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Abstract

In this paper we investigate bootstrap-based methods for bias-correcting the

first-stage parameter estimates used in some recently developed bootstrap imple-

mentations of the co-integration rank tests of Johansen (1996). In order to do so

we adapt the framework of Kilian (1998) which estimates the bias in the original

parameter estimates using the average bias in the corresponding parameter esti-

mates taken across a large number of auxiliary bootstrap replications. A number

of possible implementations of this procedure are discussed and concrete recom-

mendations made on the basis of finite sample performance evaluated by Monte

Carlo simulation methods. Our results show that bootstrap-based bias-correction

methods can significantly improve upon the small sample performance of the boot-

strap co-integration rank tests. A brief application of the techniques developed in

this paper to international dynamic consumption risk sharing within Europe is also

considered.
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1 Introduction

The use of tests based on the likelihood ratio [LR] principle for determining the co-

integration rank of a VAR system of I(1) variables, see Johansen (1996), is now common-

place in empirical research in macroeconomics and finance. However, the finite sample

properties of these tests, when based on asymptotic critical values, can be quite poor; see,

in particular, Johansen (2002) and the references therein. This has prompted a number of

recent studies to propose bootstrap implementations of the LR co-integration rank tests

with the aim of delivering tests with empirical rejection frequencies closer to the nom-

inal level; see, in particular, Swensen (2006), Cavaliere, Rahbek & Taylor (2010a) and

Cavaliere, Rahbek & Taylor (2012).

Monte Carlo results reported in Swensen (2006) and Cavaliere et al. (2012) suggest

that the aforementioned bootstrap LR tests do indeed appear to yield significant improve-

ments on the small sample performance of the asymptotic LR tests, particularly so the

smaller the sample size and the larger the dimension of the VAR system under study.

However, their results also show that significant size distortions remain in the bootstrap

tests when the VAR process contains stationary dynamics, most notably where these

display strong positive autocorrelation, such that we have a near-I(2) system. These

bootstrap procedures are both based around the use of bootstrap sample data formed

using estimates of the stationary dynamics obtained from the original data. As a conse-

quence, their efficacy will clearly be related to the degree of finite sample bias present in

these estimates. Swensen (2006) and Cavaliere et al. (2010a) use unrestricted estimates

of the stationary dynamics while Cavaliere et al. (2012) estimate the dynamics under the

co-integration rank restriction of the null hypothesis being tested. Cavaliere et al. (2012)

demonstrate the theoretical validity of the latter approach and that it delivers superior

finite sample properties to the approach outlined in Swensen (2006) and Cavaliere et al.

(2010a), the theoretical validity of which also remains to be established. We therefore

focus attention on the approach of Cavaliere et al. (2012) in this paper.

In the context of providing estimated confidence intervals for impulse response func-

tions from VAR models, be they estimated in levels, first differences or co-integrated VAR

form, Kilian (1998) shows that these can be quite inaccurate in small samples owing to

the finite sample bias seen in the estimates of the lag coefficient matrices characterising

the VAR model; see also the simulation results in Engsted & Pedersen (2011) Engsted

and Pedersen (2011). As Kilian (1998) further notes, this bias is systematic and, as a

consequence, bootstrap data generated conditional on biased point estimates will tend

to result in an even greater bias in the resulting bootstrap estimates of the lag coeffi-
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cient matrices, relative to the true parameters. This leads to the potential for a standard

bootstrap confidence interval to be less accurate than that based on the original esti-

mates. In order to improve upon the accuracy of the bootstrap confidence levels, Kilian

(1998) proposes a so-called bootstrap-after-bootstrap [BaB] method. Here the bootstrap

data are generated not using the original point estimates from the VAR model but on

bias-corrected estimates which are themselves obtained by bootstrap methods.

The basic idea underlying the bias correction used in the BaB approach of Kilian (1998)

is as follows. Suppose one estimates the matrix of parameters on the lagged dependent

variable in a stationary VAR model with one lag [VAR(1)] and is interested in obtaining

an estimate of the finite sample bias inherent in this estimate. The BaB approach then

uses some form of re-sampling, for example i.i.d. re-sampling, from the residuals from this

estimated VAR(1) model to obtain a set of bootstrap innovations. A bootstrap analogue of

the original sample data is then constructed using a recursion derived from these bootstrap

innovations and the estimated lag parameter matrix. A VAR(1) is then estimated on the

resulting bootstrap data using the same estimation method as was applied to the original

data. This bootstrap procedure is replicated a large number, say B1 times. Since we have

knowledge of the true parameter matrix in these bootstrap samples, one can then obtain

an estimate of the bias present in the original parameter estimates by using the average

bias taken across the B1 parameter estimates from the B1 sets of bootstrap data. This

quantity can then be used to bias-correct the original estimate.

In this paper we adapt the use of the BaB approach for use with the bootstrap co-

integration rank tests of Cavaliere et al. (2012). As noted above, the finite sample perfor-

mance of the bootstrap rank tests can vary considerably according to the pattern of the

stationary dynamics in the system, and so we anticipate that the resulting bootstrap tests

based around the use of bootstrap bias-corrected estimates of the stationary dynamics will

further improve upon the finite sample properties of the bootstrap tests. An interesting

issue which arises in doing so is that the bootstrap bias-corrected parameter estimates

of the stationary dynamics are typically larger than the original estimates. As a conse-

quence, this effects an increase in the number of failures of the root stability checks which

are a feature of the bootstrap algorithm of Cavaliere et al. (2012) (and, indeed, of the cor-

responding algorithm in Swensen, 2006), especially where the stationary dynamics have

roots which lie close to the unit circle. We explore the impact of: (i) simply ignoring the

root check condition of the bootstrap algorithm, (ii) using a switching bootstrap whereby

we revert to the original estimates if the bootstrap bias-corrected estimates fail the root

condition; (iii) a root-correction bootstrap, following a suggestion in Kilian (1998). We

also explore the possibility, where the co-integration rank being tested is greater than zero,
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of applying a bootstrap bias-correction to the estimates of both the stationary dynamics

and the long run component of the system.

Monte Carlo simulation methods are used to explore the finite sample properties of

the BaB co-integration rank tests and to compare these with the corresponding standard

bootstrap rank tests of Cavaliere et al. (2012). Our results show that the BaB method

delivers significant improvements upon the finite sample performance of the standard

bootstrap tests, particulary in very small samples and where the system lies close to the

I(2) boundary in the parameter space. The results also suggest that ignoring the root

check conditions discussed above is a safe strategy in practice and yields the best results

overall, relative to a switching bootstrap or root-correction bootstrap. Applying the BaB

method to the long run component of the system does not appear to deliver any noticeable

gains in accuracy once the sort run dynamics of the system have been bias-corrected.

The remainder of the paper is organised as follows. In section 2 we outline our ref-

erence co-integrated VAR model and outlines the co-integration rank tests of Johansen

(1996), outlining the large sample properties of these, with the standard bootstrap im-

plementations of these tests proposed by Cavaliere et al. (2012) outlined in section 3. In

section 4 we introduce our proposed bias-corrected, or bootstrap-after-bootstrap, boot-

strap rank tests, together with the variants of this procedure discussed above. The results

of our Monte Carlo study comparing the finite sample behaviour of the standard and

bias-corrected bootstrap co-integration tests are reported and discussed in section 5. In

section 6 we use the bootstrap techniques discussed in this paper to re-assess the empir-

ical evidence provided by Cavaliere, Fanelli & Gardini (2008) on international dynamic

consumption risk sharing within a set of European countries. Section 7 concludes.

2 The Model Framework and Rank Tests

We consider the usual VAR(k) model in error correction format:

∆Xt = ΠXt−1 + ΨUt + µDt + εt, t = 1, 2, . . . , T, (2.1)

where Xt := (X1t, . . . , Xpt)
′ and the innovations, ε := (ε1t, . . . , εpt)

′, are both p × 1, and

Ut := (∆X ′t−1, . . . ,∆X
′
t−k+1)

′ is p(k− 1)× 1,Ψ := (Γ1, . . . ,Γk−1), where {Γi}k−1i=1 are p× p
lag coefficient matrices. The impact matrix Π := αβ′, where α and β are p × r, r ≤ p,

matrices, with the usual convention that αβ′ is the p × p matrix of zeroes when r = 0

(no co-integration). The initial values, X0 := (X ′0, . . . , X
′
−k+1)

′, are taken to be fixed. We

allow for a restricted linear trend such that µDt = µ1 +µ2t with µ2 = αρ′ in (2.1). Then,

the model, which will often be referred to as model H(r) in what follows, may be written
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in the compact form,

Z0t = αβ+′Z1t + Ψ+Z2t + εt (2.2)

with Z0t := ∆Xt, Z1t := (X ′t−1, t)
′, Z2t := (U ′t , 1)′, β+ = (β′, ρ′)′, and Ψ+ = (Ψ, µ1).

Throughout the paper, the process in (2.1) is assumed to satisfy the following assump-

tions.

Assumption 1: (a) All of the characteristic roots associated with (2.1), that is the so-

lutions to the characteristic equation A (z) := (1− z) In − αβ′z − Γ1z (1− z) − · · · −
Γk−1z

k−1 (1− z) = 0, lie either outside the unit circle or are equal to unity; (b) |α′⊥Γβ⊥| 6=
0, with Γ := In − Γ1 − · · · − Γk−1.

Assumption 2: The innovations {εt} form a martingale difference sequence with respect

to the filtration Ft, where Ft−1 ⊆ Ft for t = ...,−1, 0, 1, 2, ..., satisfying: (i) the global

homoskedasticity condition:

1

T

T∑
t=1

E (εtε
′
t|Ft−1)

p→ Σ > 0, (2.3)

and (ii) E ‖εt‖4 ≤ K <∞.

Assumption 1 is standard in the co-integration testing literature, while Assumption

2, which is used by Cavaliere et al. (2010a), implies that εt is a serially uncorrelated,

potentially conditionally heteroskedastic process. The latter therefore contrasts with the

assumption that εt is i.i.d. as made in Johansen (1996) and Swensen (2006).

In this paper we focus attention on the so-called trace test of Johansen (1996) for

testing the pair of hypotheses

H0(r) : rk(Π) = r vs. H1(r) : rk(Π) = p. (2.4)

The bias-correction based methods we outline in this paper could equally well be applied

to the corresponding maximum eignevalue test of Johansen (1996) in an entirely obvious

way.

As is standard, let Mij := T−1
∑T

t=1 ZitZ
′
jt, i, j = 0, 1, 2, with Zit defined as in (2.2),

and let Sij := Mij −Mi2M
−1
22 M2j, i, j = 0, 1. Let the p largest solutions to the eigenvalue

problem,
∣∣λS11 − S10S

−1
00 S01

∣∣ = 0, be denoted by λ̂1 > · · · > λ̂p. The (pseudo) likelihood

ratio [PLR] test for the pair of hypotheses in (2.4) then rejects for large values of the trace

statistic1

1Notice that the subscript r in LRr is a generic notation denoting the null rank being tested. If the

specific rank r = 0 were being tested, for example, then the statistic would be referred to as LR0. The

same convention will be adopted for all other statistics introduced in this paper.
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LRr := −T
p∑

i=r+1

log(1− λ̂i).

Cavaliere et al. (2010a) derive the limiting null distribution for LRr for data gener-

ated according to (2.1) under Assumptions 1 and 2, and this result is reproduced for

convenience in the following theorem.

Theorem 1 Let Xt be generated as in (2.1) under Assumptions 1 and 2. Then under

H0(r),

LRr
w→ tr(LRr,B) =: LRr,∞ (2.5)

where

LRr,B :=

∫ 1

0

(dBp−r(u))Fp−r(u)′
(∫ 1

0

Fp−r(u)Fp−r(u)′du

)−1 ∫ 1

0

Fp−r(u)(dBp−r(u))′

(2.6)

with Bp−r(·) a (p− r)-variate standard Brownian motion and Fp−r := (B′p−r, u|1)′, where

the notation a|b := a(·)−
∫
a(s)b(s)′ds(

∫
b(s)b(s)′ds)−1b(·) denotes the projection residuals

of a onto b.

3 Bootstrap Co-integration Rank Tests

In this section we first outline in Algorithm 1 the standard recursive i.i.d. bootstrap

trace test. We will then subsequently discuss how to adjust this bootstrap scheme to

introduce bias-corrected parameter estimates. The bootstrap outlined in Algorithm 1 is

closely related to the algorithm recently proposed in Cavaliere et al. (2012) which uses

a bootstrap recursion based on the parameter estimates from (2.1) which obtain under

the restriction of H0(r). As noted in section 1, alternative bootstrap procedures, such

as Swensen (2006) and Cavaliere et al. (2010a) which use unrestricted estimates of the

parameter matrices on the lagged dependent variables in (2.1), will not be discussed

further here because their validity is not guaranteed when the true co-integrating rank

exceeds the rank being tested; see Cavaliere et al. (2012) for full details on this point.

Algorithm 1

(1) Perform a RR regression of (2.1) under the rank hypothesis H0(r) : rk(Π) = r in

order to obtain the RR estimators α̃, β̃, Γ̃j, j = 1, . . . , k− 1, and the corresponding

residuals ε̃k+1, . . . , ε̃T .
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(2) Construct the bootstrap sample data, y∗t , t = 1, . . . , T , recursively from

∆X∗t = α̃β̃′X∗t−1 +
k−1∑
j=1

Γ̃j∆X
∗
t−j + ε∗t , (3.1)

with the re-sampled residuals ε∗t drawn randomly with replacement (i.i.d. re-sampling)

from the estimated residuals ε̃k+1, . . . , ε̃T . The initial values of the recursion, X∗−k+1, . . . , X
∗
0 ,

are set equal to 0.

(3) Obtain the bootstrap test statistic, LR1∗
r analogous to LRr.

(4) The bootstrap p-value is then computed as, p∗r,T (LRr) := 1 − G∗LR,r,T (LRr), where

G∗LR,r,T (·) denotes the conditional (on the original data) cumulative distribution

function (cdf) of LR1∗
r .

Remark 3.1. Cavaliere et al. (2010a) establish the asymptotic validity of the test based

on the bootstrap PLR statistic, LR1∗
r , from Algorithm 1. In particular they demon-

strate that the bootstrap LR1∗
r statistic attains the same first-order limiting null distri-

bution as the LRr statistic. Formally, they show that under the conditions of Theorem 1,

LR1∗
r

w→p LRr,∞ and that, as a consequence, the associated bootstrap p-value, p∗r,T (LRr)

is (asymptotically) uniformly distributed under the null hypothesis, leading to tests with

(asymptotically) correct size.

Remark 3.2. As discussed in Cavaliere et al. (2010a), the unknown cdf, G∗LR,r,T (·),
required in Step 4 of Algorithm 1 can be estimated through numerical simulation. This is

done by generating B (conditionally) independent bootstrap statistics, LR1∗
r,b, b = 1, ..., B,

and computing the estimated bootstrap p-value of the test as

p̃∗r,T (LRr) :=
1

B

B∑
b=1

I(LR1∗
r,b > LRr) (3.2)

For B → ∞, we have that p̃∗r,T (LRr)
a.s.→ p∗r,T (LRr); see e.g. Hansen (1996). Estimated

p-values for the alternative bootstrap procedures discussed below can be obtained in the

same way.

Remark 3.3. Algorithm 1 is a simplified version of Algorithm 1 in Cavaliere et al. (2012);

the latter incorporates an estimate of the deterministic component in (3.1) and initialises

the recursion in (3.1) with X∗−k+1 = X−k+1, j = −k + 1, ..., 0. We adopt the simpler

form in (3.1) motivated by the results in Cavaliere, Taylor & Trenkler (2013), but again

the principles outlined here could equally well be applied to the bootstrap tests from

Algorithm 1 of Cavaliere et al. (2012).
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Remark 3.4. Algorithm 1 of Cavaliere et al. (2012) additionally includes the requirement

that the following root condition

|Ã∗ (z) | = 0 ⇒ |z| > 1 or z = 1, (3.3)

holds on the estimated lag polynomial matrix

Ã∗ (z) := (1− z) Ik − α̃β̃′z − Γ̃1 (1− z) z − ...− Γ̃k−1 (1− z) zk−1.

Cavaliere et al. (2012) show that (3.3) is guaranteed to hold in large samples; however,

if condition (3.3) is not met in a finite sample then the resulting bootstrap samples may

become explosive. Consequently, it has been suggested not to implement a bootstrap

algorithm in such a case; cf. Swensen (2006, Remark 1). However, as we will show later

in the paper, considering bootstrap iterations in which (3.3) is violated does not appear

to be harmful for the finite sample performance of the bootstrap co-integration rank

test. Indeed, our results suggest that discarding these iterations can actually worsen the

performance of the resulting bootstrap. We therefore argue that condition (3.3) can be

safely ignored in applied work. Technically, Algorithm 1, in common with Algorithm 1 of

Cavaliere et al. (2012), requires that |α̃′⊥Γ̃β̃⊥| 6= 0, where Γ̃ := Ik − Γ̃1 − ... − Γ̃k−1, but

this condition is always satisfied in practice and so may be safely ignored.

Remark 3.5. Algorithm 1 outlines (a simplified version of) the bootstrap co-integration

rank tests of Cavaliere et al. (2012) which are based on the use of an i.i.d. re-sampling

device in step (2). Recently, Cavaliere, Rahbek & Taylor (2013a) have proposed an analo-

gous bootstrap procedure whereby re-sampling is done via the wild bootstrap rather than

i.i.d. re-sampling. They show that the resulting wild bootstrap rank tests are asymp-

totically valid in the case where the innovations, εt, in (2.1) display conditional and/or

unconditional heteroskedasticity. For economy of notation and space we will outline our

proposed methods in section 4 in the context of the tests from Algorithm 1 only. However,

the same principles can equally be applied to the corresponding tests based on the wild

bootstrap, thereby allowing their use in cases where the innovations are heteroskedas-

tic. Indeed, we will provide some Monte Carlo results relating to the wild bootstrap and

conditionally heteroskedastic shocks in section 5.

4 Implementing Bias-Correction

In this section we discuss how to perform bias-corrected based implementations of the

bootstrap procedure outlined in Algorithm 1. We adopt the framework of Kilian (1998),

in order to obtain a simple bootstrap-after-bootstrap [BaB] approach to bias-correcting
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the VECM (restricted) parameter estimates used in the bootstrap recursion, (3.1). This

approach is outlined below and essentially uses averages (taken across the bootstrap repli-

cations) of the deviations of the parameter estimates from estimating the equation in (3.1)

under H(r) relative to the corresponding original estimates from (2.1) to proxy the un-

derlying bias in the estimates from (2.1). We will focus attention on bias-correction of

the estimated stationary dynamics of the system, that is of the parameters on the lagged

dependent variables in (2.1), since the finite sample size distortions observed in the stan-

dard bootstrap trace tests appear to vary according to the stationary dynamics of the

system, for a given co-integrating rank. It is also possible, in cases where we are testing

the null of rank r > 0, to bias-correct the estimated long-run parameter estimates from

(2.1) and we will briefly discuss this possibility too.

Algorithm 2 (Bootstrap-after-Bootstrap (BaB))

(1) Proceed as in steps 1 and 2 of Algorithm 1 in order to obtain the restricted estimate

Ψ̃ := (Γ̃1, . . . , Γ̃k−1) from (2.1) and to generate B1 bootstrap data sets.

(2) Fit the model (2.1) to each bootstrap sample in order to obtain the average ¯̃Ψ∗ =
1

B1

∑B1

b=1 Ψ̃∗b , where Ψ̃∗b := (Γ̃∗1, . . . , Γ̃
∗
k−1) is the estimate of Ψ based on the b-th

bootstrap sample. Define the resulting bootstrap bias estimate as C∗ψ := ¯̃Ψ∗ − Ψ̃.

Then, construct the bias-corrected estimate Ψ̂ := (Γ̂1, . . . , Γ̂k−1) = Ψ̃− C∗ψ.

(3) Apply Algorithm 1 whereby the estimates Γ̃1, . . . , Γ̃k−1 used in step (2) are replaced

with the corresponding bias-corrected estimate Γ̂1, . . . , Γ̂k−1.

Remark 4.1. It is important to note that the bootstrap procedure used in step (1) of

the BaB in Algorithm 2 is a completely separate bootstrap procedure from that used in

step (3), and they are based on independent sets of bootstrap draws from the underlying

residuals obtained in step (1) of Algorithm 1.

As discussed in Kilian (1998), the bias-correction device outlined above typically leads

to larger estimates for the parameter values on the stationary dynamics from (2.1), and

so it is likely that the root condition in (3.3) will be violated more frequently than when

the original uncorrected estimates are used. As a response to this we will also consider

two alternative bootstrap schemes. The first of these we label the switching bootstrap;

here we use the uncorrected estimates if the bias-corrected estimates lead to a violation of

(3.3). The second approach, labelled the root-correction bootstrap, follows the suggestion
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of Kilian (1998) (see also Takimoto & Hosoya 2006) whereby we progressively reduce the

magnitude of the bias-correction until we avoid a violation of (3.3) in the bias-corrected

estimates. These two methods are detailed below.

Switching Bootstrap:

(1) Proceed as in the bootstrap-after-bootstrap in order to obtain the bias-corrected es-

timates in Γ̂1, . . . , Γ̂k−1. Check wether or not the root condition in (3.3) is violated

with the estimates Γ̃1, . . . , Γ̃k−1 replaced by Γ̂1, . . . , Γ̂k−1.

(2) If the root condition is not violated, then apply Algorithm 1, where the estimates

Γ̃1, . . . , Γ̃k−1 used in step (2) are replaced by the corresponding bias-corrected esti-

mates Γ̂1, . . . , Γ̂k−1. Otherwise, proceed as described in Algorithm 1; i.e., use the

uncorrected parameter estimates obtained in step (1).

Root-Correction Bootstrap:

(1) If the root condition in (3.3) is violated, then apply Algorithm 1.

(2) If the root condition in (3.3) is not violated, perform the bias correction as in the

bootstrap-after-bootstrap. If the root condition in (3.3) is not violated with the es-

timates Γ̃1, . . . , Γ̃k−1 replaced by the biased-corrected ones Γ̂1, . . . , Γ̂k−1, then ap-

ply Algorithm 1, where Γ̂1, . . . , Γ̂k−1 are used in step (2) instead of the estimates

Γ̃1, . . . , Γ̃k−1.

(3) If the use of Γ̂1, . . . , Γ̂k−1 leads to a violation of the root condition in (3.3), then

iteratively reduce the bias correction according to C∗ψ,i+1 := δiC
∗
ψ,i with δi+1 = δi −

0.01, δ1 = 1, and C∗ψ,1 := C∗ψ, until the root condition in (3.3) is satisfied. Use

the resulting shrunk bias-correction term to bias-correct the parameter estimates.

Then, apply Algorithm 1 using the resulting bias-corrected estimates in step (2) of

Algorithm 1 instead of the estimates Γ̃1, . . . , Γ̃k−1.

Remark 4.2. Notice that the estimated parameters obtained in step (1) of Algorithm 1

are used in the root-correction bootstrap in cases where they violate the root condition

in (3.3); i.e. no bias-correction takes place in such cases since it is very likely that bias-

correcting here would further inflate the absolute values of the resulting roots. For the

same reason, the switching bootstrap also typically employs the estimated parameters

obtained in step (1) of Algorithm 1 if they violate the root condition (3.3).
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Remark 4.3. The asymptotic validity of the three methods of bias-correction outlined

above follows straightforwardly from the consistency results established in Cavaliere et al.

(2012) for the parameter estimates obtained in step (1) of Algorithm 1. As a result,

the bias-correction methods outlined above are asymptotically vanishing, such that for

each of the three bias-correction schemes the resulting bootstrap trace statistic will be

asymptotically equivalent to the standard bootstrap trace statistic from Algorithm 1. See

also Kilian (1998).

Remark 4.4. As noted at the start of this section, the three schemes outlined above

bias-correct only the estimated short run dynamics. In addition, where we are testing

H(r) with r > 0, we might also consider bias-correcting the estimates of α and β, and

hence Π, from (2.1) under H(r). This can be done in various ways: one could either

bias correct Π̃ := α̃′β̃, or separately bias-correct α̃ and β̃. On the face of it there would

appear little to be gained in making these corrections because the estimates of α and β are

restricted to satisfy the null co-integrating rank. However, simulation evidence in, among

others Johansen (2002) and Cavaliere, Rahbek & Taylor (2010b), suggests that the finite

sample behaviour of both the asymptotic and standard bootstrap trace tests can depend

on α (but not β) and so it may be worth bias-correcting only α̃. In order to bias-correct

any of these estimates, the same approach as outlined in the three schemes above is used

with an obvious change in notation. Again the impact of these bias-correction schemes

would be asymptotically vanishing given the consistency of α̃ and β̃ when r > 0. We will

investigate these possibilities further in section 5.3.

5 Numerical Results

In this section we use Monte Carlo (MC) methods to compare the finite sample size and

power properties of the various bootstrap tests outlined in sections 3 and 4.

We use a VAR(2) process for a variety of parameter configurations as our simulation

DGPs; cf. Johansen (2002) and Swensen (2006). We will consider processes of dimensions

p = 2, 4 and set the true co-integrating rank, r0, equal to either zero, one, and two. The

general model we use is therefore given by

∆Xt = αβ′xt−1 + Γ1∆Xt−1 + εt, εt ∼ N(0, Ip), t = 1, ..., T, (5.1)

where α and β are p × r0 vectors and Γ1 = ξIn with −1 < ξ < 1. We consider ξ =

0.5, 0.8, 0.9. Notice that values of ξ close to one represent near-I(2) systems which is known

to be a problem case for co-integration rank tests; see Johansen (2002) and Cavaliere et al.

(2012), among others. For the non co-integrated case (r0 = 0), we have α = β = 0 (we
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label this Case 0). For the r0 = 1 case we follow, among others, Johansen (2002) and

Swensen (2006), and consider the parameter combinations β = (1, 0, ..., 0)′ and α =

(a1, a2, 0, ..., 0)′, leading to the model (omitting equation (5.2c) when p = 2)

∆x1,t = a1x1,t−1 + Γ1∆xt−1 + ε1,t (5.2a)

∆x2,t = a2x1,t−1 + Γ1∆xt−1 + ε2,t (5.2b)

∆xi,t = Γ1∆xt−1 + εi,t, i = 3, 4. (5.2c)

We focus on the case a1 = a2 = −0.4 (which we label Case 1). Finally, for r0 = 2

(which we label Case 2) we consider a four-dimensional2 VAR and use α =
( −0.4 −0.4 0 0

0 −0.6 0 0

)′
,

β =
(
1 0 0 0
0 1 0 0

)′
. Hence, we have,

∆x1,t = −0.4x1,t−1 + Γ1∆xt−1 + ε1,t (5.3a)

∆x2,t = −0.4x1,t−1 − 0.6x2,t−1 + Γ1∆xt−1 + ε2,t (5.3b)

∆xi,t = Γ1∆xt−1 + εi,t, i = 3, 4. (5.3c)

All tests are run at the nominal 5% significance level. The computations are performed

using the RNDNS function (with fixed seed) of GAUSS 10.0 for Windows. Note that the

same sets of randomly generated error term vectors are used for all DGPs of the same

dimension in order to eliminate this source of Monte Carlo variation from a comparison of

the performance of the tests. The number of Monte Carlo replications is set at R = 5000.

For determining the quantiles of the empirical bootstrap distributions we use B = 499

bootstrap replications. The number of first-level bootstrap replications used in the step

(1) of the BaB scheme is set to B1 = 299.

5.1 Empirical Size of Tests: H0 : r = 0 and H0 : r = 1

The results in Table 1 for tests of H0 : r = 0 under Case 0 show that in those cases where

excessive size distortions are observed in the standard bootstrap (Algorithm 1), these can

be significantly reduced, or even completely avoided in many cases, by using the BaB

(Algorithm 2). Indeed the BaB displays excellent finite sample size control throughout

the results in Table 1. However, it is noteworthy that the bias-corrected estimate, Ψ̂,

used within the BaB quite often violates the root condition in (3.3) in very small samples

(T = 50) and for large values of ξ. The large number of root violations for ξ = 0.9 is

perhaps to be expected given that this parameter value represents a near-I(2) system.

The use of the switching algorithm is also seen to improve on the standard bootstrap.

2Notice that p = 2 is not considered when r0 = 2 because this would correspond to a purely I(0)

system.
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Nevertheless, the BaB appears preferable because it avoids the over-rejections seen in the

switching bootstrap in the four-dimensional system and/or in the case where ξ = 0.9.

It would appear from these results therefore that ignoring violations of the root condi-

tion (3.3) does not seem to be harmful for the finite sample performance of the bootstrap.

One might expect, given these findings, that the rejection frequencies of the BaB would be

lower for those replications where root violations occur than for those replications where

root violations do not occur. However, this seems to generally not be the case as the

auxiliary results in Table 2 demonstrate. Indeed, for T = 50 the rejection frequencies are

rather higher on average where the root condition is violated than where it is not. To

try and explain this result let us focus on the case where p = 2, T = 50 and ξ = 0.9. In

this case, there are 1733 Monte Carlo replications in which the root condition in (3.3) is

violated when using the bias-corrected estimates Ψ̂ obtained within Algorithm 2. Part C

of Panel B in Table 2 tells us that the rejection frequency is 0.0646 if the corrected esti-

mates Ψ̂ are used. We also simulated the standard bootstrap using the original estimates

Ψ̃ over these 1733 replications and this resulted in a rejection frequency of 0.0952. Hence,

conditional on the Monte Carlo replications in which (3.3) is violated when applying Ψ̂,

using Ψ̂ in place of Ψ̃ results in lower rejection frequencies. Thus, it is correct to say that

not using the Monte Carlo replications with root violations results in higher rejection

frequencies, even though the rejection frequency of the BaB can be higher in case of root

violations than in cases of no root violations. The same patterns are also found for the

DGPs with r0 = 1 (Case 1) and r0 = 2 (Case 2) discussed below. Hence, the comments

made above would appear to describe a general feature of the bootstrap rank tests.

The results for the root-correction bootstrap are rather similar to those for the BaB.

Hence, and in contrast to switching to the uncorrected estimates Ψ̃, reducing the bias

correction does not appear to alter the behaviour of the resulting bootstrap tests to any

significant degree. The only exception is the setup with p = 4, T = 50, and ξ = 0.9 for

which the root-correction bootstrap over-rejects somewhat more than the BaB. This again

supports the view that one can safely ignore violations of the root condition in practice.

Consider now the results for the tests of H0 : r = 1 under Case 1 which are reported in

Table 3. In the case of p = 2, the standard bootstrap already performs well. Accordingly,

not much is gained when using the BaB. In contrast, for p = 4 the standard bootstrap

displays significant over-size for ξ = 0.9 and also displays under-sizing for T = 50 and

ξ = 0.5. The BaB avoids this over-sizing although it can also be rather conservative for

T = 50 when ξ = 0.5 or ξ = 0.8. The root-correction bootstrap shows similar performance

to the BaB. The switching bootstrap also shows similar performance to the BaB for p = 2,

but is not as well behaved as the BaB when p = 4. In the latter case it displays some over-
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size for ξ = 0.9, although this is not as bad as for the standard bootstrap, and replicates

the under-size seen in the BaB when T = 50 and ξ = 0.5. The number of root violations

seen with the BaB is somewhat smaller than was the case for the corresponding results

when testing H0 : r = 0 under Case 0 in Table 1.

Overall, the use of the BaB appears to be beneficial in terms of reducing finite sample

size distortions relative to those seen in the standard bootstrap, particularly so where

strong positive serial correlation is seen in the stationary dynamics of the system. The

benefits of using the BaB also appear clearer the larger the dimension of the system and

the smaller the sample size. The performance of the root-correction bootstrap is generally

quite similar to that of the BaB although it has a greater tendency to be over-sized than

does the BaB. The switching bootstrap appears in general to be inferior to the BaB.

On the basis of the numerical results presented in this subsection we recommend that

practitioners may safely ignore any violations of the root condition in (3.3) which they

encounter.

5.2 Finite Sample Power of Tests: H0 : r = 0 and H0 : r = 1

As the results in Tables 4 and 5 for Case 1 with r0 = 1 and Case 2 with r0 = 2,

respectively, show, the finite sample power of the BaB can in some cases be a little lower

than that of the standard bootstrap. This is of course purely an artefact of the over-

sizing of the standard bootstrap tests discussed in the previous subsection; see Tables 1

and 3. For example, for T = 50 and ξ = 0.8 (Case 1, 2) or ξ = 0.9 (Case 2) the BaB

has rather lower power than the standard bootstrap but of course it is precisely these

examples where the most pronounced differences were seen between the empirical sizes of

the BaB and standard bootstrap tests in Tables 1 and 3. Where the empirical sizes of the

standard bootstrap and the BaB are similar to one another then, not surprisingly, we see

very similar power properties across the two tests. This is reassuring because it suggests

that there is no genuine loss in finite sample power from using the BaB, yet it can offer

significant improvements in finite sample size over the standard bootstrap.

Again in line with the empirical size results from Tables 1 and 3, we observe that

the switching bootstrap has higher power than the BaB in some cases because of its

corresponding over-size under the null, while the power of the root-correction bootstrap

is very similar to that of the BaB.
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5.3 Bias-Correcting the Adjustment Matrix α

As discussed in section 4, we might also consider bias-correcting the estimate of α, in

addition to the estimates of the parameters of the short-run dynamics contained in Ψ.

Accordingly, some results for the null hypothesis H0 : r = 1 for both r0 = 1 (Case 1,

empirical size) and r0 = 2 (Case 2, empirical power) are reported in columns 2 - 8 and

columns 9 - 12, respectively, of Table 6.

The results suggest that additionally bias-correcting α̃ does not really bring any sig-

nificant further improvements in finite sample size over bias correcting only the short-run

dynamics. The only differences of note are seen in very small sample sizes for the larger

dimensional system, i.e. T = 50 and p = 4, in relation to ξ = 0.5 and ξ = 0.8, where this

effects a marginal reduction in the degree of under-size seen in the BaB tests; see Table

3 and Table 6 (columns 2 - 8). However, for ξ = 0.9 when T = 50 and p = 4 we see that

the BaB and root-correction bootstrap tests which also bias-correcting α̃ now over-reject

the null. Moreover, the problem of excessive size distortion for the switching algorithm

test discussed in subsection 5.1 is seen to worsen when α̃ is also bias-corrected. Based

on these results, we therefore recommend bias-correcting only the estimator of Ψ for all

three bias-corrected bootstrap methods discussed in this paper.

5.4 Conditionally Heteroskedastic Error Terms

Finally, we consider two DGPs with conditionally heteroskedastic error terms covered by

our Assumption 2. To be precise, we use two- and four-dimensional DGPs of the form

given in (5.1) except that we replace the error term specification by the following two

cases:

ARCH(1) : εi,t = h
1/2
i,t vi,t, hi,t = 0.5 + 0.5ε2i,t−1, vi,t ∼ iid N(0, 1), i = 1, 2, 3 (5.4)

Bilinear : εi,t = ei,tei,t−1, ei,t ∼ iid N(0, 1), i = 1, 2, 3. (5.5)

Recall that we require the fourth moments of the error terms to be finite. This

requirement holds for the bilinear specification in (5.5). Following Ling & McAleer (2000)

finite fourth moments for ARCH(1) models require that 3a2 < 1, where a is the coefficient

on εi,t−1. Hence, our ARCH(1) specification in (5.4) can therefore be seen to satisfy this

condition.

Given the results of the previous subsections 5.1-5.3 we focus on the standard bootstrap

test (Algorithm 1) and the BaB test (Algorithm 2) and we only consider bias-correcting

Ψ̃. In addition to the i.i.d. re-sampling scheme applied in Algorithms 1 and 2 we also

applied a re-sampling scheme based on the wild bootstrap, as discussed in Remark 3.5.
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In this latter scheme, the bootstrap residuals are obtained by ε∗t = ε̃twt, t = k+ 1, . . . , T ,

where {wt}Tt=k+1 denotes an independentN(0, 1) scalar sequence. Accordingly, we consider

the corresponding wild bootstrap versions of the standard and BaB tests that can be

obtained by appropriately adjusting Algorithms 1 and 2 to wild bootstrap re-sampling.

We therefore analyse four bootstrap tests: the standard i.i.d. bootstrap test, the i.i.d.

BaB test, the standard wild bootstrap test, and the wild BaB test.

Selected results relating to the empirical size properties of the four bootstrap tests

are summarised in Table 7. We focus on Case 0 (r0 = 0) with ξ = 0.8 and ξ = 0.9.

Qualitatively similar results are obtained for the other cases and parameter specifications

considered previously and, hence, are not reported here.

A few remarks on the results are in order. First, the rejection frequencies of the stan-

dard i.i.d. and BaB bootstrap tests tend to be higher where the error term is conditionally

heteroskedastic than for i.i.d. errors; compare the results in Tables 1 and 7. Indeed un-

der conditional heteroskedasticity the standard bootstrap test over-rejects quite strongly.

Even the BaB test can have rather high rejection frequencies, in particular for T = 50.

The number of violations of the root condition (3.3) is slightly higher on average for the

conditionally heteroskedastic error term specifications than was the case under i.i.d. errors

but the pattern was qualitatively similar and, as a consequence, we do not report these

in Table 7. Our results on the DGPs with conditionally heteroskedastic error terms again

suggest that one can safely ignore violations of the root condition (3.3).

The standard wild bootstrap test is less affected by excessive size distortions than

the standard i.i.d. bootstrap test. Yet, the wild bootstrap version still rejects the true

null hypothesis H0 : r = 0 too often in most of the considered situations. The rejection

frequencies are sometimes even higher than those of the i.i.d. BaB test; see, for example,

the ARCH case where p = 4 and ξ = 0.9. Indeed, overall the i.i.d. BaB test displays

better finite sample size control than the standard wild bootstrap test in case of the

four-dimensional DGP.

Finally, the over-rejection which is observed for the i.i.d. BaB test in case of T = 50

is seen to be avoided by applying the wild BaB bootstrap test. However, the results also

show that the wild BaB bootstrap test has the tendency to be conservative in some cases.

Nevertheless, the BaB seems clearly preferable to the standard bootstrap framework for

both the i.i.d. and wild bootstrap versions of the tests. These findings, coupled with

those relating to i.i.d. innovations discussed previously in this section, lead us to strongly

recommend the use of the BaB in practice.
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6 Empirical Application

In this section we consider an empirical application based on Cavaliere et al. (2008) who

study international dynamic consumption risk sharing within a set of European countries.

As pointed out by Cavaliere et al. (2008) there is strong empirical evidence that domestic

aggregate consumption is not well insured against idiosyncratic shocks; that is, risks are

poorly shared internationally. Hence, the so-called ’full risk sharing hypothesis’ (FRS) is

not supported. This empirical result is explained by restrictions on international factor

mobility and goods’ trade as well as by other reasons such as habit persistence. Cavaliere

et al. (2008) argue that if these frictions are not sufficiently large to keep consumers

permanently away from the FRS-equilibrium, then departures from this equilibrium can

be analysed through a dynamic model capturing the adjustment process.

Cavaliere et al. (2008) consider a set of countries forming a risk-sharing pool with one

so-called ’leader’ country. Based on a standard international business cycle model, they

show that the FRS implies an equilibrium relationship between logged consumption of a

country in the pool, say cit, logged consumption of the leader country, say c0t , the logged

real exchange rate between the countries, say rit, and a linear trend. If cit, c
0
t , and rit

are integrated of order one, this equilibrium relationship translates into a co-integration

relation. Hence, one may interpret the FRS-equilibrium relation as a long-run anchor

in the process of risk sharing adjustment. While Cavaliere et al. (2008) formally and

empirically analyse the adjustment dynamics in detail we focus on co-integration testing

as a pre-requisite for this type of analysis.

We use the same data set as analysed by Cavaliere et al. (2008). Accordingly, we

consider Germany, France, Italy, Spain, the Netherlands, Belgium, Portugal, and Aus-

tria representing the core European Monetary Union (EMU) member countries and the

United Kingdom as the most important non-EMU country of the European Union (EU).

Germany will serve as the leader country such that we analyse eight country pairs with

respect to Germany. Specifically, c0t and cit represent the log of real per-capita private final

consumption expenditure for Germany and the other countries, respectively, and rit is the

log of the real exchange rates of the countries with respect to Germany. The annual data

cover the relatively long period from 1961 to 2003, with the effective sample size T = 41.

For data sources and further details we refer the reader to Cavaliere et al. (2008).

In addition to the asymptotic PLR rank test results reported in Cavaliere et al. (2008)

we also report the corresponding results for the standard bootstrap and the BaB tests,

in each case for both the i.i.d. and the wild bootstrap versions. We follow Cavaliere

et al. (2008) and base the co-integration tests on three-dimensional VAR(2) models which
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contain c0t , c
i
t, and rit regarding the eight country pairs, respectively.3 The resulting VEC

model contains a linear trend restricted to the error-correction term, as specified in (2.2).

The results are summarized in Tables 8 and 9. We display the p-values of the rank

tests and the estimates of the diagonal elements of Γ1, the parameter matrix associated

with the first lag of ∆yt in the VECM on which the corresponding null hypothesis is

imposed. These estimates will facilitate the interpretation of the results.

Applying the asymptotic PLR rank test, one finds evidence for one co-integration

relation for the France-Germany, Italy-Germany, and Belgium-Germany pairs.4 In case of

the Portugal-Germany pair two co-integration relations are indicated by the asymptotic

tests. Basing inference on the bootstrap approach, however, overturns these test decisions

with the exception of the Portugal-Germany pair. In fact, the bootstrap tests provide

no evidence for co-integration except for the Portugal-Germany pair. Indeed, for the

Portugal-Germany pair, while the wild bootstrap tests yield the same conclusion as the

asymptotic test results, at least at the 10% significance level, the i.i.d. bootstrap tests

suggest a co-integration rank of one at this significance level as the theory of international

risk sharing implies. Hence, in this example we see that the choice of a specific bootstrap

test can be crucial.

In general we see that the p-values of the bootstrap tests are higher than those of

the corresponding asymptotic rank test. This would not be a surprising result if the true

rank were equal to zero. The simulation results of Cavaliere et al. (2013) show that the

asymptotic test is significantly oversized when testing the true null hypothesis H0 : r = 0.

For the bivariate and four-dimensional VAR(2) processes with ξ = 0.5 considered in our

simulation study, the empirical rejection frequencies of the asymptotic test are 0.1140,

0.0778, and 0.0646 (p = 2) and 0.4708, 0.2086, and 0.1076 (p = 4) for T = 50, T = 100,

and T = 200, respectively. These size distortions are even further amplified if we set

ξ to 0.8 or 0.9. Since only small samples are available we may expect rather large size

distortions for the asymptotic test resulting in relatively low p-values if the true rank is

r0 = 0. In contrast, even the standard i.i.d. bootstrap test can greatly reduce the size

distortions in such a situation as our simulation results in Table 1 demonstrate.

In relative terms, the differences between the p-values of the i.i.d. BaB tests and the

corresponding standard i.i.d. bootstrap tests are much smaller than the differences be-

3Note that Cavaliere et al. (2008) use k = 1 lag for the Austria-Germany system. However, we decided

to set k = 2 for illustrative purposes since there would be otherwise no parameter estimates with respect

to the lagged first differences.
4If a VAR(1) model is used for the Austria-Germany pair as in Cavaliere et al. (2008), then the

asymptotic test also suggests r = 1 for this pair. Using the critical values from Johansen (1996), as used

in Cavaliere et al. (2008), one co-integration relation is found at the 10% level for the UK-Germany pair.
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tween the rejection frequencies of the latter and the asymptotic tests. A similar conclusion

holds for the wild bootstrap test outcomes. The simulation results from section 5 suggest

that it is where diagonal elements of Γ1 are large that we might expect to see significant

differences between the p-values associated with the BaB and standard bootstrap tests;

see, for example, Table 1. The estimates of the diagonal elements of Γ1, shown in the

last three columns of Tables 8 and 9, are in the main smaller than 0.5 suggesting that

one might not expect very large changes from bias-correcting these parameter estimates.

In general the empirical results appear to follow this prediction. However, in almost all

cases bias-correcting a given bootstrap test leads to an increased p-value, with this being

more pronounced the larger the estimates of the diagonal elements of Γ1.

7 Conclusions

Bootstrap implementations of the likelihood ratio co-integrating rank tests of Johansen

(1996) are known to deliver significant improvements in finite sample behaviour, relative

to the use of asymptotic critical values. However, notable finite sample size distortions are

still observed with these bootstrap tests when the stationary dynamics of the underlying

VAR process shows strong serial correlation and/or conditional heteroskedasticity. In this

paper we have shown that these size distortions can be all but eliminated by the use of a

bootstrap-after-bootstrap method, whereby the parameter estimates from the estimated

co-integrated VAR model are bias-corrected using the framework of Kilian (1998). Here

estimates of the bias in the original parameter estimates are obtained from the average

bias in the corresponding parameter estimates taken across a large number of auxiliary

bootstrap replications. A number of possible implementations of this procedure were

discussed.

Our results lead us to strongly recommend the use of the bootstrap-after-bootstrap

method, either in conjunction with i.i.d. bootstrap or wild bootstrap co-integration rank

tests, and that violations of the so-called root conditions in these two bootstrap procedures

can be safely ignored in practice, as may extensions to the basic bootstrap-after-bootstrap

method involving either a switching bootstrap or root-correction bootstrap. Moreover,

applying the bootstrap-after-bootstrap method to the long run component of the system

did not appear to deliver any noticeable gains in accuracy once the sort run dynamics of

the system had been bias-corrected.

An application of the bootstrap techniques discussed in this paper to re-assess the em-

pirical evidence provided by Cavaliere et al. (2008) on international dynamic consumption

risk sharing within a set of European countries was also considered. We found consider-

19



ably less evidence in favour of co-integration than was found by Cavaliere et al. (2008) on

the basis of asymptotic co-integration rank tests, casting doubt upon the existence of a

risk-sharing equilibrium serving as a long-run anchor for consumption streams within the

EU.

Finally, in this paper we have followed Cavaliere et al. (2012) and focused our attention

on the case where either no deterministic component is present or where either a restricted

constant or restricted trend model is considered. The same principles as are outlined in

this paper can also be straightforwardly applied in the context of the unrestricted constant

or unrestricted trend models, using the corresponding bootstrap co-integration rank tests

recently proposed in Cavaliere, Rahbek & Taylor (2013b).
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Table 5. Number of Violations of Root Condition (3.3) and Rejection Frequencies of
Tests four-dimensional VAR(2) (5.1) with r0 = 2 (Case 2: a11 = a21 = −0.4, a22 = −0.6),
H0 : r = 1 (Empirical Power), Significance Level 0.05.

Standard Bootstrap-after Switching Root-corr.

Bootstrap Bootstrap Bootstrap Bootstrap

rej. freq. root viol. rej. freq. root viol. rej. freq. rej. freq.
Part A: ξ = 0.5

T = 50 0.1344 0 0.1142 0 — —
T = 100 0.7676 0 0.7604 0 — —
T = 200 1.0000 0 1.0000 0 — —

Part B: ξ = 0.8

T = 50 0.4666 57 0.3616 691 0.3750 0.3652
T = 100 0.9872 1 0.9824 14 0.9824 0.9824
T = 200 1.0000 0 1.0000 0 — —

Part C: ξ = 0.9

T = 50 0.7532 533 0.6540 3110 0.7128 0.6842
T = 100 0.9996 90 0.9988 850 0.9988 0.9988
T = 200 1.0000 3 1.0000 19 1.0000 1.0000

Note: see Table 1.

26



T
a
b
le

6
.

N
u
m

b
er

of
V

io
la

ti
on

s
of

R
o
ot

C
on

d
it

io
n

(3
.3

)
an

d
R

ej
ec

ti
on

F
re

q
u
en

ci
es

of
T

es
ts

fo
r

V
A

R
(2

)
(5

.1
)

w
it

h
r 0

=
1,
H

0
:
r

=
1,

S
ig

n
ifi

ca
n
ce

L
ev

el
0.

05
,

Ψ̃
=

(Γ̃
1
,.
..
,Γ̃

k
−
1
)

an
d
α̃

ar
e

ad
ju

st
ed

.

P
an

el
A

:
p

=
2,

C
as

e
1

P
an

el
B

:
p

=
4,

C
as

e
1

P
an

el
C

:
p

=
4,

C
as

e
2

(a
1

=
a
2

=
−

0.
4,

(a
1

=
a
2

=
−

0.
4,

(a
1
1

=
a
2
1

=
−

0.
4,
a
2
2

=
−

0.
6,

E
m

p
ir

ic
al

S
iz

e)
E

m
p
ir

ic
al

S
iz

e)
E

m
p
ir

ic
al

P
ow

er
)

B
aB

S
w

it
ch

in
g

R
o
ot

-c
or

r.
B

aB
S
w

it
ch

in
g

R
o
ot

-c
or

r.
B

aB
S
w

it
ch

in
g

R
o
ot

-c
or

r.
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p

re
j.

ro
ot

re
j.

re
j.

re
j.

ro
ot

re
j.

re
j.

re
j.

ro
ot

re
j.

re
j.

fr
eq

.
v
io

l.
fr

eq
.

fr
eq

.
fr

eq
.

v
io

l.
fr

eq
.

fr
eq

.
fr

eq
.

v
io

l.
fr

eq
.

fr
eq

.
P

ar
t

A
:
ξ

=
0.

5

T
=

50
0.

04
46

1
0.

04
46

0.
04

46
0.

02
86

2
0.

02
86

0.
02

86
0.

11
60

22
0.

11
60

0.
11

60
T

=
10

0
0.

04
92

0
—

—
0.

04
88

0
—

—
0.

75
26

0
—

—
T

=
20

0
0.

05
38

0
—

—
0.

05
20

0
—

—
1.

00
00

0
—

—

P
ar

t
B

:
ξ

=
0.

8

T
=

50
0.

04
82

14
4

0.
04

84
0.

04
84

0.
04

78
84

2
0.

05
32

0.
04

92
0.

39
26

13
38

0.
40

20
0.

40
22

T
=

10
0

0.
04

88
0

—
—

0.
04

60
2

0.
04

60
0.

04
60

0.
98

30
39

3
0.

98
30

0.
98

32
T

=
20

0
0.

05
44

0
—

—
0.

04
92

0
—

—
1.

00
00

43
1.

00
00

1.
00

00

P
ar

t
C

:
ξ

=
0.

9

T
=

50
0.

04
70

10
90

0.
05

02
0.

04
72

0.
06

98
30

62
0.

09
06

0.
07

16
0.

69
08

33
67

0.
72

58
0.

71
30

T
=

10
0

0.
04

78
83

0.
04

80
0.

04
78

0.
04

36
73

9
0.

04
90

0.
04

42
0.

99
88

16
99

0.
99

88
0.

99
90

T
=

20
0

0.
04

82
0

—
—

0.
04

34
1

0.
04

34
0.

04
34

1.
00

00
32

8
1.

00
00

1.
00

00

N
o
te

:
se

e
T

ab
le

1.

27



T
a
b
le

7
.

R
ej

ec
ti

on
F

re
q
u
en

ci
es

of
T

es
ts

fo
r

V
A

R
(2

)
(5

.1
)

w
it

h
r 0

=
0

(C
as

e
0:
a
1

=
a
2

=
0)

,
H

0
:
r

=
0

(E
m

p
ir

ic
al

S
iz

e)
,

S
ig

n
ifi

ca
n
ce

L
ev

el
0.

05

P
an

el
A

:
p

=
2

P
an

el
B

:
p

=
4

i.
i.
d
.-

B
o
ot

st
ra

p
s

W
il
d

B
o
ot

st
ra

p
s

i.
i.
d
.-

B
o
ot

st
ra

p
s

W
il
d

B
o
ot

st
ra

p
s

S
ta

n
d
ar

d
B

aB
S
ta

n
d
ar

d
B

aB
S
ta

n
d
ar

d
B

aB
S
ta

n
d
ar

d
B

aB

B
o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p

P
ar

t
A

:
A

R
C

H
-e

rr
or

te
rm

sp
ec

ifi
ca

ti
on

(5
.4

),
ξ

=
0.

8

T
=

50
0.

08
00

0.
05

78
0.

05
22

0.
03

48
0.

14
80

0.
08

14
0.

09
52

0.
04

50
T

=
10

0
0.

06
08

0.
05

28
0.

04
80

0.
03

74
0.

09
94

0.
06

38
0.

06
74

0.
03

66
T

=
20

0
0.

06
00

0.
05

70
0.

05
06

0.
04

72
0.

07
16

0.
05

70
0.

05
82

0.
04

56

P
ar

t
B

:
A

R
C

H
-e

rr
or

te
rm

sp
ec

ifi
ca

ti
on

(5
.4

),
ξ

=
0.

9

T
=

50
0.

10
06

0.
07

14
0.

06
60

0.
04

28
0.

19
04

0.
11

40
0.

12
42

0.
07

00
T

=
10

0
0.

07
50

0.
05

72
0.

05
48

0.
03

86
0.

14
26

0.
07

06
0.

10
20

0.
03

96
T

=
20

0
0.

07
04

0.
05

96
0.

05
32

0.
04

58
0.

09
28

0.
05

44
0.

07
28

0.
04

14

P
ar

t
C

:
B

il
in

ea
r-

er
ro

r
te

rm
sp

ec
ifi

ca
ti

on
(5

.5
),
ξ

=
0.

8

T
=

50
0.

09
14

0.
07

14
0.

05
96

0.
04

38
0.

13
84

0.
07

86
0.

08
38

0.
03

88
T

=
10

0
0.

06
22

0.
05

38
0.

04
78

0.
04

00
0.

09
04

0.
05

36
0.

06
18

0.
03

16
T

=
20

0
0.

05
96

0.
05

64
0.

05
36

0.
04

94
0.

07
14

0.
05

92
0.

05
54

0.
04

26

P
ar

t
D

:
B

il
in

ea
r-

er
ro

r
te

rm
sp

ec
ifi

ca
ti

on
(5

.5
),
ξ

=
0.

9

T
=

50
0.

10
70

0.
08

52
0.

07
60

0.
04

90
0.

19
14

0.
11

22
0.

11
68

0.
05

54
T

=
10

0
0.

07
66

0.
05

92
0.

05
96

0.
04

00
0.

13
82

0.
07

12
0.

09
96

0.
03

92
T

=
20

0
0.

06
44

0.
05

52
0.

05
42

0.
04

54
0.

08
98

0.
05

22
0.

06
86

0.
03

44

N
o
te

:
p
-v

a
lu

es
fo

r
th

e
a
sy

m
p

to
ti

c
ra

n
k

te
st

h
av

e
b

ee
n

ob
ta

in
ed

fr
om

th
e

ap
p

ro
ac

h
of

M
ac

K
in

n
on

,
H

au
g

&
M

ic
h

el
is

(1
99

9)
.

28



T
a
b
le

8
.

C
oi

n
te

gr
at

io
n

T
es

t
R

es
u
lt

s
(p

-v
al

u
es

)
an

d
es

ti
m

at
es

of
Γ
ii
,
i

=
1,

2,
3,

fo
r

th
e

co
u
n
tr

y
-s

p
ec

ifi
c

V
A

R
(2

)
sy

st
em

s,
P

ar
t

1

P
an

el
A

:
p-

va
lu

es
P

an
el

B
:

i.
i.
d
.-

B
o
ot

st
ra

p
s

W
il
d

B
o
ot

st
ra

p
s

P
ar

am
et

er
E

st
im

at
es

as
y
m

p
to

ti
c

S
ta

n
d
ar

d
B

aB
S
ta

n
d
ar

d
B

aB

H
0

ra
n
k

te
st

B
o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
Γ̂
1
1

Γ̂
2
2

Γ̂
3
3

P
ar

t
A

:
F

ra
n
ce

r
=

0
0.

01
81

0.
10

30
0.

11
46

0.
16

22
0.

17
46

0.
16

4
0.

45
1

0.
08

9
r

=
1

0.
30

74
0.

04
67

0.
49

31
0.

35
57

0.
37

39
0.

17
2

0.
36

9
0.

14
6

r
=

2
0.

25
03

0.
22

91
0.

23
65

0.
19

20
0.

20
32

0.
33

4
0.

22
7

0.
14

8

P
ar

t
B

:
It

al
y

r
=

0
0.

05
20

0.
20

58
0.

22
83

0.
37

05
0.

38
73

0.
27

7
0.

26
2

0.
18

5
r

=
1

0.
34

08
0.

50
53

0.
53

95
0.

45
27

0.
46

89
0.

50
3

0.
38

8
-0

.0
14

r
=

2
0.

36
29

0.
25

61
0.

25
73

0.
24

37
0.

23
47

0.
39

6
0.

21
4

-0
.0

25

P
ar

t
C

:
S
p
ai

n

r
=

0
0.

19
72

0.
50

55
0.

54
93

0.
67

51
0.

70
39

0.
28

7
0.

58
8

0.
17

5
r

=
1

0.
42

08
0.

57
95

0.
60

89
0.

69
67

0.
72

29
0.

16
5

0.
57

0
0.

33
9

r
=

2
0.

24
51

0.
23

51
0.

28
41

0.
26

11
0.

29
57

0.
05

2
0.

60
0

0.
33

3

P
ar

t
D

:
N

et
h
er

la
n
d
s

r
=

0
0.

34
56

0.
70

01
0.

73
98

0.
66

31
0.

71
81

0.
08

8
0.

67
2

0.
11

7
r

=
1

0.
47

55
0.

66
71

0.
70

19
0.

64
51

0.
67

41
0.

00
6

0.
56

5
0.

17
0

r
=

2
0.

41
58

0.
49

27
0.

51
87

0.
49

27
0.

52
73

0.
00

5
0.

59
3

0.
09

0

N
o
te

:
p
-v

a
lu

es
fo

r
th

e
a
sy

m
p

to
ti

c
ra

n
k

te
st

h
av

e
b

ee
n

ob
ta

in
ed

fr
om

th
e

ap
p

ro
ac

h
of

M
ac

K
in

n
on

et
al

.
(1

99
9)

.

29



T
a
b
le

9
.

C
oi

n
te

gr
at

io
n

T
es

t
R

es
u
lt

s
(p

-v
al

u
es

)
an

d
es

ti
m

at
es

of
Γ
ii
,
i

=
1,

2,
3,

fo
r

th
e

co
u
n
tr

y
-s

p
ec

ifi
c

V
A

R
(2

)
sy

st
em

s,
P

ar
t

2

P
an

el
A

:
p-

va
lu

es
P

an
el

B
:

i.
i.
d
.-

B
o
ot

st
ra

p
s

W
il
d

B
o
ot

st
ra

p
s

P
ar

am
et

er
E

st
im

at
es

as
y
m

p
to

ti
c

S
ta

n
d
ar

d
B

aB
S
ta

n
d
ar

d
B

aB

H
0

ra
n
k

te
st

B
o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
B

o
ot

st
ra

p
Γ̂
1
1

Γ̂
2
2

Γ̂
3
3

P
ar

t
A

:
B

el
gi

u
m

r
=

0
0.

07
56

0.
26

29
0.

28
51

0.
20

88
0.

22
93

0.
30

8
0.

27
2

0.
27

6
r

=
1

0.
57

50
0.

74
02

0.
75

82
0.

67
11

0.
69

27
0.

28
5

0.
14

6
0.

47
6

r
=

2
0.

32
73

0.
20

88
0.

20
80

0.
20

26
0.

20
38

0.
19

7
0.

16
5

0.
48

3

P
ar

t
B

:
P

or
tu

ga
l

r
=

0
0.

00
69

0.
06

54
0.

07
92

0.
04

88
0.

05
98

0.
31

4
0.

64
3

0.
21

9
r

=
1

0.
02

81
0.

13
20

0.
13

12
0.

08
02

0.
07

98
0.

34
5

-0
.0

26
0.

25
0

r
=

2
0.

22
03

0.
38

01
0.

38
13

0.
29

39
0.

29
81

0.
35

6
-0

.0
26

0.
51

7

P
ar

t
C

:
A

u
st

ri
a

r
=

0
0.

21
58

0.
43

59
0.

45
21

0.
36

81
0.

38
73

0.
35

3
-0

.0
01

0.
18

6
r

=
1

0.
52

07
0.

68
63

0.
69

29
0.

56
81

0.
57

81
0.

26
6

-0
.0

64
0.

19
8

r
=

2
0.

51
60

0.
55

65
0.

55
09

0.
59

45
0.

59
69

0.
32

8
-0

.0
86

0.
09

1

P
ar

t
D

:
U

n
it

ed
K

in
gd

om

r
=

0
0.

10
25

0.
32

51
0.

35
19

0.
24

97
0.

28
27

0.
34

5
0.

36
2

0.
29

5
r

=
1

0.
18

15
0.

29
73

0.
31

89
0.

23
37

0.
26

17
0.

32
1

0.
36

2
0.

41
0

r
=

2
0.

32
80

0.
39

09
0.

39
69

0.
32

09
0.

34
05

0.
19

0
0.

47
7

0.
45

6

N
o
te

:
se

e
T

ab
le

8.

30


	Cover page WP Word 13-06
	wp_mannheim
	Introduction
	The Model Framework and Rank Tests
	Bootstrap Co-integration Rank Tests
	Implementing Bias-Correction
	Numerical Results
	Empirical Size of Tests: H0: r=0 and H0: r=1
	Finite Sample Power of Tests: H0: r=0 and H0: r=1
	Bias-Correcting the Adjustment Matrix 
	Conditionally Heteroskedastic Error Terms

	Empirical Application
	Conclusions


