtains
for σ (u) := σ0 + (σ1 − σ0)I (u > τ). If σ (·) is an affi ne function, then σt displays a linear trend.
Piecewise affi ne functions are permitted, thereby allowing for variances which follow a broken trend,
as are smooth transition variance shifts. The requirement within part (a) of Assumption V that σ (·)
is non-stochastic is made to simplify the analysis, but can be generalised to allow for cases where σ (·)
is stochastic and independent of zt; see Cavaliere and Taylor (2009) for further details.

Part (b) of Assumption V allows for conditional heteroskedasticity in {zt}. We do not assume
a parametric model of the generalized autoregressive conditional heteroskedasticity form as in, e.g.,
Baillie et al. (1996), Ling and Li (1997) and Ling (2003). Instead, the conditions in Assumption V(b)
allow for conditional heteroskedasticity of unknown and very general form and are typical of those
used in this literature; see, for example, Robinson (1991), Demetrescu, Kuzin and Hassler (2008),
Hassler, Rodrigues and Rubia (2009) and Kew and Harris (2009). In particular, part (b)(iii) controls
the extent of higher-order dependence in {zt}. However, we note that the conditions given in part
(b) of Assumption V are somewhat weaker than required by these authors. Firstly, they impose the
assumption that, for any integer q, 2 ≤ q ≤ 8, and for q non-negative integers si, E(

∏q
i=1 z

si
ti

) = 0
when at least one si is exactly one and

∑q
i=1 si ≤ 8, see, e.g., Assumption E(e) of Kew and Harris

(2009). This implies, in particular, that τr,s = 0 for r 6= s, which rules out asymmetric conditionally
heteroskedastic processes. We are not aware of any other work in the fractional integration literature
that allows for τr,s 6= 0. Secondly, these authors assume strict stationarity of zt, which we do not.

Remark 2.1 Observe that the moment condition suptE|zt|8 < ∞, imposed by a number of other
authors, is necessary for part (b)(iii) with q = 8 to hold and therefore is not stated explicitly. Moreover,
notice that the boundedness assumption in (b)(ii) does in fact follow from the conditions imposed in
(b)(iii). Finally, notice also that the assumption that zt is a martingale difference sequence implies
that for any κq(·), q ≥ 2, if the highest argument in the cumulant appears only once, then the cumulant
is zero; see Lemma A.2 in Cavaliere, Nielsen and Taylor (2014) [CNT]. Hence, our stated assumptions
deal only with cumulants where the first two (the highest) arguments coincide.
Remark 2.2 A time series generated according to Assumption V formally constitutes a triangular
array of the type {εT,t : 0 ≤ t ≤ T, T ≥ 1}, where εT,t = σT,tzt and σT,t = σ(t/T ). Because the
triangular array notation is not essential, for simplicity the subscript T is suppressed in the sequel.
Remark 2.3 Deterministic terms such as an unknown mean, trend, and/or seasonal means can also
be added to the model by assuming that the observed process is β′xt+yt, where yt is generated by (2.1),
xt is the deterministic term, and the coeffi cient β is estimated by maximum likelihood jointly with the
other parameters. Under very weak conditions, not even requiring the usual Grenander-Rosenblatt
assumptions, estimated deterministic terms would not alter the form of the asymptotic distributions
given in this paper due to the block-diagonality of the Hessian matrix; see, e.g., Robinson (1994) and
Nielsen (2004). However, we leave out deterministic terms to simplify the notation and discussion.
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Remark 2.4 Our model (2.1) is fractionally integrated of type II, where the fractional differencing
filter is truncated, i.e. the ∆+ operator. Alternatively, a fractional model of type I would apply integer
differencing until the fractional integration order of yt is in the interval (−1/2, 1/2), and then apply
the untruncated fractional differencing operator. The type II model applied in this paper has the
advantage that it is applicable for any value of d and without any prior knowledge of the integration
order. Furthermore, the likelihood analysis could be made conditional on initial values, in which case
the observed sample points would be split between initial values and observations used for estimation.
This has consequences for second-order bias terms, but does not influence first-order asymptotics as
considered here. For details, see Johansen and Nielsen (2014).
Remark 2.5 As is often done in this literature, the results in this paper are based on knowledge of
the AR and MA lag orders, p and q, or at least may be viewed as conditional on the pre-determination
of these from a consistent model selection procedure. The results given in Proposition 4.2(a) and
(c) of Sin and White (1996) would appear to imply that the usual BIC procedure is consistent in
the context of selecting p and q in the heteroskedastic ARFIMA model considered here. In Section
5 we report Monte Carlo results for both known lag orders and where these are chosen by the BIC.
An alternative approach, which we do not consider here, is to develop bootstrap versions of the tests
outlined in DKH, or indeed the LM and score tests of Agiakloglou and Newbold (1994) and Breitung
and Hassler (2002), for the case where (2.2) is specified to be an AR(∞) process, driven by εt and
satisfying standard summability and invertibility conditions, approximated by an autoregression whose
lag length increases with the sample size at an appropriate rate; see DKH for further details. �

3 Score-based Tests on d

In this section we first derive one-sided and two-sided (quasi-) score tests under the assumption of
homoskedastic Gaussian innovations. We then establish the large sample properties of the standard
(asymptotic) test statistics based on comparing these statistics with standard (homoskedastic) critical
values when the innovations in fact display unconditional and/or conditional heteroskedasticity of an
unknown form as given in Assumption V.

The main focus in this paper is thus to test the null hypothesis

H0 : d = d̄ (3.1)

in the context of (2.1). We will test this hypothesis by using score tests in the time domain. The
score tests may be performed against either a one-sided or a two-sided alternative. An example of
the former is H1 : d < d̄, in which case d > d̄ is implicitly part of the null, or vice versa. On the
other hand, the more traditional two-sided score test is performed against the two-sided alternative,
H1 : d 6= d̄. The one-sided score test is often referred to as Rao’s score test; see Lehmann and Romano
(2005, pp. 512, 566) for further details. In what follows we will refer to the one-sided score test simply
as the score test, and the two-sided score test as the LM test.

To derive the test statistics, first define ε̂t (γ) := ε̂t (d, ψ) := c (L,ψ) ∆d
+yt. Then the (Gaussian)

log-likelihood function, conditionally on the initial values and under the assumption of constant vari-
ance, σ(·) = σ, is given, up to a constant term, by L(d, ψ, σ2) := −T

2 log(σ2) − 1
2σ2
∑T

t=1 ε̂t(d, ψ)2.
Concentrating out the nuisance parameter σ2 yields, aside from a constant, the concentrated likelihood

` (d, ψ) := −T
2

log
(
σ̂2 (d, ψ)

)
, (3.2)

where

σ̂2 (d, ψ) :=
1

T

T∑
t=1

ε̂t (d, ψ)2 . (3.3)

The unrestricted conditional quasi-maximum likelihood [QML] estimator is then given as the maxim-
izer of (3.2), which is equivalent to the conditional sum-of-squares estimator given as the minimizer of
(3.3). To calculate the score and LM test statistics, estimation is carried out under the null hypothesis.
To that end, let a tilde (~) denote an estimator obtained under the restrictions of the null, i.e. while
fixing d = d̄. Specifically,

ψ̃ := arg max
ψ∈Ψ

`
(
d̄, ψ

)
= arg min

ψ∈Ψ
σ̂2
(
d̄, ψ

)
, (3.4)
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and the estimator of the full parameter vector γ under the null is then given by γ̃ = (d̄, ψ̃′)′.
Let DT (γ) := ∂` (γ) /∂γ and HT (γ) := ∂2` (γ) /∂γ∂γ′ denote the score vector and Hessian matrix,

respectively, of the likelihood. We will consider the following one-sided score statistic,3

S1T := DT (γ̃)1

√
−H−1

T (γ̃)11, (3.5)

as well as its square, which is the more traditional LM test statistic,

S2T := −DT (γ̃)′H−1
T (γ̃)DT (γ̃). (3.6)

Under the null hypothesis (3.1) and homoskedasticity, as in AssumptionH, the tests statistics (3.5) and
(3.6) are asymptotically N(0, 1) and χ2

1 distributed, respectively; see, for example, Robinson (1994),
Tanaka (1999), or Nielsen (2004). The former result motivates the use of (3.5) as a test of (3.1)
against one-sided alternatives, where the null would be rejected in favor of the right-tailed alternative
if S1T > Z1−α, where Z1−α is such that P (Z > Z1−α) = α when Z ∼ N(0, 1), and vice versa for the
left-tailed test; see Robinson (1994, p. 1424) for details. This allows the testing of interesting one-sided
hypotheses such as testing d = 1/2 against either d < 1/2 or against d > 1/2, or testing the unit root
d = 1 against d < 1, or even d = 2 against d < 2 to check whether yt is I(2). Of course one-sided tests
will be more powerful than two-sided tests (in the correct tail).

We now turn to detailing the asymptotic behaviour of the statistics (3.5) and (3.6) under un-
conditional and/or conditional homoskedasticity of the form given in Assumption V. To do so, we
introduce the parameter ω2 which derives from the weak dependence present in the shocks. In the
simplest case, where p = q = 0, ω2 = (π2/6)−1. In order to obtain a general expression for cases where
(p, q) 6= (0, 0), first define ξ (z, γ) := ∂ log

(
(1− z)dc (z, ψ)

)
/∂γ and ξ (z) := ξ (z, γ0) =:

∑∞
j=1 ξjz

j .
Observe in this expression that ξj = (−j−1, c′j)

′, where cj is defined as the coeffi cient on zj in the
expansion of ∂ log c (z, ψ) /∂ψ|ψ=ψ0

in powers of z. Under Assumption R, it holds that cj decays
exponentially. Further define

Ξ :=

∞∑
j=1

ξjξ
′
j =

[
π2/6 κ′

κ Φ

]
(3.7)

with κ := −
∑∞

j=1 j
−1cj and Φ :=

∑∞
j=1 cjc

′
j ; notice that, under Assumption R, the matrix Ξ is finite

and positive definite. With these definitions, ω2 := (Ξ−1)1,1 = (π2/6− κ′Φ−1κ)−1. It is easily shown
that Φ is the Fisher information for ψ; for example, if {ut} is an AR(1) process with coeffi cient a then
cj = −aj−1 and Φ = (1− a2)−1.

Where conditional heteroskedasticity is present in {zt} we also need to define the quantity4 Υ :=∑∞
j,k=1 ξjξ

′
kτj,k, where the τj,k coeffi cients derive from the higher-order dependence in the shocks

induced by the conditional heteroskedasticity; see part (b) of Assumption V. In such cases, the
relevant quantity is now given by $2 := (Ξ−1ΥΞ−1)1,1. In an estimation setting, ω2 and λ$2 would
be the (asymptotic) variances of the QML of d̂ under Assumptions H and V, respectively. If {zt} is
conditionally homoskedastic, then τj,k = I(j = k) such that Υ =

∑∞
j=1 ξjξ

′
j = Ξ, and, hence, $2 = ω2.

To investigate the impact of heteroskedasticity on both the asymptotic size and local power of the
tests we will derive asymptotic distributions under the relevant (local) Pitman drift alternative; i.e.,

H1,T : d0 = d0T := d̄+ δ/
√
T , (3.8)

where δ is a fixed scalar. Notice that for δ = 0, H1,T reduces to H0 of (3.1).

Theorem 1 Let Assumptions R and V be satisfied and assume that ψ0 ∈ int(Ψ). Then, under H1,T

of (3.8), it holds that

S1T
w→ (λ

$2

ω2
)1/2N(δ$−1λ−1/2, 1) (3.9)

S2T
w→ (λ

$2

ω2
)χ2

1

(
δ2$−2λ−1

)
, (3.10)

where λ := (
∫ 1

0 σ
4(s)ds)/(

∫ 1
0 σ

2(s)ds)2.

3Note that −H−1T (γ̃)11 is not guaranteed to be positive in finite samples. To circumvent this issue, −HT (γ̃) could
be replaced by either an outer-product-of-gradients estimator or a positive definite estimator of its asymptotic limit Ξ0
given in (3.7), although we prefer the computationally simpler version given here.

4Note that Assumptions R and V imply that Υ is finite. This follows because ||ξj || ≤ Kj−1 under Assumption R,
and using condition (b)(iii) of Assumption V we thus find ||Υ|| ≤

∑∞
j,k=1 ||ξj ||||ξk|||τj,k| ≤ K

∑∞
j,k=1 j

−1k−1|τj,k| <∞.
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Figure 1. Size and power under heteroskedasticity

(a) Asymptotic size of S2T at 5% nominal level
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Corollary 1 Let Assumptions R and V be satisfied and assume that ψ0 ∈ int(Ψ). Then, under the
null hypothesis H0 of (3.1), S1T

w→ (λ$
2

ω2
)1/2N(0, 1) and S2T

w→ (λ$
2

ω2
)χ2

1.

Theorem 1 and Corollary 1 contain three key results. For concreteness, this discussion is based on
the two-sided LM test, but similar remarks can be made about the one-sided score test.

First, if the shocks are (conditionally) homoskedastic then λ = 1 and $2

ω2
= 1 and the standard

results are special cases of the representations in (3.9) and (3.10). Specifically, under (3.8) and As-
sumption H it follows from Robinson (1994) that the S2T test statistic is asymptotically non-central
χ2

1 distributed with non-centrality parameter δ
2ω−2; that is, S2T

w→ χ2
1(δ2ω−2).

Second, under the null, δ = 0, the asymptotic distribution of S2T is (λ$
2

ω2
)χ2

1. When the factor

λ$
2

ω2
> 1, for example if λ > 1 and $2

ω2
= 1, it therefore follows that the LM test will over-reject

asymptotically. Notice also therefore that a necessary (but not suffi cient) condition for under-rejection
to occur in the limit is for conditional heteroskedasticity to be present in {zt}. Specifically, the LM
test rejects if S2T > χ2

1,1−α, where χ
2
1,1−α is such that P (χ2

1 > χ2
1,1−α) = α. Thus, rejection occurs

with probability converging to

P ((λ
$2

ω2
)χ2

1 > χ2
1,1−α) = P (χ2

1 > χ2
1,1−α/(λ

$2

ω2
)) = 1− F1(χ2

1,1−α/(λ
$2

ω2
)), (3.11)

where F1(·) denotes the cumulative density function [cdf] of the (central) χ2
1 distribution. To illustrate

this phenomenon, the asymptotic size of the LM test under heteroskedasticity is shown in Figure 1(a)
as a function of the factor λ$

2

ω2
.

Third, under local alternatives the non-centrality parameter is scaled by (λ$
2

ω2
)−1, compared to the

homoskedastic case, and the entire asymptotic distribution of S2T is scaled by λ$
2

ω2
. The size-corrected

LM test rejects when S2T > (λ$
2

ω2
)χ2

1,1−α such that size-corrected asymptotic local power is given by

P (χ2
1(δ2$−2λ−1) > χ2

1,1−α) = 1− F1(χ2
1,1−α, δ

2$−2λ−1) = 1− F1(χ2
1,1−α, δ

2ω−2/(λ
$2

ω2
)), (3.12)

where F1(·, c) is the cdf of the non-central χ2
1 distribution with non-centrality parameter c. An im-

plication of this is that the size-corrected asymptotic local power function of the S2T test will be
monotonically decreasing in λ$

2

ω2
for a given value of δ. The size-corrected asymptotic local power of

S2T for various choices of δ is illustrated in Figure 1(b) (the figure is displayed with ω2 = (π2/6)−1).
The results in Theorem 1 therefore establish that the standard tests (obtained under the assump-

tion of homoskedasticity) are not asymptotically correctly sized under heteroskedasticity of the form
given in Assumption V and that these tests will also have asymptotic local power properties that
depend on the degree of heteroskedasticity present in the process even when size-corrected. The finite
sample effects of a variety of shock processes which display a one-time change in variance and/or a
GARCH-type structure on the size and power properties of the LM test will be quantified by Monte
Carlo simulation methods in section 5.
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Remark 3.1 To quantify and interpret the scalar parameter λ, suppose that there is no conditional
heteroskedasticity present in {zt}, such that $2 = ω2. Here the right members of (3.9) and (3.10)
simplify to N(δ$−1, λ) and λχ2

1

(
δ2ω−2λ−1

)
, respectively. These limits thus depend on λ, which is

then a measure of the degree of unconditional heteroskedasticity present in the process {εt}. For a
homoskedastic process, where σ(·) is constant, λ = 1, whereas when σ(·) is non-constant λ > 1 by
the Cauchy-Schwarz inequality. For the single break in volatility example discussed in Remark 2.1
with σ0 = 1 and σ1 = 3 (σ1 = 1/3) then: for τ = 0.25 we find λ = 1.245 (2.333); for τ = 0.75,
λ = 2.333 (1.245), and for τ = 0.5, λ = 1.640 in both cases. On the other hand, under constant
unconditional volatility, λ = 1, the right members of (3.9) and (3.10) simplify to ($

2

ω2
)1/2N(δ$−1, 1)

and ($
2

ω2
)χ2

1

(
δ2$−2

)
, respectively, so that both the asymptotic size and local power functions of S1T

and S2T depend on both ω2 and $2.
Remark 3.2 In the Gaussian homoskedastic single-parameter model the one-sided test based on
(3.5) is asymptotically uniformly most powerful (UMP), and the two-sided test based on (3.6) is
asymptotically UMP unbiased, see Tanaka (1999) and Nielsen (2004) for the fractional model or
Lehmann and Romano (2005) for a general treatment. �

4 Wild Bootstrap Inference

In this section we outline bootstrap-based analogues of the score and LM tests from section 3. We will
demonstrate that the wild bootstrap implementations of these tests are asymptotically valid under
heteroskedasticity of unknown form since they correctly replicate the large sample distributions of the
test statistics.

We first outline our proposed wild bootstrap algorithm.

Algorithm 1 (wild bootstrap):

(i) Estimate model (2.1)-(2.2) under the null hypothesis (3.1) using Gaussian QML yielding the
estimates (d̄, ψ̃), see (3.4), together with the corresponding residuals, ε̃t :=ε̂t(d̄, ψ̃).

(ii) Compute the re-centered residuals ε̃c,t := ε̃t − T−1
∑T

i=1 ε̃i and construct the bootstrap errors
ε∗t := ε̃c,twt, where wt, t= 1, ..., T , is an i.i.d. sequence with E(wt) = 0, E(w2

t ) = 1, E(w4
t ) <∞.

(iii) Construct the bootstrap sample {y∗t } from

y∗t = ∆−d̄+ u∗t , u
∗
t = c(L, ψ̃)−1ε∗t , t = 1, ..., T, (4.1)

with the T bootstrap errors ε∗t generated in step (ii) and with ε
∗
t = 0 for t ≤ 0.

(iv) Using the bootstrap sample, {y∗t }, compute the bootstrap test statistic S∗iT , denoting either the
score statistic (i = 1) or the LM statistic (i = 2), as detailed in section 3. If S∗iT is the score test
statistic for a left-tailed test, define the corresponding p-value as P ∗T := G∗iT (SiT ), and if S∗iT is
the score test statistic for a right-tailed test or the LM test statistic, define the corresponding
p-value as P ∗T := 1 − G∗iT (SiT ). In either case, G∗iT (·) denotes the conditional (on the original
data) cdf of S∗iT .

(v) The wild bootstrap test of H0 against H1 (defined in accordance with the test statistic) at level
α rejects if P ∗T ≤ α.

Remark 4.1 For stationary data, it is often seen in the wild bootstrap literature (for a review, see
Davidson and Flachaire, 2008) that improved bootstrap accuracy can be achieved by generating the
pseudo-data according to an asymmetric distribution with E(wt) = 0, E(w2

t ) = 1 and E(w3
t ) = 1. A

well-known example of this is the Mammen (1993) distribution: P (wt = −0.5(
√

5 − 1)) = 0.5(
√

5 +
1)/
√

5 =: π, P (wt = 0.5(
√

5 + 1)) = 1 − π. Two other commonly used (symmetric) distributions are
the simple two-point distribution P (wt = −1) = P (wt = 1) = 0.5 and an i.i.d. N(0, 1) sequence. The
large sample properties of the resulting bootstrap tests are the same for all three. In our simulations
we found that, of these three, the simple two-point distribution gave slightly better small sample
performance than the other two, and so we will present results only for this choice of wt.
Remark 4.2 In step (i) of Algorithm 1 the parameters characterizing (2.1), which are then used in
constructing the bootstrap sample data in steps (ii) and (iii), are estimated under the restriction of
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the null hypothesis, H0 of (3.1). It is also possible to estimate these parameters unrestrictedly in step
(i) of Algorithm 1, and use these unrestricted estimates in constructing the bootstrap sample data in
steps (ii) and (iii). Let , d̂ be the unrestricted estimate of d obtained from the original sample data.
Since the bootstrap DGP is now based on d̂, the bootstrap test statistic computed in step (iv) should
be for the hypothesis that d = d̂. A finite sample comparison of these two possible approaches is
conducted in section 5, where it is shown that the bootstrap based on restricted estimates is preferred.
Remark 4.3 In practice, the cdf G∗T (·) required in step (iv) of Algorithm 1 will be unknown, but
can be approximated in the usual way through numerical simulation. This is achieved by generating
B (conditionally) independent bootstrap statistics, S∗iT :b, i = 1, 2, for b = 1, ..., B, computed as in
Algorithm 1 above. The simulated bootstrap p-value for S2T , for example, is then computed as
P̃ ∗T := B−1

∑B
b=1 I(S∗2T :b > S2T ), and is such that P̃ ∗T

a.s.→ P ∗T as B →∞. The choice of B is discussed
by, inter alia, Davidson and MacKinnon (2000). �

In Theorem 2 and Corollary 2, we now provide results which establish the asymptotic validity of our
proposed wild bootstrap fractional integration tests. For these results to hold we need to strengthen
part (ii) of Assumption V(b) as follows:
Assumption V ′ Assumption V holds with (ii) replaced by:

(ii’) τr,s := E(z2
t zt−rzt−s) is uniformly bounded for all t ≥ 1, r ≥ 0, s ≥ 0, where τr,r > 0 for all

r ≥ 0 and τr,s = 0 for r 6= s.

Remark 4.4 Assumption V ′ imposes the additional condition that τr,s = 0 for r 6= s. However,
Assumption V ′ is still slightly weaker than the corresponding conditions imposed in Robinson (1991),
Demetrescu, Kuzin and Hassler (2008), Hassler, Rodrigues and Rubia (2009) and Kew and Harris
(2009), see the remarks after Assumption V. �

Theorem 2 Let Assumptions R and V ′ hold. Then under (3.8) it holds that S∗1T
w→p (λ$

2

ω2
)1/2N(0, 1)

and S∗2T
w→p (λ$

2

ω2
)χ2

1.

Theorem 2 has the following corollary, where P ∗T denotes the (wild bootstrap) p-value associated
with any of the test statistics considered.

Corollary 2 Let the conditions of Theorem 2 be satisfied. Under the null hypothesis (3.1), P ∗T
w→

U [0, 1], i.e. a uniform distribution on [0, 1].

An immediate implication of the result in Corollary 2 is that the wild bootstrap implementations
of the one-sided score and two-sided LM tests will have correct asymptotic size in the presence of both
unconditional and conditional heteroskedasticity of the form given in Assumption V ′. Notice that
these results are trivially also seen to be true under conditional homoskedasticity since that special
case is contained within both Assumptions V and V ′. Moreover, the results in Theorem 2 also imply
immediately that, under Assumption V ′, the wild bootstrap tests will attain the same asymptotic local
power function as the size-adjusted asymptotic tests; cf. Theorem 1.

Remark 4.5 In the working paper version, Cavaliere, Nielsen, and Taylor (2013), we also analyzed
i.i.d. bootstrap implementations of the tests. As would be expected, the i.i.d. bootstrap is not able to
account for heteroskedasticity, and therefore suffers similar size distortions to the asymptotic tests. �

5 Monte Carlo Simulations

In this section we use Monte Carlo simulation methods to compare the finite sample size and power
properties of the asymptotic tests and their bootstrap implementations described above (either im-
posing the null in step (i) of Algorithm 1, or not as in Remark 4.2), for both homoskedastic and
heteroskedastic shocks. To conserve space in the tables, we present results only for the two-sided
LM statistic, S2T (results for the one-sided score test statistics are qualitatively similar). Comparison
is also made with Kew and Harris’(2009) White-corrected analogue of the LM test of Agiakloglou
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and Newbold (1994) and Breitung and Hassler (2002). Of the tests considered in Kew and Harris
(2009), this seems the most natural to compare with. This test will be referred to as the KH test in
what follows. With the exception of the results reported in Table 4, the tests are calculated assuming
knowledge of the autoregressive and moving average lag orders, p and q respectively, in (2.2).

5.1 Monte Carlo Setup

The Monte Carlo data are simulated from the model (2.1) with ARMA(1, 1) shocks (1 − aL)ut =
(1 + bL)εt, where εt = σtzt and σt, zt are defined in the subsections below. The S2T test is invariant to
d̄, but for the KH test we set d̄ = 1. Data is then generated with d0 = 1 + δ/

√
T , see (3.1) and (3.8).

We report results for T = 100 and T = 250, and under T = ∞ we also report the asymptotic
size (for δ = 0) or size-corrected local power (for δ 6= 0) calculated from (3.11) and (3.12). Note
that the simulated finite sample powers of the asymptotic S2T test and of the KH test were both
size-corrected, while those for the wild bootstrap test were not. All tests were computed at 5%
nominal size. The S2T test statistic in (3.6) was implemented using numerical derivatives. For the
wild bootstrap, we used B = 499 bootstrap replications and the i.i.d. sequence {wt} was chosen such
that P (wt = −1) = P (wt = 1) = 0.5. All simulation results were programmed in Ox version 6.3, see
Doornik (2007), using 10, 000 Monte Carlo replications. Our programs are available on request.

5.2 Results With Unconditionally Heteroskedastic, Uncorrelated Shocks

We first consider the case where the shocks do not display either weak dependence or conditional
heteroskedasticity so as to analyse the impact of unconditional heteroskedasticity alone on the tests.
Accordingly, we set a = b = 0 and simulate {zt} as an i.i.d. N(0, 1) sequence.

The unconditional variance is generated according to the following one-shift volatility process,
σ2
t = σ2

0 + (σ2
1 − σ2

0)I(t ≥ τT ), that is, an abrupt single shift in the variance from σ2
0 to σ

2
1 at time

τT , for some τ ∈ (0, 1). Without loss of generality we normalize σ2
0 = 1. We consider τ ∈ {1/4, 3/4}

and vary the ratio θ := σ1/σ0 among θ ∈ {1/3, 1, 3}. Note that θ = 1 corresponds to homoskedastic
shocks, in which case τ is irrelevant. These values of τ and θ are motivated by the so-called “great
moderation”and the recent financial crisis, as mentioned in the Introduction, suggesting a decline in
the volatility early in the sample and an increase in the volatility late in the sample, respectively.

The results for the case with conditionally homoskedastic {zt} are given in Table 1. Even in the
homoskedastic case (the rows relating to θ = 1 in Table 1), a comparison between the results for the
asymptotic S2T and KH tests and the corresponding results for the wild bootstrap implementations of
the S2T test shows that the bootstrap can deliver some improvements. For example, for T = 100 the
empirical rejection frequencies of the asymptotic S2T and KH tests are 5.87% and 5.89%, respectively,
while that of the (null) wild bootstrap test is 4.95%.

It is where heteroskedasticity is present in the shocks (the rows where θ 6= 1) that the wild bootstrap
based tests clearly display their superiority over the asymptotic S2T test. From the results in Table 1
we see that the asymptotic S2T test can be severely over-sized with this phenomenon persisting as the
sample size is increased, as predicted by the results in Theorem 1. Again as predicted by Theorem 1
the degree of over-sizing in the asymptotic S2T test worsens as λ increases. For example, in the two
cases where λ = 2.333 (see Remark 3.1 and column 4 in Table 1) the empirical rejection frequency
of these tests is about 19% regardless of the sample size. The wild bootstrap test which imposes
the null in estimating the parameters of (2.1) is clearly the best performing test in Table 1, and
significantly outperforms the bootstrap test based on unrestricted estimates. The null bootstrap test
displays excellent size control throughout; the largest entry relating to size for this test is a rejection
frequency of 5.55% which occurs for T = 100 with τ = 0.75 and θ = 3. The asymptotic KH clearly also
performs much better than the asymptotic S2T test, but nonetheless it displays larger finite sample
size distortions under heteroskedasticity throughout Table 1 than either of the two bootstrap tests.

Turning to the power of the tests, the results in Table 1 again show that the predictions from the
asymptotic theory are strongly reflected in finite samples with the size-corrected empirical power of
the asymptotic tests being lower the larger the value of λ, and that, as with the size results, these
effects do not vanish as the sample size is increased. Indeed, the size-adjusted power of the tests
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Table 1. Simulated size and power: one-time shift in unconditional volatility

size power
τ θ T λ S2T S∗,02T S∗,a2T KH S2T S∗,02T S∗,a2T KH

1 100 1 5.87 4.95 5.09 5.89 40.58 39.62 41.41 45.64
1 250 1 5.16 4.73 4.93 5.52 44.97 43.85 44.31 46.63
1 ∞ 1 5.00 5.00 5.00 5.00 48.56 48.56 48.56 48.56

1/4 1/3 100 2.333 17.78 5.28 6.73 6.86 19.46 21.06 23.29 28.11
1/4 1/3 250 2.333 18.71 4.60 5.32 5.85 22.85 21.66 22.67 25.76
1/4 1/3 ∞ 2.333 19.95 5.00 5.00 5.00 24.24 24.24 24.24 24.24
1/4 3 100 1.245 9.37 5.38 5.74 6.18 30.63 31.69 32.68 38.12
1/4 3 250 1.245 8.17 5.03 5.17 5.56 36.36 36.34 36.92 39.69
1/4 3 ∞ 1.245 7.90 5.00 5.00 5.00 40.69 40.69 40.69 40.69
3/4 1/3 100 1.245 8.36 5.21 5.66 6.05 33.50 32.98 34.33 40.80
3/4 1/3 250 1.245 8.43 5.24 5.42 5.57 34.41 35.18 35.70 40.95
3/4 1/3 ∞ 1.245 7.90 5.00 5.00 5.00 40.69 40.69 40.69 40.69
3/4 3 100 2.333 19.78 5.55 6.91 7.42 16.92 18.14 20.45 21.60
3/4 3 250 2.333 19.02 5.24 5.86 5.88 19.41 19.60 20.97 23.01
3/4 3 ∞ 2.333 19.95 5.00 5.00 5.00 24.24 24.24 24.24 24.24
Notes: S2T denotes the asymptotic LM test, S∗,02T denotes the bootstrap LM test of Algorithm 1, and S∗,a2T denotes

the alternative bootstrap test outlined in Remark 4.2, and KH denotes the asymptotic test of Kew and Harris (2009).

Entries for finite T are simulated rejection frequencies of the tests. Entries for T = ∞ are calculated from (3.11) and

(3.12). Power is measured at δ = 1.5 and is size corrected for the asymptotic and KH tests, but not size corrected for

the bootstrap tests. The bootstrap procedures are based on B = 499 bootstrap replications and all entries are based on

10, 000 Monte Carlo replications.

can be significantly lower; for example, when λ = 1 all of the tests display an empirical rejection
frequency of 40-50%, but for λ = 2.333 (size-corrected) power is roughly half this level. A notable
feature of the power results for the wild bootstrap test calculated under the null is how close these
results are to the size-adjusted power results for the asymptotic S2T test. This is of course predicted
by the large sample distribution theory in sections 3 and 4, but it is interesting to see how closely
the finite sample results adhere to this prediction. Interestingly, even though, as noted above, the
unrestricted wild bootstrap yields a test with, in general, more liberal finite sample size properties
than the corresponding restricted wild bootstrap test, it is seen from Table 1 that the power of the two
bootstrap tests differ only very slightly, suggesting that the improved finite sample size control of the
restricted bootstrap does not come at the cost of reduced power, and hence that the restricted version
should be preferred. Interestingly, the asymptotic KH test displays higher finite sample size-adjusted
power than any of the other tests throughout the experiments reported in Table 1, suggesting a useful
complementarity between the asymptotic KH test and the restricted bootstrap S2T test.

5.3 Results With Conditionally Heteroskedastic, Uncorrelated Shocks

Next, we consider models where {zt} is conditionally heteroskedastic. Specifically, we assume one of
the following models for {zt}, in each case with {et} forming an i.i.d. sequence.

Model A : εt = zt = h
1/2
t et, ht = 0.1 + 0.5z2

t−1, et ∼ N(0, 1).

Model B : εt = zt = h
1/2
t et, ht = 0.1 + 0.5z2

t−1, et ∼ (3/5)1/2t5.

Model C : εt = zt = h
1/2
t et, ht = 0.1 + 0.2z2

t−1 + 0.79ht−1, et ∼ N(0, 1).

Model D : εt = zt = h
1/2
t et, ht = 0.1 + 0.2z2

t−1 + 0.79ht−1, et ∼ (3/5)1/2t5.

Model E : εt = zt = h
1/2
t et, log ht = −0.23 + 0.9 log ht−1 + 0.25

(
e2
t−1 − 0.3et−1

)
, et ∼ N(0, 1).

Model F : εt = zt = h
1/2
t et, ht = 0.0216 + 0.6896ht−1 + 0.3174 (zt−1 − 0.1108)2 , et ∼ N(0, 1).

Model G : εt = zt = h
1/2
t et, ht = 0.005 + 0.7ht−1 + 0.28 (|zt−1| − 0.23zt−1)2 , et ∼ N(0, 1).

Model H : εt = zt = et exp(ht), ht = 0.936ht−1 + 0.5vt, (vt, et) ∼ N(0, diag(σ2
v , 1)), σv = 0.424.
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Table 2. Simulated size and power: conditionally heteroskedastic Models A-I

size power
T S2T S∗,02T S∗,a2T KH S2T S∗,02T S∗,a2T KH

Model A 100 15.77 5.30 6.75 6.55 20.81 26.47 27.74 41.14
250 17.33 5.35 6.38 5.70 21.09 25.20 25.96 40.85

Model B 100 17.87 5.17 7.40 6.28 17.50 24.20 26.74 43.10
250 22.03 5.14 7.01 5.72 13.68 22.02 24.04 42.52

Model C 100 11.31 4.93 5.59 6.61 26.85 29.43 30.64 34.19
250 15.68 4.87 5.53 5.93 21.27 25.38 26.31 29.62

Model D 100 13.51 5.18 6.35 6.11 24.22 28.33 30.09 39.84
250 17.89 4.99 5.70 5.85 18.02 24.45 25.88 38.42

Model E 100 16.93 5.39 6.78 6.97 18.64 22.96 24.31 29.73
250 21.55 5.35 6.57 6.11 15.71 20.75 22.07 25.23

Model F 100 15.85 4.96 6.06 6.86 20.41 23.69 24.72 29.71
250 22.92 5.10 6.19 6.24 14.49 19.58 20.67 23.52

Model G 100 15.12 4.88 5.89 6.36 19.59 22.88 24.07 30.09
250 21.33 5.05 5.96 5.71 13.30 18.99 20.09 22.92

Model H 100 28.41 5.14 7.71 7.42 9.54 15.27 19.16 31.79
250 38.90 5.01 7.78 5.94 6.63 11.19 14.66 28.61

Model I 100 28.06 5.52 7.88 7.91 11.39 15.34 17.63 20.16
250 31.91 5.36 7.22 6.11 10.44 14.06 15.93 21.47

Notes: See Notes for Table 1.

Model I : εt = σtzt, σt = 1 + 2I(t ≥ 3

4
T ), zt = h

1/2
t et, ht = 0.1 + 0.5z2

t−1, et ∼ N(0, 1).

The conditionally heteroskedastic configurations for {zt} specified in Models A-H are a subset of those
used in Section 4 of Gonçalves and Kilian (2004). Models A-D are standard stationary GARCH(1, 1)
models driven by either Gaussian or t-distributed shocks with unit variance, while Model E is the is
the exponential GARCH(1, 1) [EGARCH(1, 1)] model of Nelson (1991). Model F is the asymmetric
GARCH(1, 1) [AGARCH(1, 1)] model of Engle (1990), Model G is the GJR-GARCH(1, 1) model of
Glosten, Jaganathan and Runkle (1993), and Model H is a first-order autoregressive stochastic volat-
ility model. The chosen parameter values in Models A-H are based on applied work, see Section 4 of
Gonçalves and Kilian (2004), where the relation between these models and the moment conditions in
Assumptions V and V ′ is also discussed. In any case, it is of interest to investigate the finite sample
behavior of the tests under models that may not in fact satisfy the assumptions needed for the asymp-
totic theory. Finally, Model I combines conditional heteroskedasticity in {zt}, of the form specified by
Model A, together with the one-time change model for the unconditional variance considered in the
previous subsection (for the particular case of θ = 3 and τ = 0.75). The results relating to Models
A-I are presented in Table 2.

Consider first the results in Table 2 for the empirical size of the asymptotic S2T test. Here we
see that for these commonly encountered models of conditional heteroskedasticity the asymptotic S2T

test can be very badly over-sized; indeed, the degree of over-sizing is, if anything, more pronounced
than was observed in this test for the models of unconditional heteroskedasticity in Table 1. While
it was seen in Table 1 that the degree of size distortions under the single break model depends on
both the change-point location and the magnitude of the break (with these distortions being relatively
moderate for increases in variance early in the sample and decreases late in the sample), there are no
entries for size of the asymptotic S2T test in Table 2 that lie below 11%. Models H and I clearly effect
the greatest degree of over-sizing, with the empirical size under Model H approaching 40% for T = 250.
Consistent with the results in Theorem 1, it is observed that these size distortions do not disappear
as the sample size is increased; indeed, the opposite phenomenon occurs. Turning to the results for
the two wild bootstrap tests and the KH test in Table 2 we see, as with the case of unconditional
heteroskedasticity in Table 1, that all of these again do a decent job of controlling finite sample size
under all of Models A-I. As with the results in Table 1, the best performance among these is again
clearly achieved by the restricted wild bootstrap (using step (i) of Algorithm 1); no empirical sizes
are observed for the restricted wild bootstrap in Table 2 which are in excess of 5.39% or below 4.87%.
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Table 3. Simulated size: weakly dependent shocks with known (p, q)

homoskedastic case τ = 1/4 and θ = 1/3 τ = 3/4 and θ = 3

a/b T S2T S∗,02T S∗,a2T KH S2T S∗,02T S∗,a2T KH S2T S∗,02T S∗,a2T KH
Panel A: moving average shocks (a = 0)
-0.80 100 8.44 5.05 6.63 — 15.83 5.61 7.33 — 17.85 5.62 8.08 —
-0.80 250 6.83 5.00 5.26 — 18.13 5.51 6.35 — 19.88 5.28 6.51 —
-0.80 ∞ 5.00 5.00 5.00 — 19.95 5.00 5.00 — 19.95 5.00 5.00 —
0.80 100 8.71 5.38 6.63 — 15.05 5.44 6.99 — 17.88 5.72 8.13 —
0.80 250 6.89 5.24 5.49 — 18.34 5.13 6.07 — 20.67 5.02 6.35 —
0.80 ∞ 5.00 5.00 5.00 — 19.95 5.00 5.00 — 19.95 5.00 5.00 —
Panel B: autoregressive shocks (b = 0)
-0.80 100 6.67 5.08 5.39 6.09 18.53 5.43 6.74 7.53 19.80 5.41 6.52 7.82
-0.80 250 6.03 5.37 5.50 5.87 20.07 5.36 5.84 6.19 19.53 5.08 5.75 6.50
-0.80 ∞ 5.00 5.00 5.00 5.00 19.95 5.00 5.00 5.00 19.95 5.00 5.00 5.00
0.80 100 4.28 4.76 4.15 6.01 6.73 4.91 5.03 8.53 6.84 4.50 4.69 7.89
0.80 250 6.28 4.95 4.91 5.15 11.07 4.94 4.67 6.73 10.82 4.78 4.06 6.07
0.80 ∞ 5.00 5.00 5.00 5.00 19.95 5.00 5.00 5.00 19.95 5.00 5.00 5.00
Notes: See Notes for Table 1.

The unrestricted wild bootstrap and KH tests are somewhat more liberal, both displaying empirical
sizes approaching 8% in a number of cases.

Consider next the power results for the tests. As with the results in Table 1, we see from the
results in Table 2 that the size-corrected empirical power of the asymptotic S2T test is very strongly
affected by the presence of conditional heteroskedasticity in each of Models A-I, which is expected
from Theorem 1. In line with the empirical size results reported in the table we again see that this is
most pronounced for Models H and I and that these effects do not vanish (indeed they again become
more pronounced) as the sample size is increased. Again it is seen that the size-adjusted power of
the asymptotic S2T test can be significantly lower than in the homoskedastic case; for example, under
Model H the size-corrected power is barely above the nominal level. The empirical power of the
restricted wild bootstrap test now lies above the size-adjusted power results for the asymptotic S2T

test. Again there are only very slight differences between the power of the restricted and unrestricted
wild bootstrap tests. The size-corrected power of the KH test is also clearly affected by conditional
heteroskedasticity but to a lesser extent than the other tests reported. Again, as with the results in
Table 1, the KH test displays the highest size-adjusted power of all the tests throughout.

5.4 Results With Weakly Dependent Shocks

We now consider the results in Table 3 which relate to the finite sample size properties of the asymptotic
and bootstrap tests for processes driven by shocks which can display both weak dependence and
unconditional heteroskedasticity of the type considered in Table 1. We do not report results for the
KH test when an MA component is present because their test procedure assumes a finite-order AR for
the shocks. Consider first the results for the homoskedastic case, λ = 1, presented in the first block
of columns in Table 3. These results demonstrate that the asymptotic S2T test has the potential for
really quite poor finite sample size control under weak dependence; most notably, over-sizing when
an MA component is present. For example, for b = 0.8 and T = 100 the asymptotic S2T test has
empirical rejection frequency of 8.71%. In contrast, the wild bootstrap tests display very good size
control throughout, particularly so where the restricted bootstrap is used; in the above example the
corresponding restricted wild bootstrap test displays a rejection frequency of 5.38%. For the case of
AR shocks the two bootstrap methods again display superior finite sample size control to the KH test.

Turning to the results for the two heteroskedastic cases reported in Table 3, the patterns of size
distortions seen in the asymptotic S2T test are very similar to those seen for these two cases in Table 1,
with empirical sizes generally around 15-20%. This suggests that even in relatively small samples the
impact of any heteroskedasticity in the shocks largely dominates the impact of any weak dependence
present, at least for the two heteroskedastic cases reported here. In contrast, the wild bootstrap tests
reported in Table 3 do an excellent job for all the reported combinations of heteroskedasticity and
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Table 4. Simulated size: weakly dependent shocks with (p, q) chosen by BIC

homoskedastic case τ = 1/4 and θ = 1/3 τ = 3/4 and θ = 3

a/b T S2T S∗,02T S∗,a2T S2T S∗,02T S∗,a2T S2T S∗,02T S∗,a2T
Panel A: moving average shocks (a = 0)
-0.80 100 34.55 28.60 27.44 37.62 19.52 20.44 45.83 34.32 32.35
-0.80 250 14.14 8.79 8.48 25.95 14.14 13.21 29.78 21.74 19.99
-0.80 500 8.12 4.82 3.20 19.15 5.21 4.87 19.84 6.73 6.36
0.80 100 11.25 3.54 2.56 24.10 4.59 3.83 25.51 4.38 3.94
0.80 250 7.59 4.28 3.54 23.53 4.19 3.53 27.44 4.79 3.94
0.80 500 6.67 4.61 4.02 24.53 3.77 2.80 26.30 4.19 3.15
Panel B: autoregressive shocks (b = 0)
-0.80 100 10.04 4.11 3.21 24.36 4.57 4.39 27.21 4.56 4.49
-0.80 250 7.52 4.33 4.24 24.57 4.13 3.54 27.79 4.67 3.97
-0.80 500 6.40 4.37 4.07 25.37 3.88 2.91 26.53 4.08 3.11
0.80 100 40.61 36.11 35.49 36.87 26.59 25.18 48.75 39.52 37.44
0.80 250 16.66 12.35 12.26 26.63 18.61 17.81 33.33 26.23 24.86
0.80 500 7.93 4.66 2.27 18.02 7.09 6.81 19.65 8.21 8.11
Notes: See Notes for Table 1.

weak dependence; most of the empirical sizes reported for the restricted wild bootstrap test lie very
close to the nominal level, with no entry in excess of 5.72% or below 4.50%. Slightly higher distortions
on average are again seen with the unrestricted wild bootstrap test, confirming our previous recom-
mendation to use the restricted version of the bootstrap. The KH test is again not as effi cacious at
controlling finite sample size as the two bootstrap tests. Moreover, it is seen that the KH test displays
significantly poorer finite sample size control when both weak dependence and heteroskedasticity are
present, vis-à-vis when only weak dependence is present.

Finally, in Table 4 we investigate the impact of data-based model selection on the finite sample
size behaviour of the asymptotic S2T test and our two bootstrap analogues in the case where p and q
in (2.2) are not assumed known. Rather, as suggested in Remark 2.5, these are chosen (in both the
original and bootstrap data) using the BIC and choosing across p, q ∈ {0, 1, 2}. Again we do not report
results for the KH test because its finite-order AR set-up for the shocks means that we cannot make a
like-for-like comparison of model selection with these tests. Regardless of whether heteroskedasticity
is present or not, the most striking feature of these results is the large size distortions seen in all of the
tests when either a large negative MA or positive AR coeffi cient is present. As might be anticipated
this over-sizing is most pronounced for the asymptotic S2T test, where it is also observed, albeit to a
much lesser degree, for the positive MA and negative AR cases. Moreover, over-size is still seen for
T = 250 even for the bootstrap tests and so we also report results for T = 500. By T = 500 the
bootstrap tests are once again close to the nominal level in both the homoskedastic and heteroskedastic
settings, while the asymptotic S2T test is still oversized even in the homoskedastic case. Our results
parallel those of Demetrescu, Kuzin and Hassler (2008) who also find considerable finite sample size
distortions in the LM-type tests they propose and in the tests of Dolado, Gonzalo and Mayoral (2002)
and Breitung and Hassler (2002), in each case when either AIC or BIC is used to select the lag length
in an autoregressive approximating model for ARMA(1, 1) shocks with a = b = 0.5.

6 Empirical Analysis

In this section we employ the asymptotic score-based tests and their bootstrap counterparts from
sections 3 and 4 to re-assess the degree of support provided for (the weak form of) the EMH in a
number of commodity markets. By adopting the heteroskedastic ARFIMA model of section 2, along
with the novel (wild bootstrap) testing procedures outlined in section 4, we simultaneously allow for
the possibility of both fractional integration and time-varying conditional and unconditional volatility
in the data. This allows us to analyse the empirical validity or otherwise of the EMH in a more general
and empirically well-grounded model framework than those which have previously been employed in
the extant empirical literature.
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Figure 2. Graphics for gold
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Note: Left panels show time series plots of∆st, ∆ft, st−ft−1, middle panels show the residual variance
profiles, η̂(u), and right panels show the residual cusum of squares process with 95% confidence bands.

Our analysis is based on the data-set recently considered in Westerlund and Narayan (2013). This
consists of (logged) spot prices (st) and corresponding one-period futures contract prices (ft := f

(1)
t )

of four commodities: gold, silver, platinum, and crude oil. Prices are recorded at the daily frequency
(five observations per week) and cover the period July 5, 2005, to November 22, 2011. The number
of available observations is T = 1665. All data were obtained from Bloomberg; see Westerlund and
Narayan (2013) for full details and data definitions. Plots of st, ft (in first differences) and of (minus)
the forward premium (the spread) st − ft−1 are reported in the left-hand panels of Figures 2-5.

To investigate for the possible presence of heteroskedasticity in the series, we first report in the
top panel of Table 5 results for the LM test of the null hypothesis of conditional homoskedasticity
against the alternative of ARCH(k) dynamics. These tests are based on the squared residuals5 of an
ARFIMA(p, d, q) model fitted to each series (∆st, ∆ft and st − ft−1) individually.6 The AR and MA
orders p and q for the ARFIMA model are selected using the BIC, while the number of ARCH lags k
used for the LM test regression is set to either 5 (weekly frequency) or 21 (monthly frequency). For
all commodities, conditional homoskedasticity is easily rejected at any conventional significance level
for spot and futures prices and for the spread, st − ft−1.

To visualise the possible presence of non-stationary volatility (unconditional heteroskedasticity) in
the data, we plot in the central panels of Figures 2-5 the sample variance profiles of the residuals, say
ε̂t, of the fitted ARFIMA models. The sample variance profiles, see Cavaliere and Taylor (2007), are
plots of η̂ (u) := V̂T (u)/V̂T (1) against u ∈ [0, 1], where V̂T (u) := T−1

∑bTuc
t=1 ε̂2

t denotes the cumulated

5Comparable results are obtained when the test statistics are computed on the original series rather than on the
residuals.

6 In all estimations and tests here and in the remainder of the empirical analysis, we allowed for a constant term in
the model; see Remark 2.3, and in particular Robinson (1994) and Nielsen (2004). For all of the series considered, an
additional linear trend term was found to be statistically insignificant at all conventional levels.
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Figure 3. Graphics for silver
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Note: Left panels show time series plots of∆st, ∆ft, st−ft−1, middle panels show the residual variance
profiles, η̂(u), and right panels show the residual cusum of squares process with 95% confidence bands.

squared residuals. In large samples, η̂ (u) ≈ (
∫ 1

0 σ (s) ds)−1
∫ u

0 σ (s) ds =: η (u), which equals u when
the unconditional volatility is constant; that is, when there is no unconditional heteroskedasticity.
Consequently, under conditional homoskedasticity or —more generally —under stationary conditional
heteroskedasticity, V̂T (u) should be close to the 45 degree line, and significant deviations of this
function from the 45 degree line point to the presence of persistent changes in volatility.

These deviations, along with the corresponding 95% confidence bands7, are reported in the right-
hand panels of Figures 2-5. Correspondingly, in the lower panel of Table 5 we also report the associated
stationary volatility tests of Cavaliere and Taylor (2008b, pp. 311—312). With the exception of silver,
there is strong evidence of unconditional heteroskedasticity (non-stationary volatility) in all of the
commodities. This evidence is manifested, and to similar extents, in both the spot and futures prices,
as well as in the associated forward premium. Notice also that clear changes in the variance profile
with associated significant values of the cumulated sum of squared residuals are apparent (even to some
extent for silver) at around the time of the financial crisis, as might be expected. Given the strength of
these rejections it is therefore quite striking that most empirical studies (including that of Westerlund
and Narayan, 2013) are based on the maintained assumption of (un)conditional homoskedasticity.

We now turn to testing the main implications of the EMH; that is, conditions (i)—(iii) and (iv’)
discussed in section 1. As stated in condition (i), under the assumption that spot prices are I(1),
futures prices should also be I(1). We test both claims in the first two columns of Table 6, where
we present results for the LM test of the null hypothesis H0 : d = 0 for ∆st and ∆ft, respectively
(note this is equivalent to testing H0 : d = 1 in the levels). For each series, we report the (QML)

7The confidence bands are obtained as suggested by Cavaliere and Taylor (2008b) and Cheng and Phillips (2012).
This requires estimation of the long-run variance of u2t under the null hypothesis, which is done here using a sums-of-
covariances estimator with the Bartlett kernel and a lag truncation of five.
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Figure 4. Graphics for platinum
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Note: Left panels show time series plots of∆st, ∆ft, st−ft−1, middle panels show the residual variance
profiles, η̂(u), and right panels show the residual cusum of squares process with 95% confidence bands.

estimate of the fractional parameter d, the two-sided LM test statistic S2T of H0 : d = 0 , along
with the corresponding asymptotic p-values together with the wild bootstrap p-values, computed as
in Algorithm 1 using B = 9999 bootstrap replications.

For gold, silver and crude oil, the null hypothesis, H0 : d = 0, cannot be rejected at any conventional
significance level using any of the tests, with p-values all above 20% (30% using the wild bootstrap),
leading us to conclude that the spot and future prices are indeed both I(1); moreover, the lag lengths
selected by the BIC then suggests that these series both follow random walks. On the other hand,
for the data on platinum the tests lead to quite different conclusions. When using the asymptotic
test, the null hypothesis is rejected at the 1% level for both spot and futures prices. However, based
on the results from Table 5 where the hypothesis of constant (un)conditional variance is strongly
rejected for the platinum spot and futures prices, our Monte Carlo results in section 5 would suggest
that asymptotic tests for d = 0 are likely to be unreliable. This standpoint is supported by the
corresponding results for the wild bootstrap test. Specifically, when the wild bootstrap is employed,
the null hypothesis is now not rejected at the 5% level for both the spot and futures prices (p-values
are 7.9% and 5.4%, respectively). Hence, the strong heteroskedasticity characterising both spot and
futures prices for platinum might explain why the asymptotic test leads to the rejection of the I(1)
hypothesis for spot and futures prices. However, by using a test which is robust to heteroskedasticity
we are able to accept the hypotheses that both the spot and futures prices for platinum are I(1).
Overall, at least when the heteroskedasticity-robust wild bootstrap tests are employed, requirement
(i) of the EMH is seen to be consistent with the data.

We now analyse (the weak form of) the EMH, i.e. requirements (ii), (iii), and (iv’) jointly, based
on the spreads, st − ft−1, for each of the four commodities considered. For gold, the hypothesis d = 0
is easily rejected with p-values less than 1% for the asymptotic test. Using the wild bootstrap test
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Figure 5. Graphics for crude oil
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Note: Left panels show time series plots of∆st, ∆ft, st−ft−1, middle panels show the residual variance
profiles, η̂(u), and right panels show the residual cusum of squares process with 95% confidence bands.

the evidence against the null is not as strong but it can still be rejected at the 5% level. Importantly,
however, these are left-tail rejections meaning that the I(0) null is being rejected because the estimated
value of d is negative. That is, while fractional dynamics appear to exist in the forward premium for
gold, there is nonetheless significant evidence of (fractional) co-integration.

The results for the silver and platinum forward premia are qualitatively similar to one another.
For both of these commodities the estimate of d is relatively close to zero (slightly negative for silver
and slightly positive for platinum), and all reported tests do not reject the null hypothesis, H0 : d = 0,
at any conventional significance level. Again, this supports the hypothesis that spot and futures
prices are co-integrated with co-integrating vector (1,−1)′. Unlike gold, however, the results for these
two series suggest that the spread is a standard (non-fractional) I(0) process. As a result, using our
heteroskedastic fractionally integrated model we are able to conclude that all of the requirements
in (i)—(iii), as well as (iv’), of (the weak form of) the EMH are consistent with the price data for
the gold, silver and platinum markets. Our results also highlight that fractional behaviour and/or
heteroskedasticity are present in these data which may help to explain why some previous studies
have struggled to find support for the EMH in these commodities.

The picture is, however, somewhat different for the forward premium for crude oil. The point
estimate of d is 0.78 which is clearly much higher than the estimates of d obtained for the other three
commodities. Consequently, we do not present results for the hypothesis d = 0 (it is overwhelmingly
rejected in any case) and instead present results for one-sided tests of H0 : d ≤ 1/2 and H0 : d ≥ 1.
The former is a test of the null of stationarity of the spreads and the latter is a test of the null of no
(fractional) co-integration with co-integrating vector (1,−1)′. Firstly, the null hypothesis H0 : d ≥ 1
is very easily rejected by all of the tests. This result provides evidence in favour of the existence of
the (1,−1)′ co-integrating relationship between spot and futures prices. Secondly, the spread does not
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Table 5. Conditional and unconditional heteroskedasticity tests

Gold Silver
st ft st − ft−1 st ft st − ft−1

ARCH(5) 48.576a 84.805a 57.507a 72.408a 72.752a 81.799a

ARCH(21) 193.896a 150.103a 142.410a 161.138a 99.837a 168.663a

HKS 1.469b 1.345c 1.384b 0.850 1.206 1.042
HK 2.197a 2.239a 2.170a 1.337 1.402 1.455

HCvM 0.432c 0.380c 0.376c 0.173 0.327 0.241
HAD 2.837b 2.452c 2.423 0.995 1.847 1.364

Platinum Crude oil
st ft st − ft−1 st ft st − ft−1

ARCH(5) 232.795a 233.656a 228.694a 294.233a 307.836a 257.533a

ARCH(21) 322.834a 338.595a 341.414a 441.169a 454.992a 440.536a

HKS 1.633b 1.871a 1.809a 1.767a 1.965a 2.037a

HK 2.897a 3.046a 3.010a 3.031a 3.292a 3.278a

HCvM 0.837a 0.931a 0.910a 0.972a 1.135a 1.090a

HAD 5.357a 5.981a 5.826a 6.445a 7.560a 7.350a

Notes: ARCH(k) denotes the LM test for ARCH(k) based on a AR(k) regression fitted to the squared residuals, and

HKS , HK , HCvM and HAD denote the stationary volatility tests proposed in Cavaliere and Taylor (2008b, pp. 311—312).
The superscripts a,b and c denote significance at the 1%, 5% and 10% nominal (asymptotic) levels, respectively.

appear to be I(0), as noted above, but rather the spread appears to be fractionally integrated. Indeed,
stationarity of the spread, H0 : d ≤ 1/2, is strongly rejected by the asymptotic test and by both
bootstrap tests. As a result, the statistical evidence for oil suggests the existence of co-integration
in the spread, but that the associated linear combination (1,−1)′, does not decrease the order of
integration suffi ciently to render the spread stationary. That is, the EMH, even in its weaker form
(iv’), does not appear to hold in the case of the crude oil market. This result is not at odds with recent
empirical evidence that underlines the ineffi ciency of the futures crude oil market, see, for example,
the discussions on this point in Narayan, Huson and Narayan (2012) and Westerlund and Narayan
(2013). However, it is worth noting that these authors, using the more restrictive I(0)/I(1) paradigm,
reject the hypothesis that the oil spread constitutes a co-integrated relationship.

We complete our empirical analysis by considering a brief examination of the time (in)stability
of the results obtained for the four spreads. This is mainly motivated by the recent financial crisis.
Westerlund and Narayan (2013) also investigate the stability of their results across the crisis by
splitting the sample into two sub-samples at September 12, 2008. Rather than split the data at an
arbitrary time point in this way, we choose instead to repeat our full sample anaysis reported above
across rolling subsamples of the data. To that end, in Figure 6 we report rolling subsample estimates
of d for the four spreads. These are obtained using a rolling window of length approximately equal to
one year (each estimate is based on 260 consecutive observations), where estimates are updated on a
weekly basis (every five observations). The AR and MA orders of the baseline ARFIMA models are
those obtained by BIC on the full sample, see Table 6. Overall, the estimates of d are seen to be fairly
stable over the selected period. These fluctuate around 0 for gold, silver and platinum, and around 0.8
for crude oil. For the latter, the estimate of d increases slightly when the rolling window starts after
the third quarter of 2009, which may be a reflection of some instability due to the financial crisis.

In Figure 7 we report the associated rolling subsample p-values for the tests of H0 : d = 0 against
H1 : d 6= 0. Again, the results are pretty much in line with what was reported for the full sample
above. The wild bootstrap p-values associated with the subsample tests for silver and platinum almost
never fall below 5%, while for gold, the subsample wild bootstrap p-values for d = 0 fall below 5%
for a significant fraction of the rolling windows considered (but as with the full sample results this
is due to anti-persistence in the gold spread, see the first panel of Figure 6). Finally, the p-values
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Table 6. Application to unbiasedness hypothesis in commodity futures markets

∆st ∆ft st − ft−1
Panel A: gold
ARMA order (p, q) (0, 0) (0, 0) (0, 1)
Estimate of d −0.025 −0.004 −0.084
Hypothesis tests H0 : d = 0 H0 : d = 0 H0 : d = 0
Test statistic S2T = 1.523 S2T = 0.033 S2T = 8.897
p-value, asymptotic 21.7% 85.6% 0.3%
p-value, wild bootstrap 30.1% 89.1% 2.4%
Panel B: silver
ARMA order (p, q) (0, 0) (0, 0) (0, 1)
Estimate of d −0.018 −0.005 −0.017
Hypothesis tests H0 : d = 0 H0 : d = 0 H0 : d = 0
Test statistic S2T = 0.858 S2T = 0.071 S2T = 0.338
p-value, asymptotic 35.4% 79.0% 56.1%
p-value, wild bootstrap 56.3% 86.0% 68.8%
Panel C: platinum
ARMA order (p, q) (0, 0) (0, 0) (0, 1)
Estimate of d 0.054 0.057 0.038
Hypothesis tests H0 : d = 0 H0 : d = 0 H0 : d = 0
Test statistic S2T = 7.786 S2T = 8.281 S2T = 2.248
p-value, asymptotic 0.5% 0.4% 13.4%
p-value, wild bootstrap 7.9% 5.4% 28.7%
Panel D: crude oil
ARMA order (p, q) (0, 0) (0, 0) (0, 1)
Estimate of d −0.014 −0.029 0.780
Hypothesis tests H0 : d = 0 H0 : d = 0 H0 : d ≤ 1/2 H0 : d ≥ 1
Test statistic S2T = 0.645 S2T = 2.466 S1T = 6.361 S1T = −16.05
p-value, asymptotic 42.2% 11.6% 0.0% 0.0%
p-value, wild bootstrap 56.0% 32.2% 0.0% 0.1%
Notes: The table shows point estimates of d, LM test statistics, and corresponding asymptotic and wild bootstrap p-

values. For each of the four commodities we analyze: (i) spot returns, ∆st, (ii) futures returns, ∆ft, (iii) spread, st−ft−1.
The ARMA orders are chosen based on the BIC. Bootstrap p-values are based on B = 9999 bootstrap replications.

for the sub-sample rolling tests on the crude oil spread lie well below 5% throughout the sample. To
summarise, the rolling sample results suggest firstly that the acceptance of (the weak form of) the
EMH for gold, silver and platinum prices is robust as to whether the data sample used includes the
recent financial crisis period or not, and secondly that the failure to accept the EMH for the case of
crude oil cannot simply be attributed to the financial crisis.

7 Conclusions

In this paper we have proposed wild bootstrap implementations of the asymptotic score (one-sided)
and LM (two-sided) tests for the order of integration of a fractionally integrated time series. The
wild bootstrap was shown to yield tests which are robust to both conditional and unconditional
heteroskedasticity of quite general and unknown forms in the shocks. This property was shown not to
be shared by the asymptotic tests.

A simulation study highlighted both the potential for severe size distortions with the standard
asymptotic LM test in the presence of heteroskedastic shocks and the excellent job done by the wild
bootstrap test in controlling finite sample sizes in these cases. Moreover, the bootstrap test was also
shown to deliver considerably more reliable finite sample inference than the asymptotic LM test in the
homoskedastic case, particularly so where weak dependence was present in the shocks. The simulation
study also compared the finite sample properties of using a bootstrap algorithm where the bootstrap
sample data were generated using model estimates obtained under the null hypothesis (restricted) with
one where they were estimated unrestrictedly. The former was shown to deliver tests with considerably
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Figure 6. Rolling window estimates of d for spreads
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Note: The figure shows estimates of d for rolling windows of length 260.

more robust finite sample size properties whilst at the same time not sacrificing finite sample power to
the latter under the alternative. We also compared our proposed tests with the White standard error
corrected implementation of the LM test of Agiakoglu and Newbold (1994) and Breitung and Hassler
(2002), developed in Kew and Harris (2009). The bootstrap tests were seen to display significantly
better finite sample size control than the Kew and Harris (2009) test but to have lower finite sample
(size-adjusted) power, suggesting a useful complementarity between the two approaches.

We applied our new bootstrap tests to investigate the price dynamics in four commodity spot
and futures markets: gold, silver, platinum and crude oil. Using daily trading data for the period
2005—2011, we found that when fractional integration together with conditional and/or unconditional
heteroskedasticity of very general forms are allowed, the evidence in favour of co-integration in the
spread between spot and futures prices for these commodities is markedly stronger than had been found
in previous work based on more restrictive (usually) homoskedastic I(0)/I(1) models; see Figuera-
Ferretti and Gonzalo (2010), Westerlund and Narayan (2013), and reference therein. Moreover, (the
weak form of) the effi cient market hypothesis is accepted for all markets but oil. Our results were
also little altered by whether the data samples used included the recent financial crisis or not, further
illustrating the robustness of our proposed tests to large volatility breaks.

We conclude with a topic for further research suggested by an anonymous referee. An alternative
approach to the bootstrap tests suggested in this paper would be to attempt to use non-parametric
methods to estimate the nuisance parameters λ, ω, and $ arising from the heteroskedasticity and
weak dependence in the data, and to then use these estimates to non-parameterically correct the LM
and score statistics in order to obtain asymptotically pivotal inference. Moreover, bootstrap (using
either i.i.d. or wild re-sampling) tests could also be developed based on these statistics which would
be expected to improve their finite-sample properties. It would be interesting to develop such tests
and to compare them with the tests considered in this paper.
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Figure 7. Rolling window tests of H0 : d = 0 for spreads
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Notes: The figure shows asymptotic, i.i.d. bootstrap, and wild bootstrap p-values of two-tailed tests of
H0 : d = 0 for rolling windows of length 260. The bootstrap tests are based on B = 999 replications.

A Appendix

Recall that ξj = (−j−1, c′j)
′, where cj decays exponentially under Assumption R. This implies the

bound ||ξj || ≤ Kj−1 for some K <∞, which we use throughout the proofs without special reference.

A.1 Proof of Theorem 1

We begin with a proof of consistency of the maximum likelihood estimator under the null given in
(3.4). This is somewhat more delicate than usual because of the presence of the parameter d̄, which
is not equal to, but local to, the true value, d0.

Lemma A.1 Define r(ψ) := limT→∞ET
−1
∑T

t=1(c (L,ψ) c (L,ψ0)−1 εt)
2 and let the assumptions of

Theorem 1 be satisfied. Then

sup
ψ∈Ψ

∣∣∣∣∣T−1
T∑
t=1

ε̂t
(
d̄, ψ

)2 − r(ψ)

∣∣∣∣∣ p→ 0 as T →∞, (A.1)

inf
ψ∈Ψ∩{ψ:||ψ−ψ0||≥ε}

r(ψ) > r(ψ0) for all ε > 0. (A.2)

It follows that ψ̃ is consistent, i.e., ψ̃
p→ ψ0 as T →∞.

Proof. Consistency of ψ̃ follows from (A.1) and (A.2) by Theorem 5.7 of van der Vaart (1998). Let
et(ψ) := c (L,ψ) c (L,ψ0)−1 εt =:

∑∞
n=0 ϕn(ψ)εt−n, where ϕ0(ψ) = 1 and ϕn(ψ) decays exponentially

for all ψ under Assumption R. We can thus assume, for example, that |ϕn(ψ)| ≤ Kn−1 for all ψ ∈ Ψ,
but also that

∑∞
n=0 |ϕn(ψ)| <∞, and we shall use both in this proof.
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To show (A.2) first note that

T−1
T∑
t=1

E(et(ψ)2) = T−1
T∑
t=1

∞∑
n=0

ϕn(ψ)2σ2
t−n

= T−1
T∑
t=1

σ2
t

∞∑
n=0

ϕn(ψ)2 + T−1
T∑
t=1

∞∑
n=0

ϕn(ψ)2(σ2
t−n − σ2

t ).

As in the proof of Lemma A.3 of CNT, let qT = bTχc for some χ ∈ (0, 1). Then the last term is
bounded as

T−1
T∑
t=1

∞∑
n=0

ϕn(θ)2(σ2
t−n − σ2

t ) ≤
qT∑
n=0

ϕn(θ)2T−1
T∑
t=1

|σ2
t−n − σ2

t | (A.3)

+

∞∑
n=qT+1

ϕn(θ)2T−1
T∑
t=1

|σ2
t−n − σ2

t |. (A.4)

Because supn=1,...,qT T
−1
∑T

t=1 |σ2
t−n − σ2

t | → 0 by Lemma A.1 in Cavaliere and Taylor (2009) and∑qT
n=0 ϕn(θ)2 ≤

∑∞
n=0 ϕn(θ)2 <∞ for all ψ ∈ Ψ, it holds that |(A.3)| → 0. Next, by Assumption V(a)

we have supt σ
2
t ≤M <∞ such that supt T

−1
∑T

t=1 |σ2
t−n−σ2

t | ≤ 2M , and by Assumption R we have∑∞
n=qT+1 ϕn(θ)2 → 0 for all ψ ∈ Ψ (because it is the tail of a convergent sum). Therefore |(A.4)| → 0,

showing that T−1
∑T

t=1E(e2
t ) = T−1

∑T
t=1 σ

2
t

∑∞
n=0 ϕn(ψ)2 + o(1). Since T−1

∑T
t=1 σ

2
t →

∫ 1
0 σ(s)2ds

by Assumption V(a) and the continuous mapping theorem, we have r(ψ) =
∫ 1

0 σ(s)2ds
∑∞

n=0 ϕn(ψ)2.
Under Assumption R, ϕ0(ψ) = 1 for all ψ and

∑∞
n=0 ϕn(ψ)2 = 1 +

∑∞
n=1 ϕn(ψ)2 ≥ 1 with equality if

and only if ψ = ψ0, which proves (A.2).
To show the result in (A.1) note, by the mean value theorem that, ε̂t

(
d̄, ψ

)
= ∆d̄−d0

+ et(ψ) = et(ψ)

+ δ√
T

∑t−1
m=1m

−1et−m(ψ)(1+op(1)), where the op(1) term is uniform in t and ignored in the (pointwise)
proof of convergence. Thus,

T−1
T∑
t=1

ε̂t
(
d̄, ψ

)2 − T−1
T∑
t=1

E(et(ψ)2) = T−1
T∑
t=1

(
et(ψ)2 − T−1

T∑
s=1

E(es(ψ)2)

)
(A.5)

+ 2T−1
T∑
t=1

et(ψ)2 δ√
T

t−1∑
m=1

m−1et−m(ψ)2 (A.6)

+ T−1
T∑
t=1

δ2

T

t−1∑
m=1

m−1et−m(ψ)2
t−1∑
j=1

j−1et−j(ψ)2. (A.7)

First write (A.6) as
∑∞

n=0 ϕn(ψ) δ√
T

∑T−1
m=1m

−1
∑∞

k=0 ϕk(ψ)T−1
∑T

t=m+1 εt−nεt−m−k and note that

T−1
∑T

t=m+1 εt−nεt−m−k = Op(1) under Assumption V. Then,

(A.6) = Op

( ∞∑
n=0

|ϕn(ψ)|
)2

δ√
T

T−1∑
m=1

m−1

 = Op(T
−1/2(log T ))

since
∑∞

n=0 |ϕn(ψ)| <∞ for all ψ ∈ Ψ under Assumption R. The same argument shows that (A.7) =
Op(T

−1(log T )2). Next, (A.5) clearly has mean zero. The second moment is

E

(
T−1

T∑
t=1

et(ψ)2 − ET−1
T∑
s=1

es(ψ)2

)2

= T−2
T∑

t,s=1

E(et(ψ)2es(ψ)2)− T−2
T∑

t,s=1

E(et(ψ)2)E(es(ψ)2)

= T−2
T∑

t,s=1

∞∑
n1,n2=0

∞∑
m1,m2=0

(
2∏
i=1

ϕni(ψ)ϕmi(ψ)σt−niσs−mi

)
× (E(zt−n1zt−n2zs−m1zs−m2)− E(zt−n1zt−n2)E(zs−m1zs−m2)) ,
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where the expectations are zero unless the two highest subscripts are equal, see Lemma A.2 of CNT.
By symmetry, we only need to consider three cases.

Case 1) t−n1 = t−n2 = s−m1 = s−m2: In this case the expectations and the σt’s are uniformly
bounded using Assumption V and we find the contributionKT−2

∑T
t=1

(∑∞
n=0 ϕn(ψ)2

)2 ≤ KT−1 → 0,
because |ϕn(ψ)| ≤ Kn−1 for all ψ ∈ Ψ under Assumption R.

Case 2) t− n1 = t− n2 > s−m1 ≥ s−m2: The contribution is bounded by (a constant times)

T−2
T∑

t,s=1

∞∑
n=0

∞∑
m1=max(0,s−t+n+1)

∞∑
m2=m1

ϕn(ψ)2|ϕm1(ψ)||ϕm2(ψ)||κ4(t− n, t− n, s−m1, s−m2)|

= T−2
T∑

t≤s=1

∞∑
n=0

∞∑
m1=s−t+n+1

∞∑
m2=m1

ϕn(ψ)2|ϕm1(ψ)||ϕm2(ψ)||κ4(t− n, t− n, s−m1, s−m2)| (A.8)

+ T−2
T∑

t>s=1

∞∑
n=t−s

∞∑
m1=s−t+n+1

∞∑
m2=m1

ϕn(ψ)2|ϕm1(ψ)||ϕm2(ψ)||κ4(t− n, t− n, s−m1, s−m2)| (A.9)

+ T−2
T∑

t>s=1

t−s−1∑
n=0

∞∑
m1=0

∞∑
m2=m1

ϕn(ψ)2|ϕm1(ψ)||ϕm2(ψ)||κ4(t− n, t− n, s−m1, s−m2)| (A.10)

For (A.8) we note that |ϕm1(ψ)| ≤ Km−1
1 ≤ K(s − t + 1)−1 such that

∑T
s=t |ϕm1(ψ)| ≤ K(log T )

showing that |(A.8)| = O(T−1(log T )) because the summations over m1,m2 of κ4(·) are bounded
using Assumption V(b)(iii) and the summation over n of ϕn(ψ)2 is bounded using Assumption R.
For (A.9) we note that |ϕm1(ψ)| ≤ Km−1

1 ≤ K(s − t + n)−1 such that
∑∞

n=t−s ϕn(ψ)2|ϕm1(ψ)| ≤
K
∑∞

n=1 n
−1(t − s + n)−1 ≤ K(t − s)−1+η for some η ∈ (0, 1). Since the summations over m1,m2 of

κ4(·) are bounded using Assumption V(b)(iii), this shows that |(A.9)| = O(T η−1). Finally, we obtain

|(A.10)| ≤ KT−2
T∑

t>s=1

t−s−1∑
n=0

ϕn(ψ)2
∞∑

m1=0

∞∑
m2=m1

|κ4(t− n, t− n, s−m1, s−m2)|

= KT−2
T∑
t=2

√
t∑

s=1

t−s−1∑
n=0

ϕn(ψ)2
∞∑

m1=0

∞∑
m2=m1

|κ4(t− n, t− n, s−m1, s−m2)|

+KT−2
T∑
t=2

t−1∑
s=
√
t+1

t−s−1∑
n=0

ϕn(ψ)2
∞∑

m1=0

∞∑
m2=m1

|κ4(t− n, t− n, s−m1, s−m2)|,

where the first term is O(T−1/2) and the second term is o(1) because
∑∞

m1=0

∑∞
m2=m1

|κ4(t − n, t −
n, s−m1, s−m2)| is the tail of the convergent sum

∑∞
m1=n+s−t

∑∞
m2=m1

|κ4(t−n, t−n, s−m1, s−m2)|
when t− s ≥ t−

√
t− 1→∞, see Assumption V(b)(iii).

Case 3) t− n1 = s−m1 > t− n2 ≥ s−m2: The contribution is

T−2
T∑

t,s=1

∞∑
n1=max(0,t−s)

∞∑
n2=n1+1

∞∑
m=s−t+n2

ϕn1(ψ)ϕn2(ψ)ϕs−t+n1(ψ)ϕm(ψ)

× σ2
t−n1σt−n2σs−mκ4(t− n1, t− n1, t− n2, s−m)

≤ KT−2
T∑

t,s=1

∞∑
n1=max(0,t−s)

n−1
1 (s− t+ n1)−1

≤ KT−2
T∑

t≤s=1

∞∑
n1=0

n−1+η
1 (s− t+ n1)−1−η +KT−2

T∑
t≥s=1

∞∑
n1=t−s

n−1−η
1 (s− t+ n1)−1+η

≤ KT−2
T∑

t≤s=1

(s− t)−η +KT−2
T∑

t≥s=1

(t− s)−η ≤ KT−η → 0

for some η ∈ (0, 1), where the first inequality is by Assumptions V(a),(b)(iii) and R. This shows that
the convergence in (A.1) holds pointwise for all ψ ∈ Ψ.
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The pointwise convergence in probability thus established can be strengthened to uniform conver-
gence in probability by showing that T−1

∑T
t=1 ε̂t (d, ψ)2 is stochastically equicontinuous (or tight).

From Newey (1991, Corollary 2.2) this holds if the derivative is dominated, uniformly in (d, ψ), by a
random variableBT = Op(1). From Lemma C.3 of CNT it holds thatBT = sup | ∂∂γT

−1
∑T

t=1 ε̂t (d, ψ)2 |
= Op(1), where the supremum is taken over (d, ψ) ∈ {(d, ψ) : d−d0 ≥ −1/2+c, ψ ∈ Ψ} for some small
c > 0 such that u1 = u2 = d− d0 ≥ −1/2 + c and a = 2c > 0. This shows that T−1

∑T
t=1 ε̂t (d, ψ)2 is

stochastically equicontinuous (on a fixed set) and hence that the convergence holds uniformly.

Let Υ0, Ξ0 and ξ0,j denote Υ, Ξ and ξj , respectively, evaluated at the true value γ0.

Lemma A.2 Let Assumptions R and V be satisfied. Then,
√
T
∂σ̂2 (d, ψ)

∂γ

∣∣∣∣
γ=γ0

w→ N(0, 4Υ0

∫ 1

0
σ4(s)ds), (A.11)

∂2σ̂2 (d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ̌

p→ 2Ξ0

∫ 1

0
σ2(s)ds for any γ̌

p→ γ0. (A.12)

Proof. The first and second derivatives of (3.3) are
√
T ∂σ̂2(d,ψ)

∂γ = 2T−1
∑T

t=1 ε̂t (d, ψ)
∑t−1

j=1 ξj ε̂t−j (d, ψ)
and

∂2σ̂2 (d, ψ)

∂γ∂γ′
= 2T−1

T∑
t=1

t−1∑
j=1

ξj ε̂t−j (d, ψ)

t−1∑
k=1

ξ′kε̂t−k (d, ψ)+2T−1
T∑
t=1

ε̂t (d, ψ)

t−2∑
j=1

t−j−1∑
k=1

ξjξ
′
kε̂t−j−k (d, ψ) .

The second derivative is tight (stochastically equicontinuous) by Newey (1991, Corollary 2.2) if its
derivative is dominated uniformly in (d, ψ) by a random variable BT = Op(1). From Lemma C.3 of
CNT this is satisfied uniformly in any small neighborhood of (d0, ψ0), see also Nielsen (2013), showing
that the second derivative is tight in this neighborhood. This result, together with γ̌

p→ γ0, implies by
Lemma A.3 of Johansen and Nielsen (2012) that the second derivative can be evaluated at the true

value, i.e., ∂2σ̂2(d,ψ)
∂γ∂γ′

∣∣∣
γ=γ̌

p→ ∂2σ̂2(d,ψ)
∂γ∂γ′

∣∣∣
γ=γ0

. The second derivative, evaluated at the true value, is

∂2σ̂2 (d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ0

= 2T−1
T∑
t=1

t−1∑
j,k=1

ξ0,jξ
′
0,kεt−jεt−k + 2T−1

T∑
t=1

εt

t−2∑
j=1

t−j−1∑
k=1

ξ0,jξ
′
0,kεt−j−k. (A.13)

The first term on the right-hand side has mean 2T−1
∑T

t=1

∑t−1
j,k=1 ξ0,jξ

′
0,kσt−jσt−kE(zt−jzt−k) =

2T−1
∑T

t=1

∑t−1
j=1 ξ0,jξ

′
0,jσ

2
t−j → 2Ξ0

∫ 1
0 σ

2(s)ds, by Assumption V(b)(i) and Lemma A.2 of CNT. The
variance of the (m,n)’th element is

4T−2
T∑

t,s=1

s−1∑
i,j=1

t−1∑
k,l=1

(ξ0,i)m(ξ0,j)n(ξ0,k)m(ξ0,l)nσs−iσs−jσt−kσt−l

× [E(zs−izs−jzt−kzt−l)− E(zs−izs−j)E(zt−kzt−l)]

≤ KT−2
T∑
t=1

T∑
s=t

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1 |E(zs−izs−jzt−kzt−l)− E(zs−izs−j)E(zt−kzt−l)| ,

which converges to zero by exactly the argument for (A.5) in the proof of Lemma A.1. Thus, the first
term on the right-hand side of (A.13) converges in L2-norm, and hence in probability, to 2Ξ0

∫ 1
0 σ

2(s)ds.
The (m,n)’th element of the second term on the right-hand side of (A.13) has second moment

4T−2
T∑
t=1

σ2
tE

z2
t

 t−2∑
j=1

t−j−1∑
k=1

(ξ0,j)m(ξ0,k)nσt−j−kzt−j−k

2
≤ KT−2

T∑
t=1

 t−1∑
j=1

j−1

4

≤ KT−1(log T )4 → 0,
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using Assumptions V(a) and V(b)(ii), so that the second term on the right-hand side of (A.13) con-
verges to zero in L2-norm, and hence in probability, which proves (A.12).

The first derivative, evaluated at the true value, is
√
T ∂σ̂2(d,ψ)

∂γ

∣∣∣
γ=γ0

= 2√
T

∑T
t=1 εt

∑t−1
j=1 ξ0,jεt−j =∑T

t=1 xTt, where xTt := 2T−1/2εt
∑t−1

j=1 ξ0,jεt−j = 2T−1/2σtzt
∑t−1

j=1 ξ0,jσt−jzt−j is a martingale dif-
ference sequence with respect to the natural filtration Ft, the sigma-field generated by {zs}s≤t, see
Assumption V(b). To apply the central limit theorem, we first verify the Lindeberg condition via
Lyapunov’s suffi cient condition that

∑T
t=1E||xTt||2+ε → 0 for some ε > 0. Thus,

E||xTt||2+ε = E

(2T−1/2)2+ε|σtzt|2+ε||
t−1∑
j=1

ξ0,jσt−jzt−j ||2+ε

 ≤ KT−1−ε/2E

|zt|2+ε(

t−1∑
j=1

j−1|zt−j |)2+ε


by AssumptionsR and V(a). FromMinkowski’s inequality we find the bound E(

∑t−1
j=1 |zt|j−1|zt−j |)2+ε ≤

(
∑t−1

j=1(E(|zt|j−1|zt−j |)2+ε)1/(2+ε))2+ε such that E||xTt||2+ε is bounded by

KT−1−ε/2

 t−1∑
j=1

(
E(|zt|j−1|zt−j |)2+ε

)1/(2+ε)

2+ε

≤ KT−1−ε/2

 t−1∑
j=1

j−1

2+ε

≤ KT−1−ε/2(log T )2+ε,

where the first inequality is due to Assumption V(b)(iii) provided ε is chosen as 2ε+ 4 ≤ 8. Therefore,
T∑
t=1

E||xTt||2+ε ≤ KT−ε/2(log T )2+ε → 0. (A.14)

The sum of squares of xTt is equal to

4T−1
T∑
t=1

σ2
t z

2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−kzt−jzt−k

= 4T−1
T∑
t=1

σ2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−kE(z2

t zt−jzt−k) (A.15)

+ 4T−1
T∑
t=1

σ2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−k(z

2
t zt−jzt−k − E(z2

t zt−jzt−k)). (A.16)

By Lemma A.3 of CNT, (A.15) is

4T−1
T∑
t=1

σ4
t

t−1∑
j,k=1

ξ0,jξ
′
0,kτjk(1 + o(1))

= 4T−1
T∑
t=1

σ4
t

T−1∑
j,k=1

ξ0,jξ
′
0,kτjk(1 + o(1))− 4T−1

T∑
t=1

σ4
t

T−1∑
j,k=t

ξ0,jξ
′
0,kτjk(1 + o(1)),

where the first term converges to 4Υ0

∫ 1
0 σ

4(s)ds. The second term is bounded byKT−1
∑T

t=1

∑T−1
j,k=t j

−1k−1τjk

≤ KT−1
∑T

t=1 t
−2
∑T−1

j,k=t τjk, which converges to zero by Assumption V(b)(iii).
The second moment of the (m,n)’th element of (A.16) is

16T−2
T∑

t,s=1

σ2
t σ

2
s

s−1∑
i,j=1

t−1∑
k,l=1

(ξ0,i)m(ξ0,j)n(ξ0,k)m(ξ0,l)nσs−iσs−jσt−kσt−lCov(z2
t zt−kzt−l, z

2
szs−izs−j)

≤ KT−2
T∑

t,s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1|Cov(z2
t zt−kzt−l, z

2
szs−izs−j)|

= KT−2
T∑
t=1

t−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1|Cov(z2
t zt−izt−j , z

2
t zt−kzt−l)| (A.17)

+KT−2
T∑
t=2

t−1∑
s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1|Cov(z2
t zt−kzt−l, z

2
szs−izs−j)|. (A.18)
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For (A.17) we find the simple bound, KT−2
∑T

t=1

(∑t−1
k=1 k

−1
)4
≤ KT−1(log T )4 → 0, because zt has

finite eighth order moments by Assumption V(b)(iii). The covariance in (A.18) is a combination of
the cumulants of zt up to order eight. For the eighth order cumulant we find

T−2
T∑
t=2

t−1∑
s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1|κ8(t, t, t− k, t− l, s, s, s− i, s− j)| ≤ KT−1 → 0

by Assumption V(b)(iii). There are no seventh order cumulants in (A.18) because they would be
multiplied by a first order cumulant, which is zero. For products of sixth and second order cumulants
we find, for example,

T−2
T∑
t=2

t−1∑
s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1κ2(t− k, t− l)|κ6(t, t, s, s, s− i, s− j)|

= T−2
T∑
t=2

 t−1∑
s=1

s−1∑
i,j=1

i−1j−1|κ6(t, t, s, s, s− i, s− j)|

( t−1∑
k=1

k−2κ2(t− k, t− k)

)
≤ KT−1 → 0

by Assumption V(b)(iii). Another example is

T−2
T∑
t=2

t−1∑
s=1

s−1∑
i,j=1

t−1∑
k,l=1

i−1j−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− i, s− j)|

≤ KT−2
T∑
t=2

t−1∑
s=1

∑
1≤j≤i≤s−1

∑
1≤l≤k≤t−1

i−1j−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− i, s− j)|

≤ KT−2
T∑
t=2

t−1∑
s=1

∑
1≤j≤i≤s−1

∑
t−s≤l≤k≤t−1

i−1j−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− i, s− j)|

+KT−2
T∑
t=2

∑
1≤l≤k≤t−1

t−l−1∑
s=1

∑
1≤j≤i≤s−1

i−1j−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− i, s− j)|

≤ KT−2
T−1∑
s=1

T∑
t=s+1

∑
1≤j≤i≤s−1

∑
t−s≤l≤k≤t−1

i−1j−1k−1l−1|κ6(s, s, t− k, t− l, s− i, s− j)|

+KT−2
T∑
t=2

t−1∑
k=1

t−l−1∑
s=1

∑
1≤j≤i≤s−1

i−1j−1k−2|κ6(t− k, t− k, s, s, s− i, s− j)|

using Lemma A.2 of CNT. The second term is clearly O(T−1) by Assumption V(b)(iii) and the first
term is

T−2
T−1∑
s=1

T∑
t=s+1

∑
1≤j≤i≤s−1

∑
t−s≤l≤k≤t−1

i−1j−1k−1l−1|κ6(s, s, t− k, t− l, s− i, s− j)|

= T−2
T−1∑
s=1

T∑
t=s+1

∑
1≤j≤i≤s−1

∑
0≤u≤v≤s−1

i−1j−1(v − s+ t)−1(u− s+ t)−1|κ6(s, s, s− v, s− u, s− i, s− j)|

≤ T−2
T−1∑
s=1

∑
1≤j≤i≤s−1

∑
0≤u≤v≤s−1

i−1j−1|κ6(s, s, s− v, s− u, s− i, s− j)|
(

T∑
t=s+1

(t− s)−2

)
,

which is also O(T−1) using Assumption V(b)(iii). The remaining products of sixth and second order
cumulants, as well as products of lower order cumulants, are treated similarly.

It follows that the sum of squares of xTt satisfies

4T−1
T∑
t=1

σ2
t z

2
t

t−1∑
j,k=1

ξ0,jξ
′
0,kσt−jσt−kzt−jzt−k

p→ 4Υ0

∫ 1

0
σ4(s)ds. (A.19)
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Now (A.11) follows by the martingale central limit theorem of McLeish (1974), see his Theorem 2.3
and the comments in the two paragraphs following it.

By consistency of the estimator of γ under the null, i.e. γ̃ = (d̄, ψ̃′)′, see Lemma A.1, we have the
following expansion of the likelihood (with subscripts denoting the relevant blocks of the derivatives),

DTd(γ̃) = DTd(γ0) +HTdψ(γ̌)(ψ̃ − ψ0) +HTdd(γ̌)(d̄− d0),

0 = DTψ(γ̃) = DTψ(γ0) +HTψψ(γ̌)(ψ̃ − ψ0) +HTψd(γ̌)(d̄− d0),

where γ̌ denotes an intermediate point between γ̃ and γ0 (different for each row of the Hessian, although
this is not important for the subsequent analysis). Using (3.8), this implies, in particular, that

ψ̃ − ψ0 = −HTψψ(γ̌)−1DTψ(γ0)−HTψψ(γ̌)−1HTψd(γ̌)δT−1/2 (A.20)

and thus

T−1/2DTd(γ̃) = [1,−HTdψ(γ̌)HTψψ(γ̌)−1]T−1/2DT (γ0)

+ T−1
(
HTdd(γ̌)−HTdψ(γ̌)HTψψ(γ̌)−1HTψd(γ̌)

)
δ. (A.21)

Here we note that, by Lemma A.2 combined with σ̂2 (d0, ψ0) = T−1
∑T

t=1 ε
2
t

p→
∫ 1

0 σ(s)2ds, we

have T−1/2DT (γ0)
w→ N(0,Υ0λ) and T−1HT (γ̌)

p→ −Ξ0 as T → ∞. Thus, by the partitioned matrix
inverse formula, T−1/2DTd(γ̃)

w→ [1,−(Ξ0)dψ(Ξ0)−1
ψψ]N(0,Υ0λ)− (Ξ−1

0 )−1
dd δ, and

S1T = T−1/2DTd(γ̃)
√
−TH−1

T (γ̃)11
w→
√

(Ξ−1
0 )dd[1,−(Ξ0)dψ(Ξ0)−1

ψψ]N(0,Υ0λ)− (Ξ−1
0 )
−1/2
dd δ,

which shows (3.9) because (Ξ−1
0 )dd[1,−(Ξ0)dψ(Ξ0)−1

ψψ]Υ0[1,−(Ξ0)dψ(Ξ0)−1
ψψ]′ = (Ξ−1

0 Υ0Ξ−1
0 )dd(Ξ

−1
0 )−1

dd =
$2

ω2
, by another application of the partitioned matrix inverse formula. (3.10) then follows immediately.

A.2 Proof of Theorem 2

Throughout, we use P ∗ and E∗, respectively, to denote the probability and expectation conditional on
the realization of the original sample. Moreover, for a given sequence X∗T computed on the bootstrap

data, with the notations X∗T = o∗p (1), in probability, and X∗T
p∗→ X, in probability, we mean that

P ∗ (|X∗T | > ε)→ 0 in probability and P ∗(|X∗T −X|) > ε)→ 0 in probability, respectively, for any ε > 0
as T →∞. We first present a lemma with the asymptotic distribution of the restricted estimator.

Lemma A.3 Let Assumptions R and V be satisfied and let ψ̃ denote the restricted estimator (3.4)
obtained under (3.1). Then

√
T (ψ̃ − ψ0)

w→ N(−Φ−1
0 κ0δ, λΦ−1

0 Λ0Φ−1
0 ), where Λ0 corresponds to Λ :=∑∞

j,k=1 cjc
′
kτj,k evaluated at the true value γ0.

Proof. Consistency was shown in Lemma A.1 and the asymptotic distribution follows from (A.20)
combined with Lemma A.2.

We next present versions of Lemmas A.1 and A.2 for the bootstrap data. The bootstrap objective
function is σ̂2

∗(d, ψ) := T−1
∑T

t=1 ε̂
∗
t (d, ψ)2, where ε̂∗t (d, ψ) := c(L,ψ)∆d

+y
∗
t and y

∗
t is defined in (4.1).

Lemma A.4 Let Assumptions R and V be satisfied and let γ∗0 denote the bootstrap true value; i.e.,
γ∗0 := (d̄, ψ̃′)′. Let the estimator of ψ for the bootstrap data be given by ψ̃∗ := arg minψ∈Ψ σ̂

2
∗(d̄, ψ).

Then ψ̃∗ − ψ̃ p∗→ 0, in probability, and therefore (d̄, ψ̃∗′)′ − γ∗0
p∗→ 0, in probability.

Proof. The result follows by standard arguments if it is shown that

sup
ψ∈Ψ

∣∣σ̂2
∗(d̄, ψ)− σ̂2(d̄, ψ)

∣∣ p∗→ 0, in probability. (A.22)

We give the pointwise proof and note that this can be extended to uniform convergence by a similar
argument to that in the proof of (A.1).
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Define r∗(ψ) := E∗σ̂2
∗(d̄, ψ) = E∗T−1

∑T
t=1 ε̂

∗
t

(
d̄, ψ

)2. We then show (A.22) (pointwise) by showing∣∣σ̂2
∗(d̄, ψ)− r∗(ψ)

∣∣ p∗→ 0, in probability, (A.23)∣∣σ̂2(d̄, ψ)− r∗(ψ)
∣∣ p→ 0. (A.24)

Let c (z, ψ) c(z, ψ̃)−1 =:
∑∞

n=0 ϕ̃n(ψ)zn, where the coeffi cients ϕ̃n(ψ) are exponentially declining under
Assumption R. Conditionally on the original data, ε∗t = ε̃c,twt is an independent sequence, see
Algorithm 1(ii), so that ε̂∗t

(
d̄, ψ

)
= c(L,ψ)c(L, ψ̃)−1ε∗t =

∑t−1
n=0 ϕ̃n(ψ)ε∗t−n is a linear process with

independent innovations and exponentially declining coeffi cients. Because, conditionally on the data,
the fourth moments of ε∗t are bounded uniformly in t by Assumption V and the properties of wt, the
law of large numbers implies that (A.23) holds pointwise for all ψ ∈ Ψ.

Since, conditionally on the data, ε∗t is uncorrelated and E∗ε∗2t = ε̃2
c,t, we have that r

∗(ψ) =

T−1
∑T

t=1

∑t−1
n=0 ϕ̃n(ψ)2ε̃2

c,t−n. Also, ε̂t(d̄, ψ) = et(ψ) + δT−1/2
∑t−1

m=1m
−1et−m(ψ)(1 + op(1)), where

the op(1) term is uniform in t,m and can be ignored, and thus the left-hand side of (A.24) is

σ̂2(d̄, ψ)− r∗(ψ) = T−1
T∑
t=1

t−1∑
n=0

(
ϕn(ψ)2ε2

t−n − ϕ̃n(ψ)2ε̃2
c,t−n

)
+ T−1

T∑
t=1

∞∑
n=t

ϕn(ψ)2ε2
t−n

+ T−1
T∑
t=1

δ2

T

t−1∑
m=1

t−1∑
n=1

m−1n−1et−m(ψ)et−n(ψ) + 2T−1
T∑
t=1

δ

T 1/2

t−1∑
m=1

m−1et−m(ψ)et(ψ).

The last three terms are easily shown to be op(1) by L1-convergence using that E|ε2
t−n|, E|et−m(ψ)et−n(ψ)|,

and E|et−m(ψ)et(ψ)| are bounded for all ψ ∈ Ψ. For the first term we use ε̃c,t = ε̂t(d̄, ψ̃) −
T−1

∑T
t=1 ε̂t(d̄, ψ̃), and by L1-convergence the contributions of all the terms in ε̃2

c,t−n to σ̂
2(d̄, ψ) −

r∗(ψ) are easily shown to be op(1), except that involving et−n(ψ̃)2, which leaves σ̂2(d̄, ψ) − r∗(ψ) =

T−1
∑T

t=1

∑t−1
n=0(ϕn(ψ)2ε2

t−n − ϕ̃n(ψ)2et−n(ψ̃)2) + op(1). This term can be shown to be op(1) using
standard methods since it does not depend on the bootstrap data and only the weak dependence
parameter ψ is now involved (and not d), and this concludes the proof.

Lemma A.5 Let Assumptions R and V be satisfied and let γ∗0 denote the bootstrap true value; i.e.,
γ∗0 := (d̄, ψ̃′)′. Then, defining Υ†0 :=

∑∞
j=1 ξ0,jξ

′
0,jτj,j,

√
T
∂σ̂2
∗ (d, ψ)

∂γ

∣∣∣∣
γ=γ∗0

w→p N(0, 4Υ†0

∫ 1

0
σ4(s)ds), (A.25)

∂2σ̂2
∗ (d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ̌

p∗→ 2Ξ0

∫ 1

0
σ2(s)ds, in probability, for any γ̌ such that γ̌ − γ∗0

p∗→ 0, in probability.

(A.26)

Proof. As in Lemma A.2 it holds that
√
T ∂σ̂2∗(d,ψ)

∂γ = 2T−1
∑T

t=1 ε̂
∗
t (d, ψ)

∑t−1
j=1 ξj ε̂

∗
t−j (d, ψ) and

∂2σ̂2
∗(d, ψ)

∂γ∂γ′
= 2T−1

T∑
t=1

t−1∑
j=1

ξj ε̂
∗
t−j (d, ψ)

t−1∑
k=1

ξ′kε̂
∗
t−k (d, ψ)+2T−1

T∑
t=1

ε̂∗t (d, ψ)

t−2∑
j=1

t−j−1∑
k=1

ξjξ
′
kε̂
∗
t−j−k (d, ψ) .

We first provide the proof for the weak convergence in (A.25). We have that
√
T ∂σ̂2∗(d,ψ)

∂γ

∣∣∣
γ=γ∗0

=

2√
T

∑T
t=1 ε

∗
t

∑t−1
j=1 ξ̃jε

∗
t−j , where ξ̃j denotes ξj evaluated at (d̄, ψ̃′)′. Conditional on the original data,

x∗Tt := 2T−1/2ε∗t
∑t−1

j=1 ξ̃jε
∗
t−j is a martingale difference array with respect to the filtration F∗t , i.e. the

sigma-field generated by {ε∗t , . . . , ε∗1}. First we find the probability limit of
∑T

t=1 x
∗2
Tt and then we

show that the Lindeberg condition is satisfied.
The sum of squares of x∗Tt is

4T−1
T∑
t=1

ε∗2t

t−1∑
j,k=1

ξ̃j ξ̃
′
kε
∗
t−jε

∗
t−k = 4T−1

T∑
t=1

ε∗2t

t−1∑
j=1

ξ̃j ξ̃
′
jε
∗2
t−j (A.27)

+ 4T−1
T∑
t=1

ε∗2t

t−1∑
j=1

t−1∑
k=1,k 6=j

ξ̃j ξ̃
′
kε
∗
t−jε

∗
t−k =: A∗1T +A∗2T ,
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where we now show that A∗1T
p∗→ 4Υ†0

∫ 1
0 σ (s)4 ds and A∗2T

p∗→ 0, in probability, respectively. Recall
that ε∗t := ε̃c,twt such that, under the wild bootstrap probability measure, we have that E∗

(
ε∗2t
)

=

ε̃2
c,t =

(
ε̃t − ε̃T

)2
, where ε̃T := T−1

∑T
t=1 ε̃t and ε̃t := ε̂t(d̄, ψ̃) denotes the restricted residuals.

Consider A∗1T first. By setting η
∗
t := ε̃2

c,t

(
w2
t − 1

)
we can rearrange A∗1T as

A∗1T = 4T−1
T∑
t=1

ε̃2
c,t

t−1∑
j=1

ξ̃j ξ̃
′
j ε̃

2
c,t−j + 4T−1

T∑
t=1

ε̃2
c,t

t−1∑
j=1

ξ̃j ξ̃
′
jη
∗
t−j + 4T−1

T∑
t=1

η∗t

t−1∑
j=1

ξ̃j ξ̃
′
jε
∗2
t−j . (A.28)

We first examine the first term of (A.28). By the mean value theorem, ε̃t = ε̂t(d̄, ψ̃) = ∆d̄
+c(L, ψ̃)yt =

εt+(γ̃−γ0)′
∑t−1

m=1 ξ̃mεt−m(1+op(1)), where the op(1) term is uniform in t and ignored in the following.
From Lemma A.3 and because E|εt| <∞ uniformly in t, (γ̃ − γ0)′

∑t−1
m=1 ξ̃mεt−m = Op(T

−1/2(log T ))
and ε̃T = Op(T

−1/2(log T )) uniformly in t. Then ε̃t − ε̃T = εt + atT , where atT = Op(T
−1/2(log T ))

uniformly in t, so the first term of A∗1T is

T−1
T∑
t=1

(εt + atT )2
t−1∑
j=1

ξ̃j ξ̃
′
j (εt−j + at−j,T )2 − T−1

T∑
t=1

ε2
t

t−1∑
j=1

ξ̃j ξ̃
′
jε

2
t−j

= T−1
T∑
t=1

ε2
t

t−1∑
j=1

ξ̃j ξ̃
′
j

(
a2
t−j,T + 2εt−jat−j,T

)
+ T−1

T∑
t=1

(
a2
tT + 2εtatT

) t−1∑
j=1

ξ̃j ξ̃
′
jε

2
t−j

+ T−1
T∑
t=1

(
a2
tT + 2εtatT

) t−1∑
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)
,

where each of the three terms on the right-hand side converge to zero in L1-norm. Then, by
Lemma A.3 and the delta method, T−1

∑T
t=1 ε

2
t

∑t−1
j=1 ξ̃j ξ̃

′
jε

2
t−j = T−1

∑T
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2
t
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′
0,jε

2
t−j+op(1),

so that we are left with 4T−1
∑T

t=1 ε
2
t

∑t−1
j=1 ξ0,jξ

′
0,jε

2
t−j = 4T−1
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2
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2
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′
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2
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p→
4Υ†0

∫ 1
0 σ

4(s)ds, following the same arguments as in the proof of (A.19).
Next, recalling that η∗t := ε̃2

c,t

(
w2
t − 1

)
, the (m,n)’th element of the second term of (A.28) is given

by 4T−1
∑T

t=1 ε̃
2
c,t

∑t−1
j=1(ξ̃j)m(ξ̃j)nη

∗
t−j = 4T−1
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∑T−t
j=1 (ξ̃j)m(ξ̃j)nε̃

2
c,t+j . Conditional on the

data and with ζ4 := E((w2
t−1)2), the second moment of this term is 16ζ4T
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t=1 ε̃4
c,t(
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j=1 (ξ̃j)m(ξ̃j)nε̃
2
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2

L1→ 0, under the 8th-order moment condition implied by Assumption V(b)(iii). Thus, the second term
of (A.28) is o∗p (1), in probability. Similarly, conditional on the data, the second moment of the (m,n)’th

element of the third term of (A.28) is 16ζ4T
−2
∑T

t=2 ε̃
4
c,t

∑t−1
j,k=1E(w2
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L1→ 0, such that third term of (A.28) is o∗p (1), in probability. Hence A∗1T
p∗→ 4Υ†0

∫ 1
0 σ (s)4 ds, in prob-

ability
Next, consider A∗2T = 4T−1

∑T−1
t=1

∑T−1
s=1,s 6=twtwsat,s, where at,s :=

∑T
j=max(t,s)+1 ε̃

2
c,j ξ̃j−tξ̃

′
j−sε̃c,tε̃c,s

depends only on the original data. Thus, conditional on the original data, A∗2T is zero mean and
the variance of its (m,n)’th element is E∗((A∗2T )2

m,n) = 16T−2
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s=1,s 6=tE(w2

t )E(w2
s)(at,s)

2
m,n =

16T−2
∑T−1

t=1

∑T−1
s=1,s 6=t(at,s)

2
m,n. As above, apart from op(1) terms, at,s =
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and we therefore examine T−2
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with expected absolute value bounded by KT−2
∑T−1

t=1

∑T−1
s=t+1
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s=t+1(log T )2(s − t)−2 ≤ K(log T )2T−1, using ||ξ0,j || ≤ Kj−1 for all

j ≥ 1, so that A∗2T converges to zero in L1-norm, and thus in probability.
For the Lindeberg condition we verify Lyapunov’s suffi cient condition. Conditional on the original

data and for any arbitrary conforming vector ν,
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where the first equality is because the ε∗t are independent conditional on the original data. By exactly
the same methods as applied in the analysis of the sum of squares of x∗Tt above, the L1-norm of
the right-hand side is bounded by KT−2

∑T
t=1(

∑t−1
j=1(ν ′ξ̃j)2)2 = O(T−1) under the 8th-order moment

condition in Assumption V(b)(iii), so that the right-hand side converges to zero in probability. Thus,
the Lindeberg condition is satisfied, which completes the proof of (A.25).

We finally show (A.26). By the same argument as in the proof of (A.12) in Lemma A.2, the second
derivative can be evaluated at the bootstrap true value, γ∗0 . Thus,

∂2σ̂2
∗(d, ψ)

∂γ∂γ′

∣∣∣∣
γ=γ∗0

= 2T−1
T∑
t=1

t−1∑
j,k=1

ξ̃j ξ̃
′
kε
∗
t−jε

∗
t−k + 2T−1

T∑
t=1

ε∗t

t−2∑
j=1

t−j−1∑
k=1

ξ̃j ξ̃
′
kε
∗
t−j−k =: B∗1T +B∗2T .

First, by the same reasoning used for (A.27), B∗1T
p∗→ 2Ξ0

∫ 1
0 σ

2(s)ds, in probability. Second, also by
the same reasoning as applied above, ε∗t

∑t−2
j=1

∑t−j−1
k=1 ξ̃j ξ̃

′
kε
∗
t−j−k is a martingale difference sequence

with respect to F∗t , and B∗2T is therefore o∗p(1), in probability, because of the normalization by T−1.

In view of Lemmas A.4 and A.5, the proof of the theorem is completed as in the proof of Theorem
1. We note that, under Assumption V ′, Υ0 =

∑∞
j=1 ξ0,jξ

′
0,jτj,j = Υ†0.

A.3 Proof of Corollary 2

Theorem 2 implies that, uniformly in probability, G∗T (·) → F1

( ·
λ$2ω−2 , 0

)
, with F1 as defined in

section 3. This implies that, under the null hypothesis, P ∗T converges weakly to U [0, 1], see Hansen
(2000, proof of Theorem 5).

References
Agiakloglou, C. and P. Newbold (1994), Lagrange multiplier tests for fractional difference, Journal

of Time Series Analysis 15, 253—262.
Baillie, R.T. and T. Bollerslev (1994), The long memory of the forward premium, Journal of Inter-

national Money and Finance 13, 565—571.
Baillie, R.T. and T. Bollerslev (2000), The forward premium anomaly is not as bad as you think,

Journal of International Money and Finance 19, 471—488.
Baillie, R.T., C.-F. Chung and M.A. Tieslau (1996), Analyzing inflation by the fractionally integrated

ARFIMA-GARCH model, Journal of Applied Econometrics 11, 23—40.
Breitung, J. and U. Hassler (2002), Inference on the cointegration rank in fractionally integrated

processes, Journal of Econometrics 110, 167—185.
Cavaliere, G., M.Ø. Nielsen and A.M.R. Taylor (2013), Bootstrap score tests for fractional integration

in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot
and futures markets, QED working paper 1309, Queen’s University.

Cavaliere, G., M.Ø. Nielsen and A.M.R. Taylor (2014), Quasi-maximum likelihood estimation of
heteroskedastic fractional time series models, QED working paper 1324, Queen’s University.

Cavaliere, G., A. Rahbek and A.M.R. Taylor (2014), Bootstrap determination of the co-integration
rank in heteroskedastic VAR models, Econometric Reviews 33, 606—650.

Cavaliere, G. and A.M.R. Taylor (2007), Testing for unit roots in time series models with non-
stationary volatility, Journal of Econometrics 140, 919—947.

Cavaliere, G. and A.M.R. Taylor (2008a), Bootstrap unit root tests for time series with non-stationary
volatility, Econometric Theory 24, 43—71.

Cavaliere, G. and A.M.R. Taylor (2008b), Time-change unit root tests for time series with non-
stationary volatility, Journal of Time Series Analysis 29, 300—330.

Cavaliere, G. and A.M.R. Taylor (2009), Heteroskedastic time series with a unit root, Econometric
Theory 25, 1228—1270.

32



Cheng, X. and P.C.B. Phillips (2012), Cointegrating rank selection in models with time-varying
variance, Journal of Econometrics 169, 155—165.

Davidson, R. and E. Flachaire (2008), The wild bootstrap, tamed at last, Journal of Econometrics
146, 162—169.

Davidson, R. and J. MacKinnon (2000), Bootstrap tests: how many bootstraps? Econometric Re-
views 19, 55—68.

Demetrescu, M., V. Kuzin and U. Hassler (2008), Long memory testing in the time domain, Econo-
metric Theory 24, 176—215.

Dolado, J.J., J. Gonzalo and L. Mayoral (2002), A fractional Dickey-Fuller test for unit roots, Eco-
nometrica 70, 1963—2006.

Doornik, J.A. (2007), Object-Oriented Matrix Programming Using Ox, 3rd ed., London: Timberlake
Consultants Press.

Engle, R.F. (1990), Discussion: stock market volatility and the crash of ’87, Review of Financial
Studies 3, 103—106.

Figuerola-Ferretti, I. and J. Gonzalo (2010), Modelling and measuring price discovery in commodity
markets, Journal of Econometrics 158, 95—107.

Gil-Alana, L.A. and P.M. Robinson (1997), Testing of unit root and other non-stationary hypotheses
in macroeconomic time series, Journal of Econometrics 80, 241—268.

Glosten, L.R., R. Jaganathan and D.E. Runkle (1993), On the relation between the expected value
and the volatility of nominal excess returns on stocks, Journal of Finance 48, 1779—1801.

Gonçalves, S. and L. Kilian (2004), Bootstrapping autoregressions with conditional heteroskedasticity
of unknown form, Journal of Econometrics 123, 89-120.

Hannan, E.J. (1973), The asymptotic theory of linear time-series models, Journal of Applied Prob-
ability 10, 130—145.

Hansen, B.E. (2000), Sample splitting and threshold estimation, Econometrica 68, 575—603.
Hassler, U., P.M.M. Rodrigues and A. Rubia (2009), Testing for general fractional integration in the

time domain, Econometric Theory 25, 1793—1828.
Johansen, S. and M.Ø. Nielsen (2010), Likelihood inference for a nonstationary fractional autore-

gressive model, Journal of Econometrics 158, 51—66.
Johansen, S. and M.Ø. Nielsen (2012), Likelihood inference for a fractionally cointegrated vector

autoregressive model, Econometrica 80, 2667—2732.
Johansen, S. and M.Ø. Nielsen (2014), The role of initial values in nonstationary fractional time

series models, QED working paper 1300, Queen’s University.
Kew, H. and D. Harris (2009), Heteroskedasticity-robust testing for a fractional unit root, Econo-

metric Theory 25, 1734—1753.
Lehmann, E.L. and J.P. Romano (2005), Testing Statistical Hypotheses, third edition, New York:

Springer.
Ling, S. (2003), Adaptive estimators and tests of stationary and nonstationary short- and long-

memory ARFIMA-GARCH models, Journal of the American Statistical Association 98, 955—
967.

Ling, S. and W.K. Li (1997), On fractionally integrated autoregressive moving-average time series
models with conditional heteroscedasticity, Journal of the American Statistical Association 92,
1184—1194.

Lobato, I.N. and C. Velasco (2006), Optimal fractional Dickey-Fuller tests, Econometrics Journal 9,
492—510.

Lobato, I.N. and C. Velasco (2007), Effi cient Wald tests for fractional unit roots, Econometrica 75,
575—589.

Loretan, M. and P.C.B. Phillips (1994), Testing the covariance stationarity of heavy-tailed time series:
an overview of the theory with applications to several financial datasets, Journal of Empirical
Finance 1, 211—248.

Luo, G.Y. (1998), Market effi ciency and natural selection in a commodity futures market, Review of
Financial Studies 11, 647—674.

33



Mammen, E. (1993), Bootstrap and wild bootstrap for high dimensional linear models, Annals of
Statistics 21, 255—285.

Maynard, A. and P.C.B. Phillips (2001), Rethinking an old empirical puzzle: econometric evidence
on the forward discount anomaly, Journal of Applied Econometrics 16, 671—708.

McLeish, D.L. (1974), Dependent central limit theorems and invariance principles, Annals of Prob-
ability 2, 620—628.

Narayan, P.K., A.A. Huson, and S. Narayan (2012), Do momentum-based trading strategies work in
commodity markets. Working paper, Deakin University.

Nelson, D.B. (1991), Conditional heteroskedasticity in asset returns: a new approach, Econometrica
59, 347—369.

Newey, W.K. (1991), Uniform convergence in probability and stochastic equicontinuity, Econometrica
59, 1161—1167.

Nielsen, M.Ø. (2004), Effi cient likelihood inference in nonstationary univariate models, Econometric
Theory 20, 116—146.

Robinson, P.M. (1991), Testing for strong serial correlation and dynamic conditional heteroskedasti-
city in multiple regression, Journal of Econometrics 47, 67—84.

Robinson, P.M. (1994), Effi cient tests of nonstationary hypotheses, Journal of the American Statist-
ical Association 89, 1420—1437.

Tanaka, K. (1999), The nonstationary fractional unit root, Econometric Theory 15, 549—582.
Sensier, M. and D. van Dijk (2004), Testing for volatility changes in U.S. macroeconomic time series,

Review of Economics and Statistics 86, 833—839.
Sin, C.-Y. and H. White (1996), Information criteria for selecting possibly misspecified parametric

models, Journal of Econometrics 71, 207—225.
Stock, J.H. and M.W. Watson (1999), A comparison of linear and nonlinear univariate models for

forecasting macroeconomic time series, in R.F. Engle and H. White (eds.), Cointegration, Caus-
ality and Forecasting: A Festschrift in Honour of Clive W.J. Granger, Oxford: Oxford University
Press, 1—44.

van der Vaart, A.W. (1998), Asymptotic Statistics, Cambridge: Cambridge University Press.
Westerlund, J. and P. Narayan (2013), Testing the effi cient market hypothesis in conditionally het-

eroskedastic futures markets, Journal of Futures Markets 33, 1024—1045.
White, H. (1980), A heteroskedasticity-consistent covariance matrix estimator and a direct test for

heteroskedasticity, Econometrica 48, 817—838.

34


