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Abstract: A novel scheme to perform the fusion of multiple images using the multivariate
empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion
techniques make a priori assumptions regarding input data, whereas standard univariate
empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode
mixing and mode misalignment issues, characterized respectively by either a single intrinsic
mode function (IMF) containing multiple scales or the same indexed IMFs corresponding
to multiple input images carrying different frequency information. We show that MEMD
overcomes these problems by being fully data adaptive and by aligning common frequency
scales from multiple channels, thus enabling their comparison at a pixel level and subsequent
fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on
a large dataset of real-world multi-exposure and multi-focus images and compare the results
against those obtained from standard fusion algorithms, including the principal component
analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform
(NCT). A variety of image fusion quality measures are employed for the objective evaluation
of the proposed method. We also report the results of a hypothesis testing approach on our
large image dataset to identify statistically-significant performance differences.
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1. Introduction

Image fusion refers to combining multiple images to produce a single output image that carries
the salient features of all fused images. Fusion techniques are particularly relevant in cases where
limitations of optical sensors and imaging conditions make it difficult to capture complete detail in a
single image [1]. For example, lenses typically have a limited depth of field and cannot focus on two
objects placed at different focal lengths [2]. Similarly, for naturally illuminated scenes, the information
content in an image depends on the orientation of the light source relative to that of the object of interest;
shadows may also cause loss of information [3].

To overcome these impediments, multiple images containing partial information about a scene can be
fused to reconstruct its complete information. Image fusion techniques either work in the (I) spatial
domain; or in the (II) frequency domain. Spatial domain fusion methods work directly with image
(pixels) intensity values. The key steps involved are: (1) the generation of a quantitative map of
the information content for each image; (2) comparison of information content at the pixel level;
(3) assigning weights to individual pixels (or a set of pixels) based on information content; and
(4) weighted recombination to obtain a fused image. An example of the spatial domain fusion method
is given in [4], in which the intensity level of the output (fused) pixels are computed from a weighted
sum of intensities of corresponding pixels in input images. In [5], input (to-be-fused) images are divided
into uniform blocks after which image portions containing the highest contrast are selected in the fused
image. Iterative fusion techniques are also popular and obtain an initial estimate of the fused image and
then iteratively improve that estimate via spatial domain fusion [6].

Principal component analysis (PCA) offers another avenue to perform spatial domain fusion of
multiple images by converting the correlated input images into a set of uncorrelated components. Fusion
is achieved by weighted averaging of the components of the images to be fused; the weights for each
input image are computed from the eigenvector corresponding to the largest eigenvalue of the covariance
matrix of each source image [7]. In [8], pyramid decomposition and the pixel-level fusion were followed
by a kernel-based PCA method to obtain the fused image. Similarly, in [9], a higher order singular
value decomposition (HOSVD)-based fusion approach was presented. Moreover, neural network-based
evolutionary approaches for non-linear parametric identification have been proposed for data fusion [10].

Transform domain fusion techniques, on the other hand, operate by converting input images into their
equivalent transform domain coefficients, assigning weights to the coefficients based on information
content, selecting the relevant coefficients and finally taking the inverse transform transform [11]. Typical
examples are the methods based on Gaussian pyramids [12], fast Fourier transform (FFT) [13], discrete
cosine transform (DCT) [14], discrete wavelet transform (DWT) [15], dual tree complex wavelet
transform [16], non-subsampled contourlet transform (NCT) [17–19] and shearlet transform [20].
Specifically, in relation to the DWT-based fusion, steerable filters were used in [21] to obtain the wavelet
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decomposition of the constituent images, and the coefficients carrying the highest energy were selected in
the fused image. Morphological operations were performed in [22], in addition to the wavelet transform,
to obtain the fused image. In [23], the problem of single image dehazing is addressed via a Laplacian
pyramid-based multi-scale approach, while wavelet packets, operating in both the spatial, as well as the
transform domain, were used in [24]. In [25], undecimated wavelet transform along with nonorthogonal
filter banks were utilised in a multi-scale fusion approach.

While standard transform domain fusion methods have been shown to perform well in many
applications, their static filter banks (with fixed cut-off frequencies) and predefined basis functions
are the main hurdles in performing the fusion of matched spatial frequency content between multiple
input images. These a priori assumptions on input images may introduce artefacts in the resulting
decompositions, which can affect fusion. Recently, empirical mode decomposition (EMD) has been
proposed as a solution to the above problems owing to its data-driven nature [26], as it decomposes
input data into a set of intrinsic oscillatory components, known as intrinsic mode functions (IMFs), and
in the process, makes no a priori assumptions regarding the input data. As a result, EMD has found
applications in a variety of areas ranging from image fusion [27] to biomedical engineering [28].

EMD in its original formulation can only handle single channel data, meaning that to be able to
use it for image fusion, multiple input images must be decomposed separately [29]. This poses certain
problems due to the empirical nature of the univariate EMD, yielding: (1) a different number of extracted
IMFs for different input images; and (2) misaligned scales from different input images in the final
decomposition. This adversely hinders the fusion process, which requires the sets of IMFs from input
images to be matched in terms of their frequency content. To that end, complex/bivariate extensions of
EMD have been employed for the fusion of two images [30]. The scheme could be seen as hybrid in
that it performs fusion at the level of individual pixels, but on multi-scale components obtained through
the bivariate extensions of EMD. However, a fully generic EMD-based algorithm capable of fusing an
arbitrary number of images is still lacking. Furthermore, the robustness of the available EMD-based
fusion schemes has not thus far been verified on a large database of images and by employing a variety
of established spatial and spectral quantitative measures.

In this paper, we present a multi-scale fusion algorithm in order to combine any number of input
images using the multivariate empirical mode decomposition (MEMD) algorithm, a generic extension
of EMD to multivariate data [31]. MEMD operates directly in multidimensional spaces where the input
signal resides, thereby making it a viable choice for the fusion process by avoiding problems, such as
mode misalignment and mode mixing encountered in standard EMD. We demonstrate the potential of
the proposed scheme by performing fusion and subsequent evaluation on a significantly large database
of multi-focus and multi-exposure images. We further compare the results of the proposed method with
those obtained from the standard fusion algorithms based on the PCA, DWT and NCT by employing a
wide range of image fusion performance measures. Finally, a hypothesis-testing approach is utilised to
identify statistically-significant performance differences between different fusion methods.

The paper is organised as follows: Section 2 introduces the empirical mode decomposition algorithm
and its multivariate extensions. Section 3 presents the idea and justification of performing image
fusion via MEMD. Section 4 presents the proposed algorithm, whereas the experimental results and
corresponding analysis are given in Section 5, followed by the conclusions in Section 6. In this paper,



Sensors 2015, 15 10926

we have covered fusion techniques applicable to both multi-focus and multi-exposure images. Classes of
specialised algorithms for each application are also available in practise [2,3], but are not discussed here.

2. Empirical Mode Decomposition and Its Multivariate Extension

Empirical mode decomposition (EMD) is a data-driven method that decomposes an arbitrary signal
x(k) into a set of multiple oscillatory components, called the intrinsic mode functions (IMFs). The IMFs
represent the intrinsic temporal modes (scales) that are present in the input data [26]. The IMFs when
added together reproduce the input x(k), as shown in Equation (1) below; the residual r(k) does not
contain any oscillations and represents a trend within the signal.

x(k) =
M∑
m=1

cm(k) + r(k) (1)

The M IMFs {cm}Mm=1 are extracted from x(k) by means of an iterative algorithm known as the
sifting algorithm, described in Algorithm 1. The method operates by computing the local mean of x(k)
by taking averages of the upper and lower envelopes of x(k); these envelopes are obtained by the spline
interpolation of extrema (minima and maxima). The local mean, considered as being a slowly oscillating
(low frequency) component, is then subtracted from x(k) to yield a “high-frequency” component. This
process is iteratively repeated till the resulting “high-frequency” component obeys one of the stopping
criteria of IMF.

The choice of a stopping criterion is important, as over-sifting results in IMFs with uniform amplitude
modulations, whereas under-sifted IMFs do not satisfy the mono-component criteria. A typical stopping
criterion in EMD stops the sifting after the number of extrema and zero crossings are either zero or differ
at most by one for S consecutive iterations, where 3 ≤ S ≤ 6.

Algorithm 1 The sifting algorithm for empirical mode decomposition (EMD).

1: Find the locations of all the extrema of x(k);
2: Interpolate (via spline interpolation) between all of the minima (respectively maxima) to obtain the

signal envelope passing through the minima, emin(k) (resp. emax(k));
3: Calculate the local mean m(k) =

(
emin(k) + emax(k)

)
/2;

4: Subtract the local mean from the signal to obtain the ‘oscillating’ signal d(k) = x(k)−m(k);
5: If the resulting signal d(k) obeys the stopping criterion, it becomes the first IMF; otherwise, set

x(k) = d(k) and repeat the process from Step 1 until the first IMF is obtained.

2.1. Multivariate EMD

The multivariate empirical mode decomposition (MEMD) algorithm (The free MATLAB code to
compute MEMD decompositions, along with some natural multivariate data sets, is available online [32])
extends the standard EMD operation to signals containing multiple input channels [31]. The rationale
behind MEMD is to decompose a multivariate signal in terms of high- and low-frequency rotational
components in n-dimensional spaces nD. Therefore, unlike univariate EMD, which handled oscillations,
the emphasis here is on extracting the “rotational components” within input data. The algorithm is
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useful, since natural multivariate data typically contain rotational modes that require a joint treatment for
their meaningful study. Standard univariate EMD algorithms may not yield satisfactory results on such
datasets as this approach suffers from: (1) non-uniformity, resulting in a different number of IMFs for
different channels; (2) mode mixing, characterised either by an IMF carrying data of different scales or
a single scale present in more than one IMF; and (3) mode misalignment, resulting in different modes in
the same indexed IMFs from different channels. The above issues pose some major challenges in a more
widespread use of EMD in data and image fusion applications [27].

To address the above problems, various extensions of EMD for multivariate data have been proposed,
which operate by projecting an input signal in V uniformly-spaced directions on a unit p-sphere.
The corresponding envelopes for each direction are then obtained by interpolating the extrema of the
projected signals via component-wise spline interpolation. The resulting envelopes are averaged to
obtain the local mean. Similarly to the univariate EMD operation, the local mean is finally subtracted
from the input to yield a high-frequency rotational component, and this process is repeated till the
resulting component fulfils one of the chosen stopping criteria of an IMF. This way, multiple rotational
components (IMFs) are obtained via MEMD.

Specifically, let us consider a sequence of p-dimensional vectors s(t) = {s1(t), s2(t), . . . , sp(t)},
representing a multivariate signal with p components and xθv = {xv1, xv2, . . . , xvp} denoting a set of
v = 1, 2, . . . , V direction vectors along the directions given by angles θv = {θv1 , θv2 , . . . θvp−1} in Rp,
then the multivariate extension of EMD suitable for operating on general non-linear and nonstationary
multivariate time series is summarised in Algorithm 2.

Algorithm 2 Multivariate EMD.

1: Choose a suitable point set for sampling a (p− 1)-sphere;
2: Calculate a projection, denoted by qθv(t), of the input signal s(t) along the direction vector xθv , for

all v (the whole set of direction vectors), giving qθv(t)
V
v=1 as the set of projections;

3: Find the time instants {tiθv}
V
v=1 corresponding to the maxima of the set of projected signals qθv(t)Vv=1;

4: Interpolate [tiθv , s(t
i
θv
)] to obtain multivariate envelope curves eθv(t)Vv=1;

5: For a set of V direction vectors, the mean m(t) of the envelope curves is calculated as:

m(t) =
1

V

V∑
v=1

eθv(t) (2)

6: Extract ‘detail’ d(t) using d(t) = s(t) − m(t). If d(t) fulfils the stoppage criterion [33] for a
multivariate IMF, apply the above procedure to s(t)− d(t); otherwise, apply it to d(t).

For s(t) with p > 2 number of channels, the local mean estimate from MEMD, in terms of envelopes
e{θ1,θ2,...,θp−1} in the direction represented by a vector θ = {θ1, θ2, . . . , θp−1} in Rp, is given by:

mp(t) ≈
1

V1V2 · · ·Vp−1

V1∑
v1=1

V2∑
v2=1

· · ·
Vp−1∑
vp−1=1

e{θv1 ,θv2 ,...,θvp−1} (3)
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For very large values of Vp, equality holds in the approximation relations given in Equation (3), that is
convergence to the ‘true’ local mean is achieved. However, in practical cases, a finite number of direction
vectors are employed, suggesting the need to choose those vectors effectively, since the accuracy of the
estimated local mean hinges on it. Note that in Equation (3), the product V1V2 · · ·Vp−1 represents the
total number of projection vectors V taken along the p − 1-sphere, i.e., V = V1V2 · · ·Vp−1, where Vp−1

denotes the total number of vectors taken along the (p− 1)-th axis.

2.2. Mode Mixing and Mode Misalignment: EMD vs. MEMD

The mode mixing and mode misalignment phenomena in EMD are next demonstrated with the aid
of a synthetic trivariate signal composed of a combination of sinusoids, as shown in the top row of
Figure 1. A 12-Hz sinusoid was introduced in all components, while a 24-Hz sinusoid was present in
the components X and Z and a 4-Hz sinusoid in the components X and Y; the X and Z components were
also contaminated with WGN. By applying the EMD algorithm to each component separately, different
numbers of IMFs were obtained in each case resulting in mode misalignment, i.e., different scales in the
same indexed IMFs of different components. This is evident in all of the IMFs of all of the components,
as shown in Figure 1. Mode mixing is also clearly visible in IMF 3 of Channels X and Z and IMF 1 of
Channels X and Z. No mode mixing was observed in any of the IMFs of Channel Y, however.
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Figure 1. EMD decomposition of a synthetic trivariate dataset showing mode mixing and
mode misalignment due to the empirical nature of EMD.

The MEMD algorithm alleviates the problems of mode mixing and mode misalignment, mainly
because of the manner in which the input signals are processed collectively in multidimensional
spaces [31]. For illustration, the IMFs obtained by applying MEMD, using V = 8 projection vectors, to
a multivariate signal containing X, Y and Z as its channels are shown in Figure 2. As evident from the
figure, the mode mixing has been largely eliminated within the resulting multivariate IMFs, since each
IMF carries a single scale (sinusoid) in all components. In addition, the IMFs from different components
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are also shown to be aligned in terms to their respective scales: the 12-Hz sinusoid is present in all
channels in IMF 5; whereas the 4-Hz and the 24-Hz sinusoids make IMF 7 and IMF 4 in the components
X and Y and the components X and Z, respectively.
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Figure 2. Multivariate EMD (MEMD) decomposition of the same synthetic trivariate dataset
as in Figure 1, showing mode alignment and significantly reduced mode mixing.

3. MEMD for Image Fusion

In this section, we show the effects of mode mixing and mode misalignment phenomena in
EMD-based image fusion process and demonstrate why MEMD is a better candidate for fusion
applications. For this purpose, we consider the PAN-sharpening process, which involves the fusion of
a panchromatic (PAN) image, providing high-resolution spatial data, but poor spectral resolution, with
a multispectral (MS) image, giving poor spatial, but good spectral resolution, to yield an improved MS
image exhibiting high spatial and spectral resolutions [34]. In such fusion applications, it is imperative
that the multi-resolution components obtained from the PAN and the MS images are aligned in frequency,
a feat achieved by MEMD.

Figure 3a,b respectively shows the intensity I plane of the MS and the PAN components of a test
image. Both I and PAN images were processed separately in the case of EMD, whereas MEMD was
applied to a complex signal, which was created from the intensity component of the MS image vector
and the PAN image vector, using V = 8 projection vectors. The resulting IMFs (in groups of four)
corresponding to the I and the PAN images obtained from the EMD algorithm are shown in Figure 4.
Observe the artefacts in nearly all sets of IMFs of I and PAN, as highlighted in the top row of Figure 4,
resulting mainly due to the mode mixing problem. Mode misalignment within the same indexed IMFs
from I and PAN is also visible, particularly in IMFs 1–4 of I (IMF 1−4

I ) and PAN (IMF 1−4
P ), as shown
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in Figure 4a,d, respectively. It is clear that the IMF 1−4
P carry high-frequency scales as compared to

those in IMF 1−4
I . In the presence of mode misalignment, therefore, it would not make any physical

sense to apply a fusion model based on the comparison of spatial content between these sets of IMFs, as
it would result in the loss of significant information content from the IMFs containing relatively lower
frequencies, that is the information present in IMF 1−4

I would not be retained in the fused image.

(a) (b)

Figure 3. The intensity plane I of the low-resolution multispectral (MS) and the
high-resolution panchromatic (PAN) images used to demonstrate mode mixing and mode
misalignment in EMD. (a) The MS image; (b) the PAN image.

(a) (b) (c)

(d) (e) (f)

Figure 4. The intrinsic mode functions (IMFs) obtained by applying EMD on the I (top
row) and the PAN images (bottom row), shown in Figure 3. (a) EMD IMF 1−4

I ; (b) EMD
IMF 5−8

I ; (c) EMD IMF 9−12
I ; (d) EMD IMF 1−4

P ; (e) EMD IMF 5−8
P ; (f) EMD IMF 9−12

P .
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Figure 5 shows the IMFs (again group of fours) corresponding to the I and the PAN images obtained
using the MEMD algorithm. Here, as expected, the mode alignment is evident in all pairs of IMFs from I

and PAN, as the same indexed IMFs carry information related to the same scales. For instance, consider
the pair of images in Figure 5a,d corresponding to IMFs 1–4 from I (IMF 1−4

I ) and PAN (IMF 1−4
P ),

respectively: the IMF 1−4
P contains high frequency information, and since, the same frequency contents

are not present in the MS image, the IMF 1−4
I carries very little information. This way, due to the mode

alignment, the fusion of I and PAN would result in injecting the high-frequency information from the
panchromatic image into the fused image, as desired. Similar mode alignment can be observed in the
other sets of IMFs, too, facilitating multi-scale fusion at the IMF level using the MEMD algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 5. The IMFs obtained by applying MEMD on the I (top row) and the PAN images
(bottom row), shown in Figure 3. (a) MEMD IMF 1−4

I ; (b) MEMD IMF 5−8
I ; (c) MEMD

IMF 9−12
I ; (d) MEMD IMF 1−4

P ; (e) MEMD IMF 5−8
P ; (f) MEMD IMF 9−12

P .

4. The Proposed Algorithm

The rationale behind the proposed algorithm is to perform fusion at the level of inherent multiple
frequency scales of input images. This is accomplished by employing MEMD to decompose all input
images into their constituent sub-images based on their frequency contents and performing pixel-based
fusion separately at each scale, owing to the mode alignment property of MEMD. Note that the fusion
at multiple scales would not make sense in univariate EMD, since it fails to align common frequency
scales in input images, as demonstrated in Figures 1 and 4.

The algorithm operates by first converting the P input images into a vector form by concatenating
their rows/columns. Since MEMD operates on multichannel time-series data, the resulting vectors are
then put together to form a multivariate signal containing P number of data channels. We next apply



Sensors 2015, 15 10932

MEMD to the resulting signal yielding M number of IMFs for each channel; we shall denote the m-th
IMF of the p-th channel (input image) by Ipm(a, b), where m = 1 . . .M ; p = 1 . . . P ; and a and b denote
the spatial coordinates of the pixels.

The activity level Ap
m(a, b) at each pixel location {a, b} for the m-th IMF of the p-th input image is

then computed using a window-based approach: that is, a window of size N×N is centred at the current
pixel location {a, b}, and some measure of local energy is applied to the pixel values within that window.
One popular approach is to estimate the activity level Ap

m(a, b) via variance estimate of pixel intensity
values by using:

Ap
m(a, b) =

∑
i∈I

∑
j∈J

[Ipm(a+ i, b+ j)− µij]
2 (4)

where I and J are sets of horizontal and vertical indices that describe the current window and µij denotes
the mean of all of the pixel values inside that window.

Another option is to employ weighted averaging of the absolute values of the pixel intensities within
the window by using the following relation:

Ap
m(a, b) =

∑
i∈I

∑
j∈J

w(i, j)× |Ipm(a+ i, b+ j)| (5)

where w(i, j) is the local weight factor and
∑

i∈I
∑

j∈J w(i, j) = 1; one could give equal weight to all
pixels in an N × N window resulting in w(i, j) = 1

N2 , or a kernel function could be used to prioritise
the pixels located close to the center point {a, b}.

Since the activity level A(a, b) quantifies local details in the input images that need to be transferred
to the fused image, the sub-images Ipm(a, b) are assigned local weighting factors WF p

m(a, b), which
are directly proportional to Ap

m(a, b). That is, the IMFs exhibiting greater “activity of interest” locally
are assigned higher weights WF p

m(a, b) than those exhibiting lower activity, thereby maximising their
contribution to the fused image. We shall call this approach the weighted averaging method. The weight
factor {WF p

m}Pp=1 corresponding to the m-th IMF of the p-th channel (input image) is calculated by
using the following relation:

WF p
m(a, b) =

Ap
m(a, b)∑P

p=1 A
p
m(a, b)

(6)

In order to obtain the m-th IMF of the fused image, the m−indexed IMFs of all P input images
{Ipm(a, b)}Pp=1 are multiplied by their respective weight factors {WF p

m(a, b)}Pp=1 and added together
to obtain:

Îm(a, b) =
P∑
p=1

WF p
m(a, b)× Ipm(a, b) (7)

This procedure is repeated for all M IMFs to obtain a set of fused IMFs {Îm(a, b)}Mm=1, which are
added together to yield the final fused image Î .

Î(a, b) =
M∑
m=1

Îm(a, b) (8)

Note that the relations given in Equations (4) and (5) are not the only available options to compute
the local activity level in an image using the window-based approach; other popular methods include the
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rank filter method [15] and the spatial frequency method [35]. Similarly, one could also use other fusion
(merging) approaches [15] as an alternative to the weighted averaging scheme given in Equation (6).

Figure 6 shows the principle of the proposed method to complement Algorithm 3, which outlines the
algorithmic steps involved. Note from Figure 6 that the proposed scheme is inherently multi-scale, with
the pixel-based fusion rule/algorithm applied separately for all multi-resolution images (IMFs), yielding
M fused sub-images {Îm(a, b)}Mm=1, which are subsequently added to obtain the final fused image.
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Figure 6. The proposed scheme illustrating the local fusion of P arbitrary images, which
yields a single fused image Î , using the MEMD algorithm.

Algorithm 3 MEMD-based image fusion algorithm.
1: Convert all input images into a row (or column) vector; stack these vectors to form a multivariate

signal, and apply MEMD;
2: Reshape the resulting IMFs into its corresponding 2D images, yielding M sub-images {Ipm}Mm=1, for

each input image;
3: Compute the local activity level Ap

m(a, b) for each sub-image Ipm(a, b) using Equations (4) or (5);
4: Calculate local weighting factors WF p

m(a, b), based on Ap
m(a, b), for each Ipm(a, b) using

Equation (6);
5: Obtain the m-th fused image Îm using Equation (7);
6: Add all resulting fused images to obtain the final image using Equation (8).
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5. Results and Analysis

To verify the effectiveness of the proposed fusion algorithm, experiments were performed on a large
dataset, for two different fusion paradigms: multi-exposure and multi-focus image fusion. The fusion
results obtained from the proposed algorithm were compared against the standard and state-of-the-art
in image fusion, namely the principal component analysis (PCA), discrete wavelet transform (DWT)
and non-subsampled contourlet transform (NCT) using both single direction (NCT-S), which is the
same as the critically-sampled DWT, and multiple directions (NCT-N). For rigour, both qualitative and
quantitative evaluation results have been reported. Using both variants of NCT would help us to assess
the advantage of using decompositions along multiple directions in the fusion process.

We captured images of 60 different scenes to build a database of multi-focus images; seven images
were taken of each scene with different parts of the scene kept out of focus in each image. The aim was
to fuse these multiple images to obtain a single in-focus image.

The multi-exposure image dataset used in this work was the robot data set recorded at the Technical
University of Denmark [36]. It consisted of 60 image sets with each set consisting of a further
119 images captured from different angles (positions); 19 white LEDs were used in the experiments for
illumination/exposure. We selected seven such positions for each scene resulting in the same number
of input multi-exposure images for each of the 60 scenes; the positions were chosen such that the
partial scene information was obscured/hidden at different locations of the image scene, either due to
the over-exposure or under-exposure to light. The reference (ground truth) image for each scene was
also available in this case. Since the ground truth corresponds to 119 input exposure images and we
had used only a subset (seven) of those input images, the fused image and the ground truth exhibited
comparatively low correlation scores. However, since this trend was uniformly observed in all of the
techniques used in this work, we could use the ground truth for quantitative evaluation purposes, thus,
allowing for a better quantitative evaluation of multi-exposure fusion results.

All simulations were implemented in MATLAB 7.12 and run on an Intel(R) 2.33 GHz machine with
4 GB of RAM. Unless otherwise specified, the parameters used in the MEMD algorithm were: the
number of direction vectors V = 64; the stopping criteria parameters [33] were [θ1 = 0.075, θ2 = 0.75,

α = 0.075] with M = 5 number of IMFs. Note that while the number of direction vectors and
stopping criterion parameters used in our experiments are standard values widely employed in EMD
experiments, the choice of using M = 5 IMFs was mainly motivated to enable a fair comparison with the
DWT- and NCT-based fusion methods, since they employed five decomposition levels. For the
DWT fusion method, Daubechies’ wavelet dB4 was used with five decomposition levels. For the
NCT-based fusion schemes, diamond max-flat filters were used as directional filters, and the filters
derived from maximally flat mapping function with four vanishing moments were used as 2D pyramid
filters [17]. Moreover, five decomposition levels were used in both cases, with the additional 2, 4,
8, 16 and 32 directions used in the NCT-N from coarser to finer scale. Note that using a greater
number of directions within NCT results in an overall much greater number of decompositions as
compared to the MEMD, which only gives decomposition in a single direction. Therefore, it would be
more reasonable to compare the results of MEMD against NCT-S, as both do not utilise directional
decompositions. In MEMD-, NCT- and DWT-based fusion schemes, the local activity level was
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computed using Equations (4) and (5) for multi-focus and multi-exposure fusion, respectively. This
choice was motivated by the analysis of the fusion results obtained from both cases (Equations (4)
and (5)), for all multi-scale methods used in our experiments: Equation (4) yielded better results
consistently for multi-focus fusion, whereas Equation (5) produced improved multi-exposure results for
all multi-scale methods. The square window length of N = 9 was chosen in all experiments involving
all three methods. The details of the PCA-based fusion algorithm implemented in our case can be
found in [7].

5.1. Qualitative Evaluation

We now present a qualitative evaluation of different fusion schemes for both multi-exposure and
multi-focus image fusion cases:

5.1.1. Multi-Exposure Fusion: Qualitative Analysis

Figure 7a–e shows a subset of one of the datasets utilised in the DTU robot dataset-based experiment.
This is an example of a multi-exposure dataset where, within each of the seven input images, different
locations of the scene were illuminated by a light source; only four of the total seven input images
are shown here due to space restrictions. The input images were fused using the PCA, DWT, NCT-S,
NCT-N and the proposed MEMD algorithm, yielding the fused images, which are respectively shown in
Figure 7e–i. Please notice that the output images from both variants of NCT (Figure 7g,h) and MEMD
(Figure 7i) mostly capture the scene information well, though the MEMD-based fused image appears to
be better illuminated and focussed especially in the areas that are highlighted by the rectangular boxes
shown in the Figure 7i. Furthermore, note that the fused image obtained from NCT-N has few visible
colour artefacts as highlighted by the rectangular box in Figure 7h. The PCA-based fused image shown
in Figure 7e is poorly illuminated, whereas the DWT-based fused image (Figure 7f), though much better
than the PCA, does not compare well against either the NCT- or the MEMD-based fused images, in terms
of overall luminosity (exposure) of the fused image; this is particularly evident in areas highlighted by
the rectangular boxes shown in Figure 7f.

Figure 10a–e shows a subset of another input dataset, which has been used in our simulation study.
The corresponding fused images from the PCA, DWT, NCT-S, NCT-N and MEMD are shown in
Figure 10e–i, respectively. The pattern observed in the dataset of Figure 7 is also present here, that is the
NCT- and the MEMD-based fused images appear to be better illuminated as compared to their PCA and
DWT counterparts. The NCT-N fused image shows few distortions, as shown in the rectangular box in
Figure 10h, though it appears to produce a slightly more sharp image (especially the text) as compared
to all other methods. Once again, the visual analysis of the fused image reveals that the PCA shows the
worst performance among all fusion methods; DWT shows better performance than PCA, but again falls
short of the NCT and MEMD methods. It is hard to detect a significant difference between the fused
images from the NCT- and MEMD-based algorithms, though the fused image from MEMD (shown in
Figure 10i) appears to be better illuminated along the area highlighted by the rectangular box.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Multi-exposure image fusion results for Dataset 1. (a) Image 1; (b) Image 2;
(c) Image 3; (d) Image 4; (e) PCA; (f) DWT; (g) non-subsampled contourlet transform using
a single direction (NCT-S); (h) NCT-N; (i) MEMD.

(a) (b) (c)

Figure 8. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 8. Multi-exposure image fusion results for Dataset 2. (a) Image 1; (b) Image 2;
(c) Image 3; (d) Image 4; (e) PCA; (f) DWT; (g) NCT-S; (h) NCT-N; (i) MEMD.

5.1.2. Multi-Focus Fusion: Qualitative Analysis

Figure 9a–d shows images from one of the 60 multi-focus datasets used in this work. Observe that all
input images have different areas within depths of visual focus. The fused images from different methods
are shown in Figure 9e (PCA), Figure 9f (DWT), Figure 9g (NCT-S), Figure 9h (NCT-N) and Figure 9i
(MEMD). A visual analysis of the fused images highlights the superiority of the MEMD-based fusion
method, especially in the region (near the camera), which is highlighted by the rectangular box in the
Figure 9i. The MEMD-based fused image is better focussed in that area when compared with all other
fused images. Note that the PCA performed worst in that region followed by the DWT. For medium to
distant objects, all methods performed well.

Figure 10a–d shows input images in an indoor setting where different objects lying on a table appear
in focus within different input images. Due to space restrictions, only five of the total seven input images
are shown. The fused images from the five schemes, the PCA, DWT, NCT-S, NCT-N and MEMD, are
shown respectively in Figure 10e–i. It can be seen that the DWT-, NCT- and MEMD-based methods
produced sharper and overall perceptually better looking images than the PCA method, which failed to
focus the near objects. However, some artefact were observed in the DWT-based fused image in the
region highlighted by the rectangular box in Figure 10f: notice the spreading of white pixels in the
highlighted area. The NCT- and MEMD-based methods produced excellent quality images, while the
NCT appears to keep the near objects slightly in better focus as compared to the MEMD.
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(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 9. Multi-focus image fusion results for Dataset 1. (a) Image 1; (b) Image 2;
(c) Image 3; (d) Image 4; (e) PCA; (f) DWT; (g) NCT-S; (h) NCT-N; (i) MEMD.

(a) (b) (c)

Figure 10. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 10. Multi-focus image fusion results for Dataset 2. (a) Image 1; (b) Image 2;
(c) Image 3; (d) Image 4; (e) PCA; (f) DWT; (g) NCT-S; (h) NCT-N; (i) MEMD.

5.2. Quantitative Evaluation

For an objective comparison of the fusion results obtained from the different schemes, we used
entropy (E), spatial frequency (SF ) [37], the universal image quality index (UIQI) [38], the Piella
metric (PM ) [39] and objective image fusion (QAB/F

p ) [40] in our experiments.
The large set of images and a wide range of quality metrics used in our work also enabled us to

perform statistical tests to determine whether the differences between the results from various fusion
methods were statistically significant or not. For that purpose, we used McNemar’s statistical test on a
2×2 classification table for testing the difference between two methods when applied over the same sets
of data [41]. The classification table, as shown in Table 1, tabulates the outcome of two methods on a
sample of n datasets.

In Table 1, a′ and d′ denote respectively the number of cases (out of total n) where both Method 1 and
Method 2 fail and pass; b′ and c′ denote the discordant cases when either of the two methods fails. Note
that the total number of test datasets n = a′ + b′ + c′ + d′.

Table 1. McNemar’s 2× 2 classification table.

Method 2 Fail Method 2 Pass

Method 1 Fail a′ b′

Method 1 Pass c′ d′

McNemar’s test is based on a null hypothesis that the two marginal probabilities for each outcome are
the same (i.e., H0 : pb′ = pc′), implying that no significant difference exists between the outcome of the
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two methods. McNemar’s test statistic is χ2 = (b′−c′)2
b′+c′

, which has a chi-squared distribution for sufficient
discordant pairs b′ + c′ > 25. For b′ + c′ < 25, a cumulative binomial distribution is used instead of the
chi-squared distribution. If the resulting p-value is less than the conventional 0.05, the conclusion can be
made that there is a significant difference between the two methods.

To implement the McNemar’s test, one needs a criterion to determine whether the application of a
method on a given dataset resulted in a success (pass) or a failure (fail). Naturally, this criterion should be
based on a threshold vector τ determined by suitable values of the quantitative fusion quality measures. In
our experiments, we used thresholds on E, QAB/F

P and UIQI/PM to determine τ. The threshold vectors
for multi-exposure and multi-focus fusion were selected to be τe = [E > 4.55, UIQI > 0.55, Q

AB/F
P >

0.45] and τf = [E > 7.20, PM > 0.75, Q
AB/F
P > 0.55], respectively. The threshold values were

chosen after thorough visual analysis of the fused images obtained from applying all four methods on
a large image set and careful observation of corresponding values of quantitative metrics. For instance,
we found that for multi-exposure datasets, the UIQI score must be greater than 0.55 (i.e., UIQI >

0.55) for the fused image to exhibit little or no distortion and encompass maximum information from
input images. Other values of the thresholds were chosen based on the similar observations of different
performance measures and the corresponding fused images. For a method to be ‘successful’ on a dataset,
all entries of its corresponding τ vector should be equal to unity.

Note that we have not based our quantitative evaluation on the percentage increase in values of the
quantitative measures (UIQI , PM , etc.) for different fusion methods, since even a very small change
in their values can have a significant effect on the quality of the fused image. Owing to this fact, our
evaluation is based on the number of input datasets for which our method outperforms other comparative
fusion methods, based on the threshold vectors τ.

5.2.1. Multi-Exposure Fusion: Quantitative Analysis

For quantitative evaluation of multi-exposure fusion results, we implemented the PCA-, DWT-,
NCT-S-, NCT-N- and MEMD-based fusion schemes on 60 data scenes from the DTU Robot dataset [36],
with seven input multi-exposure images in each set. We had observed from the qualitative analysis of
multi-exposure images that the PCA- and the DWT-based schemes failed to produce suitable fused
images in terms of luminosity and proper exposure. In comparison, the NCT- and the MEMD-based
methods yielded images that were better illuminated, with MEMD outperforming NCT-S slightly in
terms of overall exposure and sharpness of the final image. These observations are next confirmed via
quantitative quality measures.

Figure 11 presents bar graphs showing the scores of E, SF , Q
AB/F
P and UIQI performance

measures for PCA-, DWT-, NCT-S-, NCT-N- and MEMD-based fused images, obtained for the 60
input multi-exposure datasets used in our experiments. It is evident from the figure that the NCT and
the proposed MEMD method performed significantly better than the PCA and the DWT schemes for all
given performance metrics and datasets. Between the NCT-S- and MEMD-based methods, the MEMD
yielded superior performance for the E, SF and (especially) UIQI measures, whereas the NCT-S
performed slightly better for the Q

AB/F
P measure. The performance of the NCT-N method was found

to be better for all quantitative measures, except for UIQI, which was expected, since NCT-N employed
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multiple direction levels along its decompositions. The quantitative analysis confirms the observations
made during the visual analysis of Figures 7 and 10.
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Figure 11. Quantitative analysis on multi-exposure images: bar graphs of the values of
quantitative measures, including the E, SF , QAB/F

P and UIQI , shown respectively from
the top to the bottom, are obtained for MEMD-, NCT-S-, DWT-, PCA- and NCT-N-based
fusion methods.

We next present the results of McNemar’s statistical test for multi-exposure datasets in Table 2, in
order to verify whether the difference between the results from the proposed method and the other
standard methods was statistically significant or not. For that purpose, the performance of the MEMD
method was judged separately against the PCA, DWT, NCT-S and NCT-N methods. From Table 2,
the MEMD produced superior results as compared to the PCA and the DWT, as the corresponding
p-values for both cases were less than the threshold of 0.05, thus rejecting the null hypothesis (of no
significant difference between the two methods). Furthermore, notice that out of the 60 datasets, there
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were respectively 18 and 10 discordant datasets where MEMD “passed” (+) and PCA and DWT “failed’
(−), whereas there was no dataset where MEMD “failed” (−) and PCA (or DWT) “passed” (+). In terms
of percentage, therefore, MEMD showed improved results over PCA and DWT for 30% and 16% of
the datasets, respectively. Between NCT-S and MEMD, the null hypothesis of no significant difference
between the methods could not be rejected, though MEMD was overall better with five datasets for
which MEMD “passed” (+) and NCT-S “failed” (−), and none for which MEMD “failed” (−) and NCT
“passed” (+). The comparison between NCT-N and MEMD was more even with two discordant datasets
where MEMD “passed” (+) and NCT-N “failed” (−) and vice versa. The p-value of unity also indicated
that the two methods were on par, which was expected given the visual and quantitative analysis of these
methods for multi-exposure data.

Table 2. McNemar’s statistical test results for multi-exposure data.

PCA− PCA+ DWT− DWT+ NCT-S− NCT-S+ NCT-N− NCT-N+

MEMD (−) 9 0 9 0 9 0 7 2

MEMD (+) 18 33 12 39 5 46 2 49

p Value < 10−4 0.0005 0.062 1.0

5.2.2. Multi-Focus Fusion: Quantitative Analysis

The quantitative evaluation of the proposed scheme against PCA, DWT, NCT-S and NCT-N was
performed on 60 multi-focus image sets, with each set containing seven input images. We employed E,
SF , QAB/F

P and PM metrics for this purpose. Note that instead of the UIQI metric, we used its variant
PM for multi-focus image sets, due to the non-availability of the reference (ground truth) images for
these sets.

Figure 12 presents bar graphs showing the metric values for each of the 60 multi-focus datasets, for
the E, SF , QAB/F

P and PM measures, shown from top to down, respectively. All of the methods
reported E values in a close range, whereas for the SF measure, the NCT- and the MEMD-based
methods showed markedly better results than the DWT- and the PCA-based schemes. For the Q

AB/F
P

measure, the NCT-based methods performed better than all of the other methods, including the MEMD.
For the PM metric, the NCT-N exhibited comparatively better results.

The results of McNemar’s test shown in Table 3 further validate the observations made during the
visual and quantitative analysis of multi-focus image sets. As expected, results from the MEMD-based
scheme proved to be significantly (and statistically) better than those obtained from the PCA: in total,
there were 17 datasets for which MEMD passed and PCA failed, yielding a negligibly small p-value.
No statistically significant difference was found between the results of MEMD and DWT, NCT-S and
NCT-N. By observing the p-values in Table 3, however, it can be noticed that the DWT was on par
with MEMD, with the p-value = 1. Both of the NCT-based variants (employing a single and multiple
directions) gave slightly better results than the MEMD, but the improvement offered by NCT over
MEMD was not found to be statistically significant, since in both cases, the p-value was found to be
greater than 0.05.
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Figure 12. Quantitative analysis on multi-focus images: bar graphs of the values of
quantitative measures, including the E, SF , Q

AB/F
P and PM , shown respectively from

the top to the bottom, are obtained for MEMD-, NCT-S-, DWT-, PCA- and NCT-N-based
fusion methods.

Table 3. McNemar’s statistical test results for multi-focus data.

PCA− PCA+ DWT− DWT+ NCT-S− NCT-S+ NCT-N− NCT-N+

MEMD (−) 9 0 8 1 6 3 4 5

MEMD (+) 17 34 1 50 0 51 0 51

p Value < 10−4 1.0 0.25 0.0625

6. Conclusions and Discussion

We have introduced a method to perform the fusion of multiple images using the multivariate
empirical mode decomposition (MEMD) algorithm. The proposed method can be viewed as both
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multi-scale and local (pixel-based); it is fully data adaptive and is also able to simultaneously process any
number of input images. The method operates by first employing MEMD to decompose input images
into their constituent scale images (multi-scale approach) and subsequently applying a pixel-based fusion
scheme to the resulting sub-images, obtaining a fused image containing all relevant details from the
input images. We have also shown that the proposed method overcomes the mode mixing and mode
misalignment issues observed in standard univariate EMD algorithms and is, hence, better suited for
data fusion applications than the standard EMD.

Here, the desirable properties of MEMD have been exploited for multi-scale image fusion, including
the multi-exposure and multi-focus image fusion. A qualitative and quantitative evaluation of the
proposed method has been performed on a large set of multi-exposure and multi-focus images, and
comparisons with the standard fusion methods, such as the PCA, DWT and NCT, have been made using
a variety of both spectral and spatial quantitative measures. The large image data base and the range of
quantitative measure have enabled us to also perform McNemar’s statistical test to verify whether the
results from the proposed method are statistically better than those obtained from the standard fusion
approaches. We have reported significantly better performance of our method against the PCA for
both multi-exposure and multi-focus cases and against the DWT for multi-exposure image sets. When
compared against NCT, which is the state-of-the-art in image fusion, the proposed method showed no
statistically-significant difference, therefore clearly confirming its potential.

One potential area of improvement in the proposed fusion method is its computational complexity.
The proposed method is based on (M)EMD computation, which is inherently computationally more
expensive [42] than the PCA, DWT and NCT methods. However, future improvements in (M)EMD
computing time will bring down the computational cost of the proposed fusion method; in that context,
a number of algorithmic improvements [28] and implementations have already started to emerge.
Another improvement could include a pre-processing step of image denoising before application of the
proposed method.
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