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1 Introduction

This paper studies mechanism design problems in environments with ambiguity-sensitive

individuals. The central and novel aspect of our analysis is to consider ambiguous

mechanisms. That is, we give the designer the possibility to endogenously engineer

ambiguity in its mechanisms. After all, if individuals are ambiguity-sensitive, why should

we preclude the use of ambiguous mechanisms, if it helps the designer in achieving its

goals? As an example, consider a tax evasion problem. Tax authorities can be ambiguous

about the likelihood of auditing taxpayers. For instance, suppose that the tax authority

audits a taxpayer based on the draw of a ball from an urn containing a number of balls

of different colors with unknown proportions (an “Ellsberg” urn). Would this dose of

ambiguity help? As another example, consider the main refinancing operations of the

European Central Bank (henceforth, ECB). To provide short-term liquidities, the ECB

organizes weekly tender auctions, typically held every Tuesday. The ECB regulations

carefully and meticulously specify all aspects of the tender auctions, so that there is

little scope for ambiguity at this stage. However, prior to each weekly auction, the

ECB communicates with the eligible counterparts about their liquidity needs.1 And

the communication can be ambiguous. Again, would such ambiguity help the ECB in

steering the monetary policy? These questions echo the main theme of this paper: does

the introduction of ambiguity in mechanism design help the designer in achieving its

desired goals?

A natural starting point is to introduce ambiguity in the allocation rule. While

simple and indeed appealing, the introduction of ambiguity in the allocation rule does

not enlarge the set of (partially) implementable social choice functions, however.2 ,3 The

1See “The implementation of Monetary Policy In The Euro Area,” February 2011, European Central
Bank, http://www.ecb.europa.eu/mopo/implement/omo/html/index.en.html.

2In the sequel, we omit the qualifier “partial” and write “implementation” for “partial implementa-

tion.”
3See, however, the discussion towards the end of this section as to why the situation might be

different if the goal is to implement a social choice set.
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intuition is simple. While one can design an allocation rule that formally depends on

some extraneous random variable (e.g., the draw from an “Ellsberg” urn), the (equilib-

rium) outcome has to be invariant across the realized value of this random variable, if

the mechanism is to implement the given social choice function. Hence, a mechanism

with an ambiguous allocation rule cannot (in itself) implement a social choice function

that is not implementable by a classical (i.e., unambiguous) mechanism.

Nevertheless, we show that through the use of appropriately constructed ambiguous

mechanisms, it is possible to implement social choice functions that are not imple-

mentable by using a standard, unambiguous mechanism. The critical ingredient in such

construction is to add an ambiguous mediated communication stage prior to the un-

ambiguous allocation stage. Classical mediated communication is comprised of sets of

messages that agents can send to the designer, sets of messages that agents can receive

from the designer, and a (i.e., single) mapping from messages received by the designer to

probabilities over messages sent by the designer. Ambiguous mediated communication

differs by having instead a set of mappings from messages received by the designer to

probabilities over messages received. In essence, when an agent receives a message from

the designer, he is ambiguous about the exact communication device that has been used

by the designer. Our ambiguous mechanism is thus a mediated extension of a classical

mechanism; however unlike a classical mediated extension (Myerson, 1986; Forges, 1986,

1990), the extensions we consider are ambiguous.

An ambiguous mechanism, i.e., a classical mechanism extended by rounds of am-

biguous mediated communication, thus gives rise to a dynamic game with ambiguity-

sensitive players. Our first task is to define an appropriate notion of equilibrium - called

a “consistent planning equilibrium” - for such an environment. We next define the cor-

responding notion of incentive compatible social choice functions. The main theoretical

contribution of this paper is to provide a suitable revelation principle for this class of

mechanism design problems. An ambiguous “direct” mechanism is a direct revelation

mechanism for the allocation stage, extended by one round of mediated ambiguous com-
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munication. Our revelation principle (Theorem 1) states that a social choice function

is implementable by an ambiguous mechanism if and only if it is implementable by an

ambiguous “direct” mechanism.

This paper contributes to the growing literature on mechanism design with ambiguity-

sensitive individuals, e.g., Bodoh-Creed (2011), Bose et al. (2006), Bose and Daripa

(2009), Lopomo et al. (2010), Salo and Weber (1995), just to name a few. This liter-

ature differs from our analysis in one fundamental aspect, however. While we give the

designer the possibility to endogenously engineer ambiguity, this literature constrains

the designer to offer classical unambiguous mechanisms (often static, moreover). In par-

ticular, if there is no exogenous ambiguity, a social choice function is implementable

by an unambiguous mechanism if and only if it is (classically) incentive compatible

(Myerson, 1979). With no exogenous ambiguity and unambiguous mechanisms, it is as

if individuals are ambiguity-insensitive. In contrast, even when there is no exogenous

ambiguity, Proposition 1 demonstrates that the set of implementable social choice func-

tions enlarges dramatically when ambiguous mechanisms are allowed. For instance, we

revisit the classical monopolistic screening problem and show that ex-post full surplus

extraction is possible, even when there is no ex-ante uncertainty.

After having completed this work, we became aware of a work in progress by Di

Tillio, Kos and Messmer. These authors also explore the effects of introducing ambigu-

ity in mechanisms in environments with ambiguity-sensitive preferences (more precisely,

multiple-prior preferences). While the two works are closely related and indeed com-

plement each others, there is a number of important differences. To start with, they

focus on the revenue maximization problem in a single seller-buyer setup, whereas our

objective is to characterize the entire set of social choice functions implementable by

ambiguous mechanisms. Secondly, and more importantly, they introduce ambiguity in

the allocation rule, so that the buyer is uncertain about the alternative to be imple-

mented, even conditional on messages sent. As mentioned earlier, while we also consider

the possibility of introducing ambiguity in the allocation rule, we show that it has no
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effect for the implementation of social choice functions (see Section 6.2); this explains

our focus on the introduction of ambiguity at the pre-allocation stage. Nonetheless, as

their work suggests, introducing ambiguity in the allocation rule can expand the set

of social choice sets that are implementable. Indeed, the revenue maximization prob-

lem of a seller, selling to a buyer privately informed about the valuation of the object,

corresponds to the implementation of a set of social choice functions (and not to the

implementation of a single social choice function). For instance, if the buyer has a con-

tinuum of possible valuations, any pair of social choice functions that differ in a set of

measure zero are equivalent. Di Tillio et al. show that the introduction of ambiguity

in the allocation rule makes it possible for the seller to extract more surplus from the

trade, and when the buyer has a continuum of possible valuations, the seller can even

extract the entire surplus (under the assumption that the distribution of valuations is

atomless). Another important difference with our work is their focus on pure strategies.

In contrast, we explicitly consider mixed strategies, which we think is an essential and

fundamental component of any model with ambiguity averse agents.

We now present a simple example that illustrates the main arguments and intuitions

of our analysis.

2 An Introductory Example

This section illustrates our main results with the help of a simple example. There are

two players, labeled 1 and 2, two (payoff-relevant) types θ and θ′ for each player, and

four alternatives x, y, z and w. Types are private information. Throughout, we write

“i” for “i ∈ {1, 2}” and omit the qualifier “j 6= i,” whenever no confusion arises.

We assume that players have multiple-prior preferences (Gilboa and Schmeidler,

1989) and prior-by-prior updating (full Bayesian updating); see Pires (2002) for an

axiomatization. Denote Pi(θ) (resp., Pi(θ
′)) the set of priors of player i of type θ (resp.,

θ′) and ui his utility function. An element of Pi(θ) (resp., Pi(θ
′)) represents a prior belief

of player i of type θ (resp., θ′) about the likelihood of player j’s type to be θ. Utilities
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are given in the table below. For instance, at state (θ, θ′), the utility of z to player 1

(resp., player 2) is 3 (resp., 0).

(u1, u2) (θ, θ) (θ, θ′) (θ′, θ) (θ′, θ′)

x (2, 2) (2, 0) (0, 2) (0, 0)

y (1, 3) (1, 2) (0, 3) (0, 2)

z (3, 1) (3, 0) (2, 1) (2, 0)

w (0, 0) (0, 2) (2, 0) (2, 2)

The designer aims at (partially) implementing the ex-post efficient social choice func-

tion f defined by: f(θ, θ) = x, f(θ, θ′) = y, f(θ′, θ) = z and f(θ′, θ′) = w.4

Assume that priors are independent of types, so that Pi(θ) = Pi(θ
′) := Pi. To crisply

illustrate the role of ambiguity in mechanism design, we consider the starkest possible

case, whereby there is no ex-ante ambiguity, i.e., Pi is the singleton {pi} for each player

i. For concreteness, assume that {pi} = {2/3}.

Clearly, no classical mechanism implements the social choice function f , since it

fails to be incentive compatible. Yet, we argue that introducing some ambiguity in an

otherwise classical mechanism makes it possible to implement f .

The central idea of this paper is to add a communication stage prior to the allocation

stage and to introduce ambiguity at the communication stage.5 More specifically, sup-

pose that prior to the allocation stage, the players can communicate with the designer,

i.e., they can send messages to and receive messages from the designer. A communi-

cation device specifies the messages players can send, the messages players can receive,

and a probability system specifying the probabilities with which messages are sent to

the players conditional on messages received from the players. A communication device

is ambiguous if it specifies a (non-singleton) set of probability systems.

4Note that if we change the payoff of 3 to a payoff of 3 − ε with ε > 0 small enough, all our results

go through and f is the unique ex-post efficient social choice function.
5As Section 6 demonstrates, ambiguity at the allocation stage does not help in implementing f .
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To see how the ambiguous communication stage makes it possible to implement f ,

consider first the hypothetical situation where player i has ambiguous beliefs about the

type of player j. Suppose that f is incentive compatible with respect to the set of beliefs

Π∗
i , i.e.,

min
πi∈Π∗

i

ui(f(θ, θ), θ)πi + ui(f(θ, θ′), θ)(1 − πi) ≥

min
πi∈Π∗

i

[σi(ui(f(θ, θ), θ)πi + ui(f(θ, θ′), θ)(1 − πi))+

(1 − σi)(ui(f(θ′, θ), θ)πi + ui(f(θ′, θ′), θ)(1 − πi))],

for all σi ∈ [0, 1].6 In words, truth-telling is optimal for player i of type θ whenever

player i expects player j to truthfully report his type and has the set of priors Π∗
i about

the type of player j. For instance, f is incentive compatible with respect to {0, 1} or

[0, 1].7 The crucial insight of this paper is that it is possible to construct an ambiguous

communication device such that, conditional on every message player i can receive from

the communication device, his posterior beliefs are precisely Π∗
i .

To illustrate further, we now construct an ambiguous communication device that

generates the set of beliefs Π∗
i := {0, 1} for each player i. To this end, assume that each

player can send θ or θ′ to the designer, can receive ω or ω′ from the designer and that

there are two possible probability systems λ and λ′. Denote λi(ωi|θj) the probability that

player i receives the message ωi ∈ {ω, ω′} conditional on player j’s message θj ∈ {θ, θ′}

and let λ((ω1, ω2)|(θ1, θ2)) = λ1(ω1|θ2)λ2(ω2|θ1) for each possible (ω1, ω2) and (θ1, θ2).

Assuming λi(ω|θ) = 1 and λi(ω
′|θ′) = 1 thus fully defines the first probability system

λ. Similarly, the second probability system λ′ is fully specified by λ′
i(ω|θ

′) = 1 and

λ′
i(ω

′|θ) = 1.8 Clearly, if the probability system is λ, player i’s posterior belief is 1 if

he receives the message ω and 0, otherwise. Alternatively, if the probability system is

6Since it is strictly dominant for player i of type θ′ to truthfully report his type, we focus on player

i of type θ.
7More generally, it is incentive compatible for all [πi, πi] with πi ≤ 1/2.
8Note that each probability system is a cyclic permutation of the other. This will play an important

role in the general construction later.
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λ′, player i’s posterior belief is 0 if he receives the message ω and 1, otherwise. Thus,

regardless of the message received, player i’ set of posteriors is Π∗
i = {0, 1}.

It thus remains to argue that a stage of mediated and ambiguous communication prior

to the allocation stage indeed implements f . Concretely, the implementing ambiguous

mechanism is as follows. In the first stage, players communicate with the designer

through the ambiguous communication device constructed above. In the second stage,

players announce their types to the designer, who then implements an alternative accord-

ing to f . It is important to note that the allocation depends only on the second-stage

reports. The implementing mechanism is thus the classical direct mechanism extended

by a phase of mediated communication.

So, assume that player j truthfully reports his type to the communication device

at the first stage and truthfully reports his type at the second stage, regardless of the

messages he has sent and received in the first stage. It follows from the construction

of the communication device that player i’s beliefs at the second stage are given by Π∗
i ,

regardless of the messages he has sent and received in the first stage. Thus, player i

has an incentive to truthfully reveal his type at the second stage. Lastly, since player

i expects player j and himself to truthfully reveal their types at the allocation stage,

regardless of the messages sent and received, he has no incentive to lie at the first stage.

The social choice function f is thus implementable by an ambiguous mechanism.

While this construction might puzzle the reader, we now provide a decision-theoretic

interpretation of our construction that shed light on important conceptual issues.

A decision theoretic interpretation. Consider an urn containing 90 balls. Each

ball is marked with either (θ, ω), (θ, ω′), (θ′, ω) or (θ′, ω′). There are 60 balls marked

with θ and 30 balls marked with θ′. Moreover, the composition of the urn is one of only

two possible compositions. With the first composition, all balls marked with θ (resp.,

θ′) are also marked with ω (resp., ω′). With the second composition, all balls marked

with θ (resp., θ′) are also marked with ω′ (resp., ω).

A ball is drawn from the urn at random. The decision maker is offered two bets, A

8



and B. The bet A gives x if the ball is marked with θ and y if the ball is marked with

θ′, while the bet B gives z if the ball is marked with θ and w if the ball is marked with

θ′. Prior to choosing a bet, the decision maker can observe whether the ball is marked

with ω or ω′. The decision problem is represented in Figure 1; the first (resp., second)

line corresponds to prizes in state θ (resp., θ′).

The decision maker is player 1 of type θ in our mechanism design problem. The state

space represents the possible types of player 2 and messages player 1 can receive from

the communication device constructed above. Moreover, the possible composition of the

urn respects the prior belief of player 1 as well as the ambiguity in the communication

device. Finally, conditional on player 1 of type θ expecting player 2 to tell the truth, the

bet A corresponds to player 1 telling the truth, while the bet B corresponds to lying.

Formally, the state space is {θ, θ′} × {ω, ω′} and the set of priors beliefs of the decision

maker is {(2/3, 0, 0, 1/3), (0, 2/3, 1/3, 0)}. We maintain the assumption of multiple prior

preferences and assume prior-by-prior updating (full Bayesian updating).

ω′ω

B

z

w

A

x

y

B

z

w

A

x

y

Figure 1: The decision problem

Clearly, upon learning whether the ball is marked with ω or ω′, the decision maker

strictly prefers A over B and, more generally, over any randomization between A and

B.

Consider now the ex-ante plans AA, AB, BA and BB, where the first (resp., second)

letter corresponds to the choice of bet conditional on ω (resp., ω′). For instance, the

plan AB prescribes the choice of A if ω is revealed and the choice of B if ω′ is revealed.

Assume that the decision maker evaluates the plan AB by “reducing” it to the bet giving
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x if the ball is (θ, ω), y if the ball is (θ′, ω), z if the ball is (θ, ω′), and w if the ball is

(θ′, ω′). Similarly, for the other plans.

We have that the decision maker strictly prefers the plan BB to the plan AA, the

plan AA to the plans AB and BA, and is indifferent between the plans AB and BA.9

To sum up, we have that conditional on either ω or ω′, the decision maker strictly

prefers A to B, but ex-ante, he strictly prefers the plan BB to AA. The decision maker’s

preferences are dynamically inconsistent and our construction precisely exploits this fact.

We briefly comment on this fundamental aspect of our analysis and refer the reader

to the special issue of Economics and Philosophy (2009) for an in-depth discussion and

further references. Dynamic consistency and Bayesian updating are intimately related

to Savage’s sure-thing principle, and ambiguity-sensitive preferences generally entail a

violation of the sure-thing principle. Consequently, if one wants to analyze ambiguity-

sensitive preferences, then either dynamic consistency or full Bayesian updating must

be relaxed, at least to some extent. The approach we follow in this paper is to relax

the assumption of dynamic consistency. To analyze dynamic games with dynamically

inconsistent preferences, we assume that players are consistent planners, i.e., at every

information set a player is active, he choses the best strategy given the strategies he will

actually follow and the opponents’ strategies (see Siniscalchi, 2010).

An alternative approach would be to maintain a form of dynamic consistency and to

relax the assumption of full Bayesian updating. Hanany and Klibanoff (2007) provide

such an alternative for the multiple-prior preferences. Without entering into details,

their approach would require to update the prior (2/3, 0, 0, 1/3) upon observing ω and

the prior (0, 2/3, 1/3, 0) upon observing ω′, so that the plan BB remains conditionally

optimal.10 Thus, according to their updating rule, the set of priors to be updated depend

on the conditioning events (and, more generally, on the set of feasible plans and the

unconditionally optimal plan considered). Whether one likes this feature or not, this is

a logical implication of relaxing consequentialism so as to maintain dynamic consistency.

9More generally, the plan BB is preferred to any mixture over the plans AA, AB, BA and BB.
10We assume that the feasible set of plans is AA, AB, BA and BB.
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We refer the reader to Siniscalchi (2009, 2010) and Al Najjar and Weinstein (2009)

for more on this issue. Furthermore, we hasten to stress that a violation of dynamic

consistency as defined in Hanany and Klibanoff (2007, axiom DC, p. 268) is not a

necessary condition for our results to hold. To see this, let us modify the example so

that u1(w, θ) = 1 = u2(w, θ). With this modification, the decision maker strictly prefers

BB to AA and, conditional on either ω or ω′, is indifferent between A and B. This does

not violate axiom DC of Hanany and Klibanoff and yet f remains implementable by

the ambiguous mechanism constructed above.

Yet, another alternative approach is to maintain consequentialism and (a form of)

dynamic consistency, but to limit the possible attitude towards ambiguity. For instance,

Epstein and Schneider (2001) provide a condition on the set of priors, called rectangular-

ity, that guarantees the absence of preference reversals. In our example, their approach

would require the set of priors to be

{(2/3, 0, 0, 1/3), (0, 2/3, 1/3, 0), (1/3, 0, 0, 2/3), (0, 1/3, 2/3, 0)}.11

Importantly to us, regardless of the strengths and weaknesses of those approaches,

ambiguous mechanisms can implement social choice functions that are not ex-ante in-

centive compatible only if (a form of) dynamic inconsistency is assumed.

To conclude, we preview some secondary aspects of our analysis. Firstly, it is not

difficult to see that our construction continues to apply when there is ex-ante ambiguity.

For instance, suppose that player i set of priors is [p
i
, pi]. If p

i
> 1/2, the ambiguous

communication device constructed above generates the required posteriors for the social

choice function f to be incentive compatible (with respect to that set of posteriors).

Alternatively, if p
i
≤ 1/2, the social choice function f is ex-ante incentive compatible

and, thus, there is no need for ambiguous communication.

11With this set of priors, the social choice function f is implementable by a classical (unambiguous)

direct mechanism. Alternatively, this follows from Epstein and Schneider’s definition of dynamic con-

sistency, which says that if A is conditionally preferred to B, conditional on both events ω and ω′, then

AA is unconditionally preferred to BB.
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Secondly, we have implicitly assumed that the decision maker considers only two

possibilities: either the urn has the first composition or has the second composition.

Alternatively, we might assume that the decision maker entertains all possibilities, so

that his set of priors is the convex hull of (2/3, 0, 0, 1/3) and (0, 2/3, 1/3, 0). This would

not change our arguments: conditional on ω or ω′, the set of updated beliefs would

include the posteriors (1, 0, 0, 0) and (0, 1, 0, 0), and that is all we need for f to be

implementable.

Lastly, our results extend naturally to a larger class of preferences. Section 6.1

elaborates on this issue.

3 Preliminaries

Notations. For any collection of n sets, Y1, . . . , Yn, we let Y := ×j∈{1,...,n}Yj and Y−i :=

×j∈{1,...,n}\{i}Yj, with generic element y and y−i, respectively. For any measurable space

(Y,BY ), we denote ∆(Y ) the set of probability measures over Y . Let µ : Y → ∆(Y ∗)

be a measurable function between (Y,BY ) and (∆(Y ∗),B∆(Y ∗)). For any event E ∈ BY ∗ ,

we write µ(y)[E] for the probability of the event E according to µ(y). In the sequel,

we assume that most sets (types, alternatives, messages, etc) are finite, so as to avoid

unnecessary technicalities (e.g., measurability of strategies, conditioning on events with

measure zero, etc). As section 6.4 demonstrates, our analysis extends to more general

sets with appropriate measurability conditions.

Environments. An environment is a tuple 〈N, X, (Θi)i∈N〉 where N := {1, . . . , n}

is a finite set of n players, X a finite set of alternatives, and for each player i ∈ N , Θi is

a finite set of payoff-relevant types. Types are privately known. A social choice function

f : Θ → X assigns an alternative to each profile of types.

Preferences and updating. Let Hi := {hi : Θ−i → X} be the set of player

i’s acts. Player i of type θi has type-dependent preferences over ∆(Hi), the set of

mixtures over acts; preferences are ambiguity-sensitive. Throughout most of the paper,
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we assume that preferences have the maxmin expected utility representation (Gilboa

and Schmeidler, 1989). More precisely, there exist a payoff function ui : X × Θ → R

and a non-empty, convex and closed valued correspondence Pi : Θi → ∆(Θ−i) such that

player i of type θi evaluates the act hi as

min
pi∈Pi(θi)

∑

θ−i∈Θ−i

ui(hi(θ−i), θi, θ−i)pi(θ−i).

For simplicity, we assume full support, i.e., Pi(θi) is in the interior of ∆(Θ−i) for any θi.

Beliefs are type-independent if for each player i ∈ N , there exists Pi ∈ ∆(Θ−i) such that

Pi(θi) = Pi for all θi ∈ Θi. Type independence is weaker than stochastic independence.12

We assume prior-by-prior updating (full Bayesian updating). Before going further, it is

important to stress that our results do not crucially hinge on this particular represen-

tation of ambiguity-sensitive preferences. A number of other representations, such as

α-maxmin, minimax regret, variational preferences, deliver the same results. Section 6.1

critically discusses these assumptions and offers some generalizations.

Ambiguous mechanisms. Ambiguous mechanisms have two essential compo-

nents: allocation mechanisms and ambiguous communication devices. An allocation

mechanism is a pair 〈(Mi)i∈N , g〉 where for each player i, Mi is a finite set of messages

and g : ×i∈NMi → X is an allocation rule. An allocation mechanism is thus a classical

static mechanism.

A communication device is a tuple 〈(Ω∗
i , Ωi)i∈N , λ〉, where Ω∗

i is a (finite) set of

messages that player i can send to the communication device, Ωi a (finite) set of messages

that player i can receive from the communication device and λ : ×i∈NΩ∗
i → ∆(×i∈NΩi)

a system of probability distributions: λ(ω∗)[ω] is the probability that the profile of

messages ω is sent to the players by the communication device, conditional on the profile

of messages received ω∗. An ambiguous communication device (for short, ambiguity

device) is a tuple 〈(Ω∗
i , Ωi)i∈N , Λ〉, where Λ is a finite set of probability systems.

Given an allocation mechanism 〈M, g〉, we define the mediated extension of 〈M, g〉

12Beliefs are stochastically independent if Pi = ×j 6=iP
j
i with P j

i ∈ ∆(Θj).
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as a mechanism in which T < ∞ stages of mediated communication are allowed before

〈M, g〉 is played. More precisely, there are T + 1 stages. At stage t ∈ {1, . . . , T},

players communicate through the ambiguity device 〈(Ω∗
i,t, Ωi,t)i∈N , Λt〉, i.e., each player

i communicates a message ω∗
i,t ∈ Ω∗

i,t to the ambiguity device and receive a message

ωi,t ∈ Ωi,t. Communication is private and simultaneous. At stage T + 1, players choose

a message mi ∈ Mi and the designer implements an alternative according to g. In

words, prior to the allocation stage, players have the opportunity to communicate with

each others through mediated communication devices. Communication is ambiguous

and, moreover, does not directly influence the alternative implemented (cheap talk); the

alternative implemented at the allocation stage T + 1 depends only on the messages

reported at stage T + 1. We call such a mechanism an ambiguous mechanism.

Fix an ambiguous mechanism 〈〈(Ω∗
i,t, Ωi,t)i∈N , Λt〉t=1,...,T , 〈(Mi)i∈N , g〉〉. Denote H1

i :=

{∅} the initial history and for T +1 ≥ t > 1, H t
i := ×t−1

τ=1(Ω
∗
i,τ×Ωi,τ ) the set of all possible

histories of messages sent and received up to stage t by player i. The set of terminal

histories is ×i∈N (HT+1
i × Mi). Note that for any two terminal histories (hT+1, m) and

(h̃T+1, m̃) such that m = m̃, the alternative implemented is the same. However, expected

payoffs might differ because of difference in beliefs.

Behavioral strategies. A behavioral strategy si for player i is a mapping si :

(∪t≤T+1H
t
i ) × Θi → (∪t≤T ∆(Ω∗

i,t)) ∪ ∆(Mi) with si(h
t
i, θi) ∈ ∆(Ω∗

i,t) for t ≤ T and

si(h
T+1
i , θi) ∈ ∆(Mi).

Assessments. For each player i, for each stage t, for each history ht
i and for each

type θi, we denote ΠH,Θ
i (ht

i, θi) ⊆ ∆(H t
−i × Θ−i) the set of beliefs of player i of type

θi, conditional on the history ht
i, about the types θ−i of his opponents and their private

histories ht
−i. The belief correspondence ΠH,Θ

i : (∪t≤T+1H
t
i )×Θi → ∪t≤T+1∆(H t

−i×Θ−i)

with ΠH,Θ
i (ht

i, θi) ⊆ ∆(H t
−i × Θ−i) for each (ht

i, θi) is called an assessment.

We impose the following two conditions on assessments. Firstly, assessments are

consistent with initial priors, i.e., ΠH,Θ
i ({∅}, θi) = Pi(θi) × 1{∅} for each θi ∈ Θi, for

each player i ∈ N . Secondly, assessments are consistent with “prior-by-prior” Bayesian
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updating, whenever possible. More precisely, fix a profile of behavioral strategies (si)i,

a history ht
i and a type θi for player i. If (ω∗

i,t, ωi,t) has positive probability, i.e., there

exist πi(h
t
i, θi) ∈ ΠH,Θ

i (ht
i, θi) and λt ∈ Λt such that

∑

ht
−i,θ−i,ω

∗

−i,t,ω−i,t

πi(h
t
i, θi)[(h

t
−i, θ−i)]s−i(h

t
−i, θ−i)[ω

∗
−i,t]λt((ω

∗
i,t, ω

∗
−i,t))[(ωi,t, ω−i,t)] > 0,

we update πi(h
t
i, θi) to πi((h

t
i, (ω

∗
i,t, ωi,t)), θi), with

πi((h
t
i, (ω

∗
i,t, ωi,t)), θi)[(h

t
−i, (ω

∗
−i,t, ω−i,t)), θ−i)] =

πi(h
t
i, θi)[(h

t
−i, θ−i)]s−i(h

t
−i, θ−i)[ω

∗
−i,t]λt((ω

∗
i,t, ω

∗
−i,t))[(ωi,t, ω−i,t)]

∑

ht
−i,θ−i,ω

∗

−i,t,ω−i,t
πi(h

t
i, θi)[(h

t
−i, θ−i)]s−i(h

t
−i, θ−i)[ω

∗
−i,t]λt((ω

∗
i,t, ω

∗
−i,t))[(ωi,t, ω−i,t)]

.

Thus, whenever (ω∗
i,t, ωi,t) has positive probability, ΠH,Θ

i ((ht
i, (ω

∗
i,t, ωi,t)), θi) is obtained

from ΠH,Θ
i (ht

i, θi) by taking the union over all πi(h
t
i, θi) ∈ ΠH,Θ

i (ht
i, θi) and λt ∈ Λt

such that the above is well-defined. Alternatively, if (ω∗
i,t, ωi,t) has zero probability,

ΠH,Θ
i ((ht

i, (ω
∗
i,t, ωi,t)), θi) is unconstrained.

Consistent planning equilibrium. A consistent planning equilibrium (for short,

equilibrium) is defined inductively by “backward induction.” It captures the idea that at

stage t, a player chooses a plan of actions among the plan of actions that he will actually

follow at later stages. Formally, a profile of strategies and assessments (s∗, ΠH,Θ) is an

equilibrium if for each player i ∈ N , for each type θi ∈ Θi of player i, for all histories

hT+1
i , s∗i (h

T+1
i , θi) satisfies the following:
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min
πi(h

T+1
i ,θi)∈ΠH,Θ

i (hT+1
i ,θi)






∑

(θ−i,h
T+1
−i )

πi(h
T+1
i , θi)[θ−i, h

T+1
−i ]

(
∑

(mi,m−i)

ui(g(mi, m−i), θi, θ−i)s
∗
i (θi, h

T+1
i )[mi]s

∗
−i(θ−i, h

T+1
−i )[m−i])



 ≥

min
πi(h

T+1
i ,θi)∈ΠH,Θ

i (hT+1
i ,θi)






∑

(θ−i,h
T+1
−i )

πi(h
T+1
i , θi)[θ−i, h

T+1
−i ]

(
∑

(mi,m−i)

ui(g(mi, m−i), θi, θ−i)s
T+1
i [mi]s

∗
−i(θ−i, h

T+1
−i )[m−i])



 ,

for all sT+1
i ∈ ∆(Mi). In words, the strategy prescribes the choice of a best response at

each possible history hT+1
i .

Denote Ui(s
∗
i (θi, h

T+1
i ), s∗−i(θ−i, h

T+1
−i ), θi, θ−i) player i’s expected payoff under s∗ when

the history at stage T + 1 is (hT+1
i , hT+1

−i ) and the type profile is (θi, θ−i), i.e.,

∑

(mi,m−i)

ui(g(mi, m−i), θi, θ−i)s
∗
i (θi, h

T+1
i )[mi]s

∗
−i(θ−i, h

T+1
−i )[m−i].

We now move to stage T . Fix an history (hT
i , hT

−i) and a probability system λT ∈ ΛT .

Conditional on the type profile (θi, θ−i), the subsequent history (hT+1
i , hT+1

−i ) is

((hT
i , (ω∗

i,T , ωi,T )), (hT
−i, (ω

∗
−i,T , ω−i,T ))

with probability

s∗i (h
T
i , θi)[ω

∗
i,T ]s∗−i(h

T
−i, θ−i)[ω

∗
−i,T ]λT ((ω∗

i,T , ω∗
−i,T ))[(ωi,T , ω−i,T )],

in which case the expected payoff is Ui(s
∗
i (θi, h

T+1
i ), s∗−i(θ−i, h

T+1
−i ), θi, θ−i). Thus, con-

ditional on any history hT
i , player i’s continuation payoff is well-defined and we can

proceed with the definition of an equilibrium. At an equilibrium (s∗, ΠH,Θ), for each

player i ∈ N , for each type θi ∈ Θi of player i, for all histories hT
i , s∗i (h

T
i , θi) must satisfy

the following:
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min
(λT ,πi(hT

i ,θi))∈ΛT ×ΠH,Θ
i (hT

i ,θi)

∑

(θ−i,h
T
−i)

πi(h
T
i , θi)[(θ−i, h

T
−i))]




∑

Ω∗

T
×ΩT

(
Ui(s

∗
i (θi, (h

T
i , (ω∗

i,T , ωi,T ))), s∗−i(θ−i, (h
T
−i, (ω

∗
−i,T , ω−i,T )), θi, θ−i)

s∗i (h
T
i , θi)[ω

∗
i,T ]s∗−i(h

T
−i, θ−i)[ω

∗
−i,T ]λT ((ω∗

i,T , ω∗
−i,T ))[(ωi,T , ω−i,T )]

)
)

≥

min
(λT ,πi(hT

i ,θi))∈ΛT ×ΠH,Θ
i (hT

i ,θi)

∑

(θ−i,h
T
−i)

πi(h
T
i , θi)[(θ−i, h

T
−i))]




∑

Ω∗

T
×ΩT

(
Ui(s

∗
i (θi, (h

T
i , (ω∗

i,T , ωi,T ))), s∗−i(θ−i, (h
T
−i, (ω

∗
−i,T , ω−i,T )), θi, θ−i)

sT
i [ω∗

i,T ]s∗−i(h
T
−i, θ−i)[ω

∗
−i,T ]λT ((ω∗

i,T , ω∗
−i,T ))[(ωi,T , ω−i,T )]

)
)

,

for all sT
i ∈ ∆(Ω∗

i,T ). For each player i ∈ N , for each type θi ∈ Θi, for each history hT+1
i ∈

HT+1
i and hT

i ∈ HT
i , having defined s∗i (h

T+1
i , θi) ∈ ∆(Mi) and s∗i (h

T
i , θi) ∈ ∆(Ωi,T ), we

then proceed by “backward” induction to define the optimal strategy at each stage.

In a nutshell, a consistent planning equilibrium is similar to a perfect Bayesian equi-

librium of a game between multiple selves of the same player with max-min expected

utility. Notice that our specification of consistent planning differs slightly from the fully

behavioral approach of Siniscalchi (2010). His specification incorporates a specific tie-

breaking rule, stipulating that when a player has two or more optimal strategies at a

given stage, ties are broken at earlier stages. Assuming such a tie-breaking rule would

not substantially affect our results; only a minor modification to the concept of incentive

compatibility (to be defined shortly) is needed.

A history hT+1
i has positive probability under the profile of strategies s∗ if there exist

a sequence (λ1, . . . , λT ) ∈ Λ1 × · · · × ΛT and a type θi ∈ Θi such that hT+1
i has strictly

positive probability when evaluated according to (λ1, . . . , λT ) and (si(θi, ·), s−i). With

these preliminaries done, we can now define the notion of implementation by ambiguous

mechanisms.
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Definition 1 The ambiguous mechanism 〈〈(Ω∗
i,t, Ωi,t)i∈N , Λt〉t=1,...,T , 〈(Mi)i∈N , g〉〉 (par-

tially) implements the social choice function f if there exists a consistent planning equi-

librium (s∗, ΠH,Θ) such that

g(mi, m−i) = f(θi, θ−i),

for all (mi, m−i) with ×i∈Ns∗i (θi, h
T+1
i )[mi] > 0, for all (hT+1

i , hT+1
−i ) having positive

probability under s∗.

According to Definition 1, for a social choice function to be implementable, there

must exist an ambiguous mechanism and an equilibrium such that for all histories of

messages sent to and received from the communication devices, for all messages sent

at the allocation stage following these histories, the designer implements the correct

outcome. The aim of this paper is to characterize the set of social choice functions that

are implementable by ambiguous mechanisms.

4 Revelation Principle

This section presents our main results. We first define incentive compatibility.

4.1 Incentive Compatibility

A social choice function is incentive compatible if players have an incentive not only to

truthfully reveal their types at the allocation stage when they expect others to do so,

but also to generate the information (and, thus, beliefs) designed for their types at the

communication stage.

Definition 2 A social choice function f is incentive compatible for player i ∈ N if

there exists a non-empty valued correspondence Πi : Θi × Θi → ∆(Θ−i) such that for

each θi ∈ Θi,
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min
πi∈Πi(θ

′′

i ,θi)

∑

θ−i∈Θ−i

ui(f(θi, θ−i), θi, θ−i)πi(θ−i) ≥

min
πi∈Πi(θ

′′

i ,θi)

∑

θ−i∈Θ−i

∑

θ′i∈Θi

σi(θi)[θ
′
i]ui(f(θ′i, θ−i), θi, θ−i)πi(θ−i),

(IC)

for all σi(θi) ∈ ∆(Θi), for all θ
′′

i ∈ Θi. The social choice function f is Πi-incentive com-

patible if it is incentive compatible for player i with respect to the belief correspondence

Πi. The social choice function f is incentive compatible if it is incentive compatible for

each player i ∈ N .

Intuitively, Πi(θ
′′

i , θi) is the set of beliefs player i of type θi has at the allocation stage

when he communicates as type θ
′′

i at the communication stage. Incentive compatibility

thus requires truth-telling to be a “max-min” equilibrium of the direct allocation mech-

anism, even when players are untruthful at the communication stage. Consequently,

players have an incentive to be truthful at the communication stage. Two additional re-

marks are worth making. Firstly, Definition 2 explicitly considers mixed strategies. This

is crucial as ambiguity-sensitive preferences frequently display ambiguity aversion, for

which hedging is essential. Secondly, with a slight abuse of notation, let Pi(·, θi) ≡ Pi(θi)

for all θi. Clearly, if the social choice function f is Pi-incentive compatible for each player

i, then it is implementable by an ambiguous mechanism. Yet, as the example in section

2 shows, incentive compatibility with respect to the prior beliefs is not necessary for the

implementation of social choice functions by finite mechanisms. The rest of this section

is devoted to the full characterization of implementable social choice functions by finite

ambiguous mechanisms.

4.2 The Main Theorem

For any ambiguity device 〈(Θi, Ωi)i∈N , Λ〉, define the belief function ζθi
: Θi × Pi(θi) ×

Ωi × Λ → ∆(Θ−i) as
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ζθi
(θ′i, pθi

, ωi, λ)[θ−i] =

∑

ω−i
λ((θ′i, θ−i))[(ωi, ω−i)]pθi

(θ−i)
∑

ω−i

∑

θ−i
λ((θ′i, θ−i))[(ωi, ω−i)]pθi

(θ−i)
.

So, ζθi
(θ′i, pθi

, ωi, λ) ∈ ∆(Θ−i) is the posterior belief of player i of type θi when he

sends the message θ′i to and receives the message ωi from the communication device

〈(Θi, Ωi)i∈N , λ〉, and has prior beliefs pθi
(conditional on player i’s opponents telling the

truth). Similarly, for any λi : Θi × Θ−i → ∆(Ωi), we denote ζθi
(θ′i, pθi

, ωi, λi) ∈ ∆(Θ−i)

the posterior belief of player i of type θi when he sends the message θ′i to and receives

the message ωi from the communication device 〈Θi, Ωi, λi〉, and has prior beliefs pθi
.

Theorem 1 The following statements are equivalent:

1. The social choice function f is implementable by a finite ambiguous mechanism.

2. For each player i ∈ N , there exists a finite family of non-empty valued correspon-

dences (Πk
i : Θi × Θi → ∆(Θ−i))k∈Ki

such that:

(IC) For each k ∈ Ki, the social choice function f is Πk
i -incentive compatible.

(B) There exist Ωi := ∪k∈Ki
Ωk

i and λi : Θi × Θ−i → ∆(Ωi) such that

∪pθi
∈P (θi) ∪ωi∈Ωk

i
{ζθi

(θ′i, pθi
, ωi, λi)} = Πk

i (θ
′
i, θi), (B)

for all θ′i ∈ Θi, for all θi ∈ Θi, for all k ∈ Ki.

Before presenting the formal proof, let us comment on Theorem 1. Theorem 1 is

a revelation principle; it states necessary and sufficient conditions for a social choice

function to be implementable by a finite ambiguous mechanism. More specifically, if a

social choice function is implementable, then it is incentive compatible with respect to

some sets of beliefs (condition (IC)). Moreover, those sets of beliefs must result from

the mediated communication and, thus, must satisfy a martingale property (condition

(B)). An important element of (the necessity part of) the proof is the observation that

if a social choice function f is implementable with T stages of mediated communication,

then it is implementable with a single stage of mediated communication. While intuitive
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and indeed well-known in the literature on mediated communication, this observation is

not as trivial as it may appear in a world with dynamically inconsistent preferences. To

get some intuitions, consider the following decision problem. There is a single player, two

payoff-relevant types θ and θ′, two messages ω and ω′, and two acts f1 and f2 (acts map

Θ−i to X), with f1 ≻
θ
{ω} f2, f1 ≻

θ
{ω′} f2 at state θ, and f2 ≻

θ′

{ω} f1, f2 ≻
θ′

{ω′} f1 at state θ′

(<θ
h (resp., ≻θ

h) denotes the (resp., strict) preference relation at state θ conditional on

history h). We want to “implement” f1 at state θ and f2 at state θ′. See the left panel

of Figure 2 for the decision problem.

ω′ω

ω′

f2

ω

f1

ω′

f2

ω

f1

(ω′, ω′)

f2

(ω, ω)

f1

Two stages One stage

Figure 2: The decision problem

Clearly, it is a consistent planning equilibrium for the decision maker of type θ (resp.,

θ′) to announce ω (resp., ω′) at all histories, thus implementing f1 at state θ and f2 at

state θ′. Alternatively, consider the one-period decision problem on the right panel of

Figure 2. With dynamically consistent preferences, we have f1 <θ
{∅} f2 and f2 <θ′

{∅} f1,

so that it is an equilibrium for the decision maker of type θ (resp., θ′) to announce

(ω, ω) (resp., (ω′, ω′)), thus also implementing f1 at state θ and f2 at state θ′. However,

if preferences are dynamically inconsistent, we might have f2 ≻θ
{∅} f1 or f1 ≻θ′

{∅} f2,

so that the one-period decision problem is not “equivalent” to the two-period decision

problem. This issue, however, does not create difficulties in our framework. Recall that

our definition of implementation requires the correct outcomes to be implemented at all

histories of messages with positive probabilities. As applied to this decision problem, our

definition thus requires the correct outcome to be implemented at (ω, ω) and (ω′, ω′),

which essentially requires f1 to be equal to f2 .
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Conversely, to implement a social choice function that satisfies conditions (IC) and

(B), we construct a simple two-stage mechanism that consists of an allocation stage and a

stage of mediated communication prior to the allocation stage. The communication stage

generates the appropriate posterior beliefs at the allocation stage, so as to guarantee

truth-telling. To be more precise, suppose that the social choice function f is incentive

compatible with respect to Πi, with Πi satisfying condition (B). Thus, there exists a

communication device 〈Θi, Ωi, λ
∗
i 〉 such that the set of all posteriors of player i of type θi

is Πi(θ
′
i, θi) whenever he sends θ′i to the device and others truthfully report their types.

Yet, this does not imply that the set of posteriors is Πi(θ
′
i, θi) conditional on any ωi

and, consequently, this does not guarantee truth-telling at the allocation stage which is

guaranteed only if the set of posteriors conditional on any ωi is Πi(θ
′
i, θi). Consider a

permutation ρ : Ωi → Ωi and define λρ
i by λρ

i (θi, θ−i)[ωi] = λ∗
i (θi, θ−i)[ρ(ωi)]. We have

that ∪pθi
∈P (θi){ζθi

(θ′i, pθi
, ωi, λ

ρ
i )} = ∪pθi

∈P (θi){ζθi
(θ′i, pθi

, ρ(ωi), λ
∗
i )}. The idea is then to

consider the set of communication devices Λi as the union over all cyclic permutations

of {λρ
i }; this guarantees that the set of posteriors conditional on any ωi is Πi(θ

′
i, θi), as

required.

The classical revelation principle may be viewed as a corollary of Theorem 1. To see

this, note that if we restrict the beliefs’ correspondences to be single-valued, the model is

indistinguishable from subjective expected utility. So, let us assume that Pi(θi) = {pθi
}

for all players i ∈ N , for all types θi ∈ Θi, and suppose that the second statement in

Theorem 1 is true with each Πk
i being single-valued. The Πk

i -incentive compatibility of

f implies that for all θi ∈ Θi, for all θ′i ∈ Θi, for all θ′′i ∈ Θi,

∑

θ−i∈Θ−i

ui(f(θi, θ−i), θi, θ−i)π
k
θ′′i ,θi

[θ−i] ≥
∑

θ−i∈Θ−i

ui(f(θ′i, θ−i), θi, θ−i)π
k
θ′′i ,θi

[θ−i],

with {πk
θ′′i ,θi

} := Πk
i (θ

′′
i , θi). The classical incentive compatibility of f then follows from

22



condition (B), i.e., for all i ∈ N , for all θi ∈ Θi, for all θ′i ∈ Θi,

∑

θ−i∈Θ−i

ui(f(θi, θ−i), θi, θ−i)pθi
[θ−i] ≥

∑

θ−i∈Θ−i

ui(f(θ′i, θ−i), θi, θ−i)pθi
[θ−i].

13

Conversely, if the social choice function f is classically incentive compatible, then the

second statement of Theorem 1 trivially holds with Πi(·, θi) ≡ {pθi
} for each θi.

Proof (2) ⇒ (1). The proof is constructive. Suppose that for each player i ∈ N , there

exists a unique non-empty valued correspondence Πi : Θi × Θi → ∆(Θ−i) such that

conditions (IC) and (B) hold. (We treat the general case of a family of correspondences

in Appendix.)

We consider a two-stage ambiguous mechanism, where players announce a type to the

communication device in the first stage, receive messages in the first stage conditional

on their announcements, and again report a type in the second stage. Formally, we con-

sider the ambiguity device 〈×i∈NΘi,×i∈NΩi, Λ〉 and the (direct) allocation mechanism

〈×i∈NΘi, f〉. The first step in the proof consists in constructing Λ.

Step 1: Construction of Λ. Since condition (B) holds, for each player i ∈ N , there

exist Ωi and λ∗
i : Θi × Θ−i → ∆(Ωi) such that

∪ωi∈Ωi
∪pθi

∈P (θi) {ζθi
(θ′i, pθi

, ωi, λ
∗
i )} = Πi(θ

′
i, θi),

for all θ′i ∈ Θi, for all θi ∈ Θi. Consider a permutation ρ : Ωi → Ωi and define

λρ
i : Θi × Θ−i → ∆(Ωi) with λρ

i ((θi, θ−i))[ωi] = λ∗
i ((θi, θ−i))[ρ(ωi)] for all ωi, for all θ−i.

Let Λi be the collection of all λρ
i such that ρ is a cyclic permutation (the cardinality of

Λi is thus the cardinality of Ωi). It follows that

∪λi∈Λi
∪pθi

∈P (θi) {ζθi
(θ′i, pθi

, ωi, λ
ρ
i )} = ∪ωi∈Ωi

∪pθi
∈P (θi) {ζθi

(θ′i, pθi
, ωi, λ

∗
i )} = Πi(θ

′
i, θi),

13More precisely, for each θi ∈ Θi, for each θ′′i ∈ Θi, we have

∑

k∈Ki

(
∑

ωi∈Ωk
i

∑

ω−i∈Ω−i

∑

θ−i∈Θ−i

λi(θ
′′
i , θ−i)[(ωi, ω−i)]pθi

[θ−i]

︸ ︷︷ ︸

λk

θ′′
i

,θi

)πk
θ′′

i
,θi

= pθi
,

with
∑

k∈Ki
λk

θ′′

i
,θi

= 1 and λk
θ′′

i
,θi

≥ 0 for each k ∈ Ki.
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for all ωi ∈ Ωi, for all θ′i ∈ Θi, for all θi ∈ Θi. Lastly, for each i ∈ N , choose λi ∈ Λi and

define λ : ×i∈NΘi → ∆(×i∈NΩi) with λ((θi)i∈N )[(ωi)i∈N ] = ×i∈Nλi((θi, θ−i))[ωi]. The

set Λ is the collection of all such λ.

Step 2: Construction of the equilibrium. Consider the following profile of strate-

gies. At the initial history, players truthfully report their types to the ambiguity device,

i.e., s∗i ({∅}, θi) = θi for all θi ∈ Θi, and for any history (θ′i, ωi) of messages sent and re-

ceived at the communication stage, player i of type θi truthfully reports his type at the

allocation stage, i.e., s∗i ((θ
′
i, ωi), θi) = θi for all histories (θ′i, ωi) ∈ Θi×Ωi of messages sent

and received and type θi ∈ Θi. Assessments are consistent with Bayes rule, whenever

possible. More precisely, suppose that the history (θ′i, ωi) has positive probability, i.e.,

there exist λi and θ−i such that λi(θ
′
i, θ−i)[ωi] > 0. Define the posterior πH,Θ

i ((θ′i, ωi), θi)

conditional on the history (ωi, θ
′
i) and type θi by

πH,Θ
i ((θ′i, ωi), θi)[(ω−i, θ−i)] =

λi(θ
′
i, θ−i)[ωi]λ−i(θ

′
i, θ−i)[ω−i]pθi

[θ−i]
∑

θ−i,ω−i
λi(θ′i, θ−i)[ωi]λ−i(θ′i, θ−i)[ω−i]pθi

[θ−i]
,

and let ΠH,Θ
i ((θ′i, ωi), θi) be the union over all λi ∈ Λi for which there exists θ−i such that

λi(θ
′
i, θ−i)[ωi] > 0. If the history (θ′i, ωi) has zero probability, simply let ΠH,Θ

i ((θ′i, ωi), θi)

to be equal to ΠH,Θ
i ((θ′i, ω

∗
i ), θi) for some (θ′i, ω

∗
i ) with positive probability (at least one

exists).

Step 3: No profitable deviation. By construction of the ambiguity device, we

have that the beliefs of player i of type θi about the types θ−i of his opponents are

Πi(θ
′
i, θi) at history (θ′i, ωi), regardless of ωi. Since the social choice function is Πi-

incentive compatible for each player i ∈ N , it follows that no player has a profitable

deviation from truth-telling at any history (θ′i, ωi) ∈ Θi × Ωi. Finally, no player has

a profitable deviation at the first stage, since they expect f to be implemented in the

second stage, regardless of their first stage announcement. This completes this part of

the proof.

(1) ⇒ (2). Suppose that the social choice function f is implementable by the am-
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biguous mechanism

〈〈(Ω̂∗
i,t, Ω̂i,t)i∈N , Λ̂t〉t=1,...,T , 〈(Mi)i∈N , g〉〉.

From Lemma 1 in Appendix, f is implementable by a two-stage mechanism, in which

players directly and truthfully report their types to the communication device at the

communication stage. Denote the two-stage mechanism by

〈〈(Θi, Ωi)i∈N , Λ〉, 〈(Mi)i∈N , g〉〉.

Thus, there exists a consistent planning equilibrium (s∗, ΠH,Θ) such that g(mi, m−i) =

f(θi, θ−i) for all (mi, m−i) with s∗i (hi, θi)[mi]s
∗
−i(h−i, θ−i)[m−i] > 0, for all (hi, h−i) hav-

ing positive probability under s∗, and s∗i ({∅}, θi)[θi] = 1 for all θi. Observe that a

non-terminal history hi 6= {∅} for player i is a message sent and received, i.e., (θ′i, ω
′
i).

Moreover, the history (θ′i, ω
′
i) has positive probability if there exist λ ∈ Λ and θ′−i ∈ Θ−i

such that
∑

ω−i
λ(θ′i, θ

′
−i)[(ω

′
i, ω−i)] > 0.14

Consider player i of type θi and any history hi = (θi, ωi) having positive probability.

By definition of a consistent planning equilibrium, we have that

min
πi(hi,θi)∈ΠH,Θ

i (hi,θi)




∑

(θ−i,h−i)

πi(hi, θi)[θ−i, h−i]

(
∑

(mi,m−i)

ui(g(mi, m−i), θi, θ−i)s
∗
i (hi, θi)[mi]s

∗
−i(h−i, θ−i)[m−i])



 ≥

min
πi(hi,θi)∈ΠH,Θ

i (hi,θi)




∑

(θ−i,h−i)

πi(hi, θi)[θ−i, h−i]

(
∑

(mi,m−i)

ui(g(mi, m−i), θi, θ−i)si[mi]s
∗
−i(h−i, θ−i)[m−i])



 ,

for all si ∈ ∆(Mi). In particular, this is true for any deviation si such that si(θi, hi) =
∑

θ′i
σi(θi)[θ

′
i]s

∗
i (θ

′
i, hi) with σi(θi) ∈ ∆(Θi) and si coincides with s∗i , otherwise. Thus, we

14Because of the assumption of full support, this is equivalent to: there exist λ ∈ Λ and pθi
∈ Pi(θi)

such that
∑

θ−i

∑

ω−i
λ(θ′i, θ

′
−i)[(ω

′
i, ω−i)]s

∗
−i(θ−i)[θ

′
−i]pθi

(θ−i) > 0.
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have

min
πi(hi,θi)∈ΠH,Θ

i (hi,θi)

∑

(θ−i,h−i)

πi(hi, θi)[θ−i, h−i]ui(f(θi, θ−i), θi, θ−i) ≥

min
πi(hi,θi)∈ΠH,Θ

i (hi,θi)

∑

(θ−i,h−i)

πi(hi, θi)[θ−i, h−i]




∑

θ′i

σi(θi)[θ
′
i]ui(f(θ′i, θ−i), θi, θ−i)



 ,

for all σi(θi) ∈ ∆(Θi). It follows that there exists a set Πk
i (θi, θi) ⊆ ∆(Θ−i) of beliefs of

player i of type θi such that

min
πi∈Πk

i (θi,θi)

∑

θ−i∈Θ−i

ui(f(θi, θ−i), θi, θ−i)πi(θ−i) ≥

min
πi∈Πk

i (θi,θi)

∑

θ−i∈Θ−i

∑

θ′i∈Θi

σi(θi)[θ
′
i]ui(f(θ′i, θ−i), θi, θ−i)πi(θ−i),

for all σi(θi) ∈ ∆(Θi). More precisely, for any history hi and type θi, denote ΠΘ
i (hi, θi) :=

∪
πi(hi,θi)∈ΠH,Θ

i (hi,θi)
{
∑

h−i
πi(hi, θi)[(h−i, θ−i)]} and let Πk

i (θi, θi) = ΠΘ
i ((θi, ωi), θi). With

any other history (θi, ω
′
i) such that ΠΘ

i ((θi, ω
′
i), θi) = ΠΘ

i ((θi, ωi), θi), we thus associate

the same set of beliefs Πk
i (θi, θi). Note that ΠΘ

i (hi, θi) = ∪λ∈Λ∪pθi
∈Pi(θi){ζθi

(θi, pθi
, ωi, λ)},

when hi = (θi, ωi).

Similarly, consider any history hi = (θ′i, ωi) having positive probability. As above,

there exists a set of beliefs of player i of type θi, Πk
i (θ

′
i, θi), such that

min
πi∈Πk

i (θ′i,θi)

∑

θ−i∈Θ−i

ui(f(θi, θ−i), θi, θ−i)πi(θ−i) ≥

min
πi∈Πk

i (θ′i,θi)

∑

θ−i∈Θ−i

∑

θ′i∈Θi

σi(θi)[θ
′
i]ui(f(θ′i, θ−i), θi, θ−i)πi(θ−i),

for all σi(θi) ∈ ∆(Θi). Replicating the arguments for each type of player i and each

history thus implies the existence of a finite family of non-empty valued correspondences

(Πk
i : Θi × Θi → ∆(Θ−i))k∈Ki

such that the social choice function f is Πk
i -incentive

compatible, for each k ∈ Ki.

To complete the proof, for each λ ∈ Λ, define λi : Θi × Θ−i → ∆(Ωi) with for all

(θi, θ−i),

λi(θi, θ−i)[ωi] :=
∑

ω−i∈Ω−i

λ(θi, θ−i)[(ωi, ω−i)],
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and let Λi be the set of all such λi. Let Ω∗
i := Ωi ×Λi and define λ∗

i : Θi ×Θ−i → ∆(Ω∗
i )

as follows:

λ∗
i (θi, θ−i)[(ωi, λi)] :=

1

|Λi|
λi(θi, θ−i)[ωi],

for all (θi, θ−i). Lastly, for each k, define Ωk
i as {ωi : ΠΘ

i ((θ′i, ωi), θi) = Πk
i (θ

′
i, θi)} and let

Ω∗,k
i = Ωk

i × Λi. Note that ∪kΩ
k
i = Ωi and thus ∪kΩ

∗,k
i = Ω∗

i . It follows that

∪
ω∗

i ∈Ω∗,k
i

∪pθi
∈Pi(θi) {ζθi

(θ′i, pθi
, ω∗

i , λ
∗
i )} = ∪ωi∈Ωk

i
∪λi∈Λi

∪pθi
∈Pi(θi){ζθi

(θ′i, pθi
, ωi, λi)}

= Πk
i (θ

′
i, θi),

as required. �

To shed further light on the role of ambiguous communication devices, we now con-

sider the starkest possible case, whereby there is no ex-ante ambiguity. In those envi-

ronments, all ambiguity is necessarily engineered by the mechanism designer.

4.3 No ex-ante ambiguity

Note that in environments with no ex-ante ambiguity (but with ambiguity-sensitive

players), a social choice function is implementable by an unambiguous mechanism if and

only if it is incentive compatible (with respect to the prior beliefs). Theorem 1 states,

however, that when the designer can engineer some ambiguity in its mechanism, a larger

set of social choice functions may be implemented. For instance, in the introductory

example, the use of an ambiguous mechanism made it possible to implement an ex-

post efficient allocation, while no unambiguous mechanism implements it. The following

proposition gives a sharper characterization of condition (B) in Theorem 1 and, thus, to

the scope of “belief engineering.”

Proposition 1 Assume that for each player i ∈ N , for each type θi ∈ Θi, Pi(θi) is

the singleton {pθi
}. Let Πk

i be any non-empty finite-valued belief correspondence and

denote Πk
i (θ

′
i, θi) = {πk,1k

θ′i,θi
, . . . , πk,lk

θ′i,θi
, . . . , πk,Lk

θ′i,θi
} the image of Πk

i at (θ′i, θi). The following

statements are equivalent:
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1. Condition (B) holds.

2. For each k ∈ Ki, for each θi ∈ Θi and θ′i ∈ Θi, |Πk
i (θ

′
i, θi)| = |Πk

i (θ
′
i, θ

′
i)|. For

each θi ∈ Θi, for each θ′i ∈ Θi, there exist positive scalars (µk,lk
θ′
i
,θi

) such that
∑

k

∑

lk
µk,lk

θ′i,θi
= 1,

pθi
=

|Ki|∑

k=1

Lk∑

lk=1

µk,lk
θ′i,θi

πk,lk
θ′i,θi

, (B1)

and, for all θ−i,

µk,lk
θ′i,θi

πk,lk
θ′i,θi

[θ−i] = µk,lk
θ′i,θ

′

i
πk,lk

θ′i,θ
′

i
[θ−i]

pθi
[θ−i]

pθ′i
[θ−i]

. (B2)

To understand Proposition 1, suppose that the social choice function f is Πi-incentive

compatible. Condition (B1) states that the convex hull of the “targeted” beliefs Πi(θi, θi)

must include the prior beliefs pθi
in its interior, for each θi. This guarantees that one can

engineer an ambiguity device such that the set of posterior beliefs of player i of type θi is

precisely Πi(θi, θi), regardless of the message received, provided that players truthfully

report their types to the ambiguity device. This is a familiar result in the literature

on repeated game with incomplete information (e.g., Aumann, Maschler and Stearns,

1995), known as the “splitting lemma.” It is worth stressing that condition (B1) does

not require the prior to be a convex combination of each posterior in Πk
i (θi, θi) for all k,

but only to be a convex of the set of all posteriors (i.e., ∪kΠ
k
i (θi, θi)). Condition (B2)

guarantees furthermore that the constructed ambiguity device generates the targeted

beliefs Πi(θ
′
i, θi), when player i of type θi behave as type θ′i at the communication stage.

Theorem 1 together with Proposition 1 are central results: they make it possible to

“quantify” the role of endogenously engineered ambiguity in environments with no ex-

ante ambiguity. For instance, Section 5 revisits the classical monopolistic screening

problem and shows that full surplus extraction is possible, even when there is no ex-ante

ambiguity.

Proof (1) ⇒ (2). Assume that condition (B) holds, so that there exist Ωi := ∪k∈Ki
Ωk

i

and λi : Θi × Θ−i → ∆(Ωi) such that

∪ωi∈Ωk
i
{ζθi

(θ′i, pθi
, ωi, λi)} = Πk

i (θ
′
i, θi),
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for all θ′i ∈ Θi, for all θi ∈ Θi, for all k ∈ Ki.

Clearly, we have that |Πk
i (θ

′
i, θi)| = |Πk

i (θ
′
i, θ

′
i)| for any θi and θ′i. Moreover, to any

πk,lk
θ′i,θi

corresponds a message ωi ∈ Ωk
i , call it ωk,lk

i , such that ζθi
(θ′i, pθi

, ωk,lk
i , λi) = πk,lk

θ′i,θi
.

Letting µk,lk
θ′i,θi

= (1/|Ki|)
∑

θ−i
λi(θ

′
i, θ−i)[ω

k,lk
i ]pθi

(θ−i), conditions (B1) and (B2) directly

follow from the definition of ζθi
.

(2) ⇒ (1). Let Ωk
i = {ωk,1k

i , . . . , ωk,lk
i , . . . , ωk,Lk

i }. Construct λi : Θi × Θ−i →

∆(∪k∈Ki
Ωk

i ) as follows: For each θi ∈ Θi, for each θ−i ∈ Θ−i,

λi(θi, θ−i)[ω
k,lk
i ] =

1

|Ki|

µk,lk
θi,θi

πk,lk
θi,θi

[θ−i]

pθi
[θ−i]

.

The rest directly follows from conditions (B1) and (B2) and the definition of ζθi
. �

To conclude this section, we now consider environments with type-independent be-

liefs, a common assumption in applications.

4.4 Type-independent Beliefs

It is common in applications to assume that prior beliefs are stochastically independent.

This section considers a weaker notion of independence, type independence, that is

Pi(θi) = Pi for each θi ∈ Θi. In environments with type-independent beliefs, we have

the following proposition.

Proposition 2 Consider environments with type-independent beliefs, i.e., for each player

i ∈ N , for each θi ∈ Θi, Pi(θi) = Pi. The following statements are equivalent:

1. The social choice function f is implementable by a finite ambiguous mechanism.

2. For each player i ∈ N , there exists a finite family (Πk
i )k∈Ki

of belief sets such that:

(IC) For each k ∈ Ki, the social choice function f is Πk
i -incentive compatible.

(B) There exist Ωi := ∪k∈Ki
Ωk

i and λi : Θi × Θ−i → ∆(Ωi) such that

∪pi∈Pi
∪ωi∈Ωk

i
{ζθi

(θ′i, pi, ωi, λi)} = Πk
i , (B)

for all θ′i ∈ Θi, for all θi ∈ Θi, for all k ∈ Ki.
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According to Proposition 2, in environments with type-independent beliefs, we only

need check the incentive compatibility of a social choice function with respect to sets of

beliefs that are independent of the types of the players. The intuition is simple. Recall

that Πi(θ
′
i, θi) is the set of beliefs of player i of type θi at the allocation stage, when he

communicates as type θ′i at the communication stage.15 If beliefs are type-independent,

we must have Πi(θ
′
i, θi) = Πi(θ

′
i, θ̂i) for any (θi, θ̂i). Denote Π∗

i (θ
′
i) the set of beliefs

when player i communicates as type θ′i. Therefore, the social choice function to be

implemented must be incentive compatible with respect to Π∗
i (θ

′
i) for any θ′i and, thus,

is incentive compatible with respect to Π∗
i := Π∗

i (θ
∗
i ) for an arbitrary θ∗i .

Although substantially simpler than the characterization for general environments

(Theorem 1), the above characterization is still not as simple and transparent as the

characterization we have in environments with no ex-ante ambiguity. Clearly, a necessary

condition for condition (B) to hold is that the set Pi of priors is a subset of the interior of

the convex hull of ∪kΠ
k
i for each player i ∈ N (unless, Πk

i = Pi for some k). Conversely,

if there are two players, two types per player and that each Πk
i is a convex set, it is also

a sufficient condition. Thus, in those simple environments, we have a relatively simple

characterization. Proposition 3 summarizes this observation (the proof is in Appendix.)

Proposition 3 Consider environments with type-independent beliefs. Suppose that for

each player i ∈ N , there exists a collection (Πk
i )k of beliefs’ sets such the social choice

function f is Πk
i -incentive compatible for each k. Assume that there are two players, two

types per player, and that each Πk
i is a convex set, different from Pi.

A necessary and sufficient condition for condition (B) to hold is that the set Pi of

priors is a subset of the interior of the convex hull of ∪kΠ
k
i , for each player i ∈ N .

15I.e., we implicitly consider the canonical mechanism constructed in the proof of Theorem 1.
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5 An Economic Application

This section revisits the classical problem of monopolistic screening, but with ambiguity-

sensitive buyers. There are two potential buyers, labeled 1 and 2, and one monopolist

seller. Buyer i’s utility from purchasing a quantity xi of the good at the total price ti is

θixi − ti; θi can take two possible values θ and θ with θ > θ ≥ 0. The reservation utility

of a buyer is normalized to zero, regardless of his type. The seller’s cost of producing the

quantities (x1, x2) is c(x1 + x2) with c a strictly increasing and strictly convex function;

c(0) = 0. For simplicity, we assume that c is differentiable everywhere and denote c′(x)

the derivative of c at x. To rule out trivial corner solutions, let c′(0) = 0. Finally, let

p ∈ (0, 1) be the (common) prior belief that θi = θ.

So far, the problem is the classical textbook monopolistic screening problem. In

particular, if the buyers are subjective expected maximizers, there is no mechanism,

satisfying incentive compatibility and individual rationality, that allows the seller to

extract full surplus from the buyers. Unlike the classical model, however, we assume

that buyers have multiple-prior preferences.16 Moreover, we allow the seller to design

ambiguous (selling) mechanisms.

We first consider the first-best solutions. A first-best solution (x∗
1, x

∗
2) is a solution

to the following maximization program:

max
x1,x2

θ1x1 + θ2x2 − c(x1 + x2).

Standard arguments together with the strict convexity of c gives the following solution:

(x∗
1, x

∗
2) =







((1/2)(c′)−1(θ), (1/2)(c′)−1(θ)) if (θ1, θ2) = (θ, θ),

((c′)−1(θ), 0) if (θ1, θ2) = (θ, θ),

(0, (c′)−1(θ)) if (θ1, θ2) = (θ, θ),

((1/2)(c′)−1(θ), (1/2)(c′)−1(θ)) if (θ1, θ2) = (θ, θ).

16We maintain the assumption of full Bayesian updating.
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We now turn our attention to the optimal design problem between the seller and the

buyers, when the seller can offer ambiguous “contracts.” From our revelation principle,

we can restrict our attention to direct contracts (θi, θ−i) 7→ (xi(θi, θ−i), ti(θi, θ−i)) and

to finite families Πi := {Π1
i , . . . , Π

k
i , . . . , Π

Ki

i } of beliefs’ sets. (See Propositions 1 and

2.) Throughout, we write Πk
i as {π1,k

i , . . . , πl,k
i , . . . , πLk,k

i }. The optimization program is

thus:

sup
(x1, x2, t1, t2, Π1, Π2)

∑

(θ1,θ2)

(t1(θ1, θ2) + t2(θ1, θ2) − c(x1(θ1, θ2) + x2(θ1, θ2)))p[θ1]p[θ2]

subject to the following constraints:

Incentive compatibility. For each i ∈ {1, 2}, for each k ∈ {1, . . . , Ki}, for each θi ∈

{θ, θ},

min
πi∈Πk

i

∑

θ−i

(θixi(θi, θ−i) − ti(θi, θ−i))πi[θ−i]

≥ min
πi∈Πk

i

∑

θ−i

∑

θ′i

σi(θi)[θ
′
i](θixi(θ

′
i, θ−i) − ti(θ

′
i, θ−i))πi[θ−i],

(ICi)

for all σi(θi) ∈ ∆({θ, θ}),

Individual rationality. For each i ∈ {1, 2}, for each θi ∈ {θ, θ},

∑

θ−i

(θixi(θi, θ−i) − ti(θi, θ−i))p[θ−i] ≥ 0, (IRi)

and

Beliefs. For each i ∈ {1, 2}, there exist (µl,k
i )l,k with µl,k

i > 0 for all l ∈ {1, . . . , Lk}, for

all k ∈ {1, . . . , Ki}, such that

p =
∑

l,k

µl,kπl,k
i , (Bi)
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and
∑

l,k

µl,k
i = 1.

Two remarks are worth making. Firstly, the individual rationality constraints (IRi)

are defined ex-ante, since a buyer decides to participate (or not) in the mechanism

before receiving any messages. Secondly, if we constraint Πi to be {{p}} for each buyer

i ∈ {1, 2} (equivalently, if the seller cannot offer ambiguous contracts), the problem

boils down to the classical problem. Thus, if a solution exists, the seller is guaranteed

to extract more surplus from the buyers than in the classical problem. In fact, we now

show that the seller can extract all the surplus.

For any allocation x1(θ1, θ2) and x2(θ1, θ2), ex-post full rent extraction obtains when

no (informational) rents are left to the buyers, i.e., t1(θ1, θ2) = θ1x1(θ1, θ2) and t2(θ1, θ2) =

θ2x2(θ1, θ2). If, in addition, the allocations are efficient, i.e., x1(θ1, θ2) = x∗
1(θ1, θ2) and

x2(θ1, θ2) = x∗
2(θ1, θ2), ex-post full surplus extraction obtains. Let t∗i be the correspond-

ing payment scheme.

Clearly, if we can find a finite belief set Π∗
i that satisfies condition (Bi) such that

(x∗
i , t

∗
i ) is incentive compatible with respect to Π∗

i , then (x∗
i , t

∗
i , Π

∗
i )i∈{1,2} is a solution to

the above problem.

So, consider the allocation corresponding to ex-post full surplus extraction, i.e.,

(x∗
i , t

∗
i )i∈{1,2}. The payoff to buyer i of type θ (resp., θ) is depicted in the left panel

(resp., right panel) of the table below. For instance, if buyer i of type θ reports θ and

buyer j also reports θ, then buyer i’s payoff is (1/2)(θ − θ)(c′)−1(θ).

θ θ

θ 0 0

θ 0 (θ − θ) (c′)−1(θ)
2

θ θ

θ (θ − θ) (c′)−1(θ)
2

(θ − θ)(c′)−1(θ)

θ 0 0

Notice that truth-telling gives a payoff of zero to a buyer, regardless of his type and

the report of the other buyer. Moreover, truth-telling is strictly dominant for a buyer
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of type θ. Lastly, if Π∗
i = {{0, 1}}, then buyer i of type θ has an incentive to truthfully

reveal his type when he expects the other buyer to do so. Since p ∈ (0, 1), condition (Bi)

is satisfied. Consequently, (x∗
i , t

∗
i , {{0, 1}})i∈{1,2} is a solution to the seller’s program.

The solution is obviously not unique. However, it is easy to see that all solutions

correspond to ex-post full surplus extraction.

The result of ex-post full surplus extraction generalizes to environments with more

than two buyers and two types per buyer. To see this, suppose that there are n buyers

and for each buyer i, Θi := {θ1, . . . , θl, . . . , θL}. Without loss of generality, assume that

0 < θ1 < · · · < θl · · · < θL. We continue to assume type-independent and unambiguous

prior beliefs, with pi the prior beliefs of player i and pi[θ−i] > 0 for all θ−i ∈ Θ−i.

Let θmax
−i := max(θ1, . . . , θi−1, θi+1, . . . , θn). For ease of exposition, let the cost func-

tion be (1/2)(
∑n

i=1 xi)
2. As before, the first-best allocation x∗ is given by: x∗

i (θi, θ−i) =

θi/|{j : θj ≥ θmax
−j }| if θi ≥ θmax

−i and x∗
i (θi, θ−i) = 0, otherwise. Let t∗i be the pay-

ment scheme such that t∗i (θi, θ−i) := θix
∗
i (θi, θ−i). Thus, the pair (x∗, t∗) corresponds to

ex-post full surplus extraction.

The payoff to buyer i of type θl as function of his report θm and the highest report θmax
−i

of all other buyers is depicted in the table below ( |θmax
−i = θm| denotes the cardinality

of the set {j 6= i : θj = θmax
−i = θm} ∪ {i}), i.e., the set of buyers reporting the highest

valuations, conditional on buyer i reporting the highest valuation):

θL . . . θl+1 θl θl−1 . . .

θL (θl−θL)θL

|θmax
−i =θL|

(θl − θL)θL . . .

...

θl+1 0 0 (θl−θl+1)θl+1

|θmax
−i =θl+1|

(θl − θl+1)θl+1 . . .

θl 0 0 0 0 0 0

θl−1 0 0 0 0 (θl−θl−1)θl−1

|θmax
−i =θl−1|

(θl − θl−1)θl−1

...

As above, it is immediate to verify that truth-telling is incentive compatible whenever
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the set of beliefs of buyer i includes π∗
i with π∗

i [θ
max
−i = θL] = 1. This is because the

minimum expected payoff from truth-telling is zero (irrespective of beliefs about the

other buyers), while the minimum expected payoff from any other strategy, mixed or

pure, cannot be greater than the value of the expected payoff calculated using the belief

π∗
i , which is at most zero. Lastly, since pi is in the interior of the simplex ∆(Θ−i) and π∗

i

is on the boundary of ∆(Θ−i), we can find a set Π∗
i that includes π∗

i such that condition

(Bi) holds.

With minor modifications, the same arguments apply to an optimal auction design

problem (Myerson, 1981), so that ex-post full surplus extraction is possible.

As a final remark, consider the two-type model again and note that if buyer i has

multiple priors [p
i
, pi] with 0 < p

i
≤ pi < 1, then ex-post full surplus extraction re-

mains the optimal solution. This follows from Proposition 3 and the observation that

(x∗
i , t

∗
i )i∈{1,2} is incentive compatible with respect to [0, 1].

6 Concluding Discussion

This section offers a critical discussion of some of the salient features of our analy-

sis. Firstly, we argue that our results generalize without difficulties to a larger class of

ambiguity-sensitive preferences.

6.1 Richer preferences

Most of our results generalize to a number of preferences having a “multiple-prior”

representation. As a first example, consider the α-maxmin criterion. It is clear that

if we replace the incentive compatibility condition (IC) with the appropriate incentive

condition, all our results go through. With α-maxmin preferences, the appropriate

incentive condition is:
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α max
πi∈Πi(θ′′i ,θi)

∑

θ−i

ui(f(θi, θ−i), θi, θ−i)πi(θ−i)

+(1 − α) min
πi∈Πi(θ′′i ,θi)

∑

θ−i

ui(f(θi, θ−i), θi, θ−i)πi(θ−i) ≥

α max
πi∈Πi(θ′′i ,θi)

∑

θ−i

∑

θ′i

σi(θi)[θ
′
i]ui(f(θ′i, θ−i), θi, θ−i)πi(θ−i)

+(1 − α) min
πi∈Πi(θ′′i ,θi)

∑

θ−i

∑

θ′i

σi(θi)[θ
′
i]ui(f(θ′i, θ−i), θi, θ−i)πi(θ−i).

Variational preferences (Marinacci, Maccheroni and Rustichini, 2006) constitute an-

other example. With the incentive condition

min
πi∈Πi(θ′′i ,θi)

∑

θ−i

ui(f(θi, θ−i), θi, θ−i)πi(θ−i) + ci(πi, θi) ≥

min
πi∈Πi(θ′′i ,θi)

∑

θ−i

∑

θ′i

σi(θi)[θ
′
i]ui(f(θ′i, θ−i), θi, θ−i)πi(θ−i) + ci(πi, θi),

most of our results go through.17 Note, however, that Proposition 3 fails since we lose

the linearity in beliefs.

Yet, another example is the criterion of minimax regret. With the incentive compat-

ibility condition:

max
πi∈Πi(θ′′i ,θi)

∑

θ−i

[max
θ̃i

ui(f(θ̃i, θ−i), θi, θ−i) − ui(f(θi, θ−i), θi, θ−i)]πi(θ−i) ≤

max
πi∈Πi(θ′′i ,θi)

∑

θ−i

∑

θ′i

σi(θi)[θ
′
i][max

θ̃i

ui(f(θ̃i, θ−i), θi, θ−i) − ui(f(θ′i, θ−i), θi, θ−i)]πi(θ−i),

we have that any incentive compatible social choice function that satisfies condition (B)

is implementable by an ambiguous mechanism (the second part of Theorem 1). However,

the converse is not true. Simply, the criterion of minimax regret is not menu independent

and, thus, the implementation of a social choice function by a given mechanism is not

17The function ci(·, θi) is the ambiguity index of player i of type θi.
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equivalent to the implementation by the direct mechanism. See Saran (2011) for more

on this issue.

As a final example, we consider the Bewley preferences (Bewley, 2002). Since those

preferences are incomplete, there are two possible definitions of incentive compatibility

(see Lopomo, Rigotti and Shannon (2010)). The first definition states that truth-telling

dominates prior-by-prior any other report, whenever a player expects his opponents to

tell the truth, that is,

∑

θ−i∈Θ−i

ui(f(θi, θ−i), θi, θ−i)πi(θ−i) ≥
∑

θ−i∈Θ−i

ui(f(θ′i, θ−i), θi, θ−i)πi(θ−i),

for all θ′i ∈ Θi, for all πi ∈ Πi(θ
′′
i , θi), for all θ′′i ∈ Θi.

The second definition simply states that truth-telling is not dominated and, thus,

is implied by the first definition; that is, for all θi ∈ Θi, for all θ′′i ∈ Θi, no behavioral

strategy σi(θ
′′
i , θi) ∈ ∆(Θi) satisfies

∑

θ−i

∑

θ′i

σi(θ
′′
i , θi)[θ

′
i]ui(f(θ′i, θ−i), θi, θ−i)πi(θ−i) >

∑

θ−i

ui(f(θi, θ−i), θi, θ−i)πi(θ−i),

for all πi ∈ Πi(θ
′′
i , θi). Nonetheless, regardless of the definition adopted, all our results go

through. In particular, with the first definition, we have that a social choice function is

implementable by an ambiguous mechanism if and only if it is implementable by a classic

mechanism (i.e., unambiguous and static). In other words, a social choice function is

implementable if and only if it is incentive compatible with respect to the prior beliefs.

Another important aspect of our analysis is the updating rule. We have assumed

prior-by-prior updating (full Bayesian updating), a popular assumption in applications.

However, other updating rules exist and, indeed, have axiomatic foundations. Following

Gilboa and Schmeilder (1993), we can assume the maximum-likelihood updating rule.

With that rule, a player updates the priors that maximize the likelihood of observing a

particular event. We have the following:
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Proposition 4 Assume the maximum-likelihood updating rule and no ex-ante uncer-

tainty. Assume that, for each player i, there exists a finite-valued belief correspondence

Πi : Θi ×Θi → ∆(Θ−i) such that the social choice function f is Πi-incentive compatible

with pθi
the arithmetic mean of the elements of Πi(θ

′′
i , θi) for all θ′′i . Then, the social

choice function f is implementable by an ambiguous mechanism.

The intuition is simple. Consider the construction of the ambiguity communication

device in Proposition 1. If priors are arithmetic means of the targeted posteriors, we

have that each of the probability systems is equally likely to have generated a given

message, so that maximum-likelihood updating coincides with prior-by-prior updating.

Note, however, that the introductory example did not satisfy the above proposition.

Another updating rule we mention is Hanany-Klibanoff updating rules. Because

these updating rules guarantee a weak form of dynamic consistency, we generally have

the classical revelation principle (adapted to the preferences, of course). To be more

precise, suppose that f is not incentive compatible, i.e., there exist player i, types θi

and θ∗i such that fθ∗i
≻θi

i fθi
, where fθi

denotes the act that gives f(θi, θ−i) in state θ−i

and ≻θi

i the strict preference of player i of type θi. Consider the set of all such acts, i.e.,

F := ∪θ′i∈Θi
{fθ′i

}. Since the set of types is finite, the set F is finite and, consequently, we

can assume that fθ∗i
<

θi

i fθ′i
for all θ′i. So, consider the set of acts F , the ex-ante optimal

act fθ∗i
, the ex-ante preferences <

θi

i and the event {ωi}, corresponding to a profile of

messages received and sent by player i before the allocation stage. Moreover, since the

social choice function does not depend on cheap talk messages, we have that two acts

in F agree outside {ωi}. Consequently, dynamic consistency as defined in Hanany and

Klibanoff requires fθ∗i
<

θi

{ωi},fθ∗
i
,F

fθi
, while implementation requires fθi

<
θi

{ωi},fθ∗
i
,F

fθ∗i

(<θi

{ωi},fθ∗
i
,F

is player i’s conditional preference). This violates axiom DC3 (p. 273) in

Hanany and Klibanoff, but not their main axiom DC (p. 270) of dynamic consistency.

As already explained, the introductory example can be modified so that their main axiom

is satisfied. Consequently, a violation of their axiom DC is not a necessary condition

for our results to hold.
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Of course, this discussion does not exhaust all possible updating rules and ambiguity-

sensitive preferences. It simply suggests that our results extend to a larger class of

ambiguity-sensitive preferences and updating rules. Further research is certainly needed.

6.2 Ambiguity In The Allocation Mechanism

A noteworthy feature of ambiguous mechanisms is that no ambiguity is introduced at

the allocation stage; ambiguity is only introduced at the communication stage. This is,

however, without loss of generality. To see this, suppose that the allocation mechanism is

〈(Mi)i∈N , G〉 with G a set of allocation rules g : M → X, so that players are ambiguous

about the exact allocation rule used for implementation. For instance, the alternative

implemented might depend on the messages sent by the players as well as a draw from

an urn, which contains either blue balls or red balls, but with unknown proportions (an

“Ellsberg” urn.)

For the social choice function f to be implementable, however, there must exist a

consistent planning equilibrium s∗ such that g(mi, m−i) = f(θi, θ−i) for all (mi, m−i)

with ×i∈Ns∗i (θi, h
T+1
i )[mi] > 0, for all (hT+1

i , hT+1
−i ) with positive probability under s∗,

and for all g ∈ G.18 Consequently, introducing ambiguity in the allocation mechanism

does not help in the partial implementation of social choice functions. This observation

may explain why most real-world mechanisms, e.g., voting systems, schooling allocation

mechanisms, auctions, have unambiguous allocation rules. Yet, as the work of Di Tillio,

Kos and Messmer suggests, ambiguity at the allocation stage might enlarge the set of

implementable social choice sets.

18To see this, note that if there exist g ∈ G, (hT+1
i , hT+1

−i ) with positive probability under s∗, (mi, m−i)

with ×i∈Ns∗i (θi, h
T+1
i )[mi] > 0 such that g(mi, m−i) 6= f(θi, θ−i), then we have a violation of the

definition of implementation.
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6.3 Beyond Ambiguous Mechanisms

Ambiguous mechanisms are relatively simple. They consist of a finite number of stages

of mediated communication followed by an allocation stage. Clearly, there are more

general mechanisms. For instance, the communication device at stage t might depend

on the entire histories of messages sent and received up to period t. Similarly, for

the allocation. The following example illustrates some of the challenges in obtaining a

revelation principle for general ambiguous mechanisms.

There are two players, labeled 1 and 2, two types θ and θ′ for each player, and

two alternatives x and y. Types are private information. We assume that players have

multiple-prior preferences (Gilboa and Schmeidler, 1989) with Pi the set of priors of

player i ∈ {1, 2} and ui his utility function. Suppose that u1(x, θ) = 1, u1(y, θ) = 0, that

player 1 of type θ′ and player 2 of both types are indifferent between all alternatives,

and that Pi is independent of player i’s type. An element of Pi represents a prior belief

of player i about the likelihood of player j’s type to be θ. For concreteness, assume that

{pi} = {1/3}.19

The designer aims at (partially) implementing the social choice function f defined

by: f(θ, θ) = x, f(θ, θ′) = y, f(θ′, θ) = y and f(θ′, θ′) = x.

The social choice function f is not implementable by an ambiguous mechanism.

Regardless of his beliefs, player 1 can guarantee a payoff of 1/2 by mixing uniformly

between θ and θ′. So, to satisfy the incentive compatibility constraints (IC), we need

to find a finite collection of finite beliefs’ sets (Πk
i )k such that min Πk

i ≥ 1/2 for each k.

However, to satisfy condition (B), we also need that the prior belief 1/3 belongs to the

convex hull of ∪kΠ
k
i , which is impossible.

Yet, we claim that the social choice function is implementable by a more general

ambiguous mechanism. The mechanism has three stages. In the first stage, player 2

19More generally, all our arguments remain valid if Pi = [p
i
, pi] with p

i
< 1 − pi. Alternatively, if

p
i
≥ 1−pi, f is implementable with a classical direct mechanism, so that there is no need for non-trivial

ambiguous mechanisms.
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reports either θ or θ′ to the designer. Following player 2’s report, the designer sends

either ω or ω′ to player 1. There are two possible probability systems, λ and λ′. The first

probability system λ is fully specified by λ(ω|θ) = 1 and λ(ω′|θ′) = 1, while λ′(ω′|θ) = 1

and λ′(ω|θ′) = 1 fully specify the second probability system. Player 1 is not active in the

first stage. In the second stage, player 1 reports either θ or θ′ to the designer. If player

1 reports θ, the designer implements f(θ, θ) (resp., f(θ, θ′)) if player 2 reported θ (resp.,

θ′) in the first stage. Alternatively, if player 1 reports θ′, the mechanism moves to the

third and final stage. In the third stage, player 1 has again to report θ or θ′. If player 1

reports θ′, the designer implements f(θ′, θ) (resp., f(θ′, θ′)) if player 2 reported θ (resp.,

θ′) in the first stage. Alternatively, if player 1 reports θ, the designer implements y,

regardless of player 2’s report. (Player 2 is not active at the second and third stage.)

The distinctive feature of this mechanism is the multi-stage allocation mechanism. See

Figure 3 for a graphical illustration.

θ′θ

2

ω
ω′

θ′θ

f(θ, θ)

1

θ′

f(θ′, θ)

θ

y

1

ω
ω′

θ′θ

f(θ, θ′)

1

θ′

f(θ′, θ′)

θ

y

1

Figure 3: The mechanism

We now argue that both players have an incentive to truthfully reveal their types at

all stages. Since player 1 of type θ′ and player 2 of either type are indifferent between

all alternatives, they clearly have an incentive to truthfully reveal their types. So, let us

focus on player 1 of type θ. Consider the history (ω, θ′), i.e., player 1 has received the

message ω from the designer at the first stage and has reported θ′ at the second stage. By
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construction of the ambiguous communication device, player 1’s set of beliefs is {0, 1},

i.e., he believes that either player 2 is of type θ with probability 1 or of type θ′ with

probability 1. At (ω, θ′), player 1 is indifferent between reporting θ, which guarantees

a payoff of zero and reporting θ′. Moreover, no mixture between θ and θ′ is strictly

preferred to reporting θ.20 Consequently, it is optimal for player 1 of type θ to truthfully

report θ at the third stage following the history (ω, θ′). Let us move to the history (ω).

At (ω), player 1’ set of beliefs is {0, 1} and so he is indifferent between reporting θ and

any mixing between θ and θ′ (conditional on reporting θ at the third stage and, thus,

obtaining y for sure). So, it is optimal for player 1 of type θ to truthfully report θ at ω.

A similar argument holds at ω′, so that f is indeed implementable by the constructed

mechanism.

6.4 Continuum

This section generalizes our main result to environments and mechanisms with a con-

tinuum of alternatives, types, and messages. In particular, even in environments with a

finite number of alternatives and types, the designer may benefit from using a continuum

of messages. It makes it possible to engineer larger sets of beliefs and, consequently, to

relax the incentive-compatibility constraints.

Throughout, we endow any metrizable space Y with BY , the σ-algebra of Borel sets on

Y , to form the probability space (Y,BY ). Denote ∆(Y ) the set of all probability measures

on (Y,BY ). We endow ∆(Y ) with the weak* topology. Let Y and Y ′ be two metrizable

spaces. A function φ from Y to ∆(Y ′) is measurable if φ−1(OY ′) ∈ BY for all OY ′ ∈

B∆(Y ′), the Borel σ-algebra on ∆(Y ′) endowed with the weak* topology. A probability

measure µ on (Y,BY ) admits the probability density ζ if µ is absolutely continuous

with respect to the Lebesgue measure on Y and has Radon-Nikodym derivative ζ (with

respect to the Lebesgue measure). We denote ∆̂(Y ) ⊆ ∆(Y ) the set of such probability

20This follows from the c-independence of the multiple prior preferences (Gilboa and Schmeidler,

1989).
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measures. With a slight abuse of notation, we write ∆̂(Y ) for the set of probability

densities corresponding to the set of measures ∆̂(Y ). Finally, we endow products of

topological spaces with the product topology.

With these mathematical preliminaries done, assume that all sets introduced in Sec-

tion 3 (i.e., X, (Θi)i, (Ωi,t, Ω
∗
i,t)i,t, (Mi)i, etc) are subsets of metrizable spaces; that

functions (i.e., payoff functions, probability systems, strategies, etc) are measurable,

and that each probability measure admits a strictly positive density. For each t, Λt is

a measurable subset of the set of all measurable probability systems λt : Ωt → ∆(Ω∗
t )

with densities. Assume that each {λt} is measurable and that there exists a density ν

such that ν(λt) > 0.

With these technical assumptions, we have that

ζθi
(θ′i, pθi

, ωi, λ)[θ−i] =

∫

ω−i
λ̂((θ′i, θ−i))[(ωi, ω−i)]p̂θi

(θ−i)dω−i

∫

ω−i

∫

θ−i
λ̂((θ′i, θ−i))[(ωi, ω−i)]p̂θi

(θ−i)dω−idθ−i

,

with λ̂(θ) the probability density corresponding to the measure λ(θ) and p̂θi
the proba-

bility density corresponding to the measure pθi
.

Theorem 2 The following statements are equivalent:

1. The social choice function f is implementable by an ambiguous mechanism.

2. For each player i ∈ N , there exists a family of non-empty valued correspondences

(Πk
i : Θi × Θi → ∆̂(Θ−i))k∈Ki

such that:

(IC) For each k ∈ Ki, the social choice function f is Πk
i -incentive compatible.

(B) There exist Ωi := ∪k∈Ki
Ωk

i and λi : Θi × Θ−i → ∆̂(Ωi) such that

∪pθi
∈P (θi) ∪ωi∈Ωk

i
{ζθi

(θ′i, pθi
, ωi, λi)} = Πk

i (θ
′
i, θi), (B3)

for all θ′i ∈ Θi, for all θi ∈ Θi, for all k ∈ Ki.
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Proof Only minor modifications to the proof of Theorem 1 are required. The only

modification required to prove that (2) ⇒ (1) is to show that the subgroup of cyclic

permutations from Ωi to Ωi has the cardinality of Ωi. Let ρα0 : Ωi → Ωi be the identity

function and define inductively the bijection ρα : Ωi → Ωi such that ρα(ωi) 6= ρα′(ωi) for

all α′ < α, for all ωi ∈ Ω. Let A be the set of all such α. Clearly, the cardinality of A

is weakly smaller than the cardinality of Ωi, so suppose that |A| < |Ωi|. It follows that

| ∪α {ρα(ωi)}| = |A| < |Ωi|. From the axiom of choice, it follows that for each ωi ∈ Ωi,

we can choose ρ(ωi) ∈ Ωi \ (∪α{ρα(ωi)}) such that ρ is a bijection, a contradiction.

The modification required to prove that (1) ⇒ (2) is in the definition of λ∗
i : we define

λ∗
i (θi, θ−i)[(ωi, λi)] := λi(θi, θ−i)[ωi]ν(λi), with ν the density on Λi. �

Appendix

Proof of Theorem 1: the general case We treat the case of a family of corre-

spondences. The proof is almost identical to the proof in the main text. We only sketch

the important differences.

Suppose that for each player i ∈ N , there exists a family of non-empty valued

correspondences Πk
i : Θi × Θi → ∆(Θ−i) such that conditions (IC) and (B) hold. Since

condition (B) holds, there exists (Ωk
i )k∈Ki

and λi such that ∪pθi
∈P (θi){ζθi

(θ′i, pθi
, ωi, λi)} ⊆

Πk
i (θ

′
i, θi) for all ωi ∈ Ωk

i .

For each k ∈ Ki, consider a permutation ρk : Ωk
i → Ωk

i and the probability system λρ
i :

Θ×Θ−i → ∆(Ωi) defined by λρ
i (θ)[ωi] = λi(θ)[ρ

k(ωi)] for all ωi ∈ Ωk
i , for all k ∈ Ki. De-

fine Λi as in the proof of Theorem 1 (i.e., as {λρ : ρk
i is a cyclic permutation for each k}),

we obtain that ∪λi∈Λi
∪pθi

∈P (θi) {ζθi
(θ′i, pθi

, ωi, λi)} = Πk
i (θ

′
i, θi) for all ωi ∈ Ωk

i , for all

k ∈ Ki. The rest of the proof is almost identical to the proof of Theorem 1 and left to

the reader. �
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Lemma 1 If the social choice function f is implementable by the ambiguous mechanism

〈〈(Ω∗
i,t, Ωi,t)i∈N , Λt〉t=1,...,T , 〈(Mi)i∈N , g〉〉,

then f is implementable by a two-stage ambiguous mechanism.

Proof of Lemma 1 Suppose that the social choice function f is implementable by

the ambiguous mechanism

〈〈(Ω∗
i,t, Ωi,t)i∈N , Λt〉t=1,...,T , 〈(Mi)i∈N , g〉〉,

and let (s∗, ΠH,Θ) be the consistent planning equilibrium implementing f . Consider the

two-stage mechanisms:

〈〈(Θi,×t(Ω
∗
i,t × Ωi,t))i∈N , Λ〉, 〈(Mi)i∈N , g〉〉,

with Λ constructed as follows. For any (λ1, . . . , λT ) ∈ Λ1 × · · · × ΛT , we associate the

communication system λ defined by:

λ(θ)[(ω∗
t , ωt)

T
t=1] := s∗(θ)[ω∗

1]λ1(ω
∗
1)[ω1] × . . .

× · · · × s∗(θ, (ω∗
t , ωt)

τ
t=1)[ω

∗
τ ]λτ (ω

∗
τ )[ωτ ] × . . .

× · · · × s∗(θ, (ω∗
t , ωt)

T−1
t=1 )[ω∗

T ]λT (ω∗
T )[ωT ].

Let H∗∗ the relevant histories. Note each element of H∗∗ is an element of H . Consider

the profile of strategies s∗∗ with s∗∗i (θi) = θi at the initial history and s∗∗i (θi, (ω
∗
i,t, ωi,t)

T
t=1) =

s∗i (θi, h
T+1
i ) with hT+1

i = ((ω∗
i,t, ωi,t)

T
t=1).

By construction, if the history hT+1
i = ((ω∗

i,t, ωi,t)
T
t=1) has positive probability under

s∗, then the profile of messages ((ω∗
i,t, ωi,t)

T
t=1) has positive probability under s∗∗. More-

over, the set of beliefs of player i of type θi conditional on the message ((ω∗
i,t, ωi,t)

T
t=1) is

exactly equal to ΠH,Θ
i (θi, h

T+1
i ).

Since the consistent planning equilibrium (s∗, ΠH,Θ) implements f , it follows that the

strategy profile (s∗∗, ΠH∗∗,Θ) is a consistent planning equilibrium of the game induced

by the two-stage mechanism and, furthermore, implements f . �

45



Proof of Proposition 2 (2) ⇒ (1). This follows from Theorem 1.

(1) ⇒ (2). The proof is almost identical to the proof of Theorem 1. We only sketch

the main differences. Since beliefs are type-independent, we have that ΠΘ(θi, (θi, ωi)) =

ΠΘ
i (θ′i, (θi, ωi)) for any θi and θ′i, for any history (θi, ωi). Denote ΠΘ((θi, ωi)) the beliefs

at history (θi, ωi).

For each player i ∈ N , fix a type θ∗i ∈ Θi and for each λ ∈ Λ, define λ∗
i : Θ−i → ∆(Ωi)

with λ∗
i (θ−i)[ωi] =

∑

ω−i
λ(θ∗i , θ−i)[(ωi, ω−i)]. Denote Λ∗

i the set of such probability

systems.

We claim the social choice function f is implementable by

〈〈(Θi, Ωi, Λ
∗
i )i∈N〉, 〈(Mi)i∈N , g〉〉.

Consider the strategy profile s∗ for which players truthfully reports their types at the

first stage and at the second stage, regardless of the history. It is a consistent planning

equilibrium. To see this, notice that regardless of player i’s report at the first stage,

the set of player i’s beliefs at the history (θi, ωi) is ΠΘ
i ((θ∗i , ωi)). Moreover, since f is

implementable by the mechanism

〈〈(Θi, Ωi)i∈NΛ〉, 〈(Mi)i∈N , g〉〉,

we have from Theorem 1 that f is incentive compatible with respect to ΠΘ
i ((θ∗i , ωi)) for

each player i ∈ N , for each ωi. Thus, s∗ is indeed a consistent planning equilibrium.

The rest of the proof then follows as in the proof of Theorem 1. �

Proof of Proposition 3 Suppose that there are two players, labeled 1 and 2, and

each player i ∈ {1, 2} has two types θ and θ′. Let Pi ⊆ ∆({θ, θ′}) be the non-empty,

convex, closed set of priors of player i. Suppose that f is incentive compatible with

respect to the non-empty, convex and closed set of beliefs Πi for each player i. Notice

that since player i’s expected payoff is linear in beliefs, f is also incentive compatible

with respect to Π∗
i , with {π1

i , π
2
i } ⊆ Π∗

i ⊆ Πi and {π1
i , π

2
i } the set of extreme points of

Πi, for each player i. Let pi and p′i be the two extreme points of Pi with pi(θ) ≤ p′i(θ).

Without loss of generality, assume that π1
i (θ) ≤ π2

i (θ).
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Assume that pi(θ) and p′i(θ) are strictly in between π1
i (θ) and π2

i (θ), so that Pi in

the interior of Πi.

Fix q2
i ∈ ∆({θ, θ′}) such that pi = µ1π

1
i + µ2q

2
i with µ1 > 0, µ2 > 0 and µ1 + µ2 = 1.

Let Ω = {ω1, ω2}. The idea is to construct a probability system λi : {θ, θ′} → ∆(Ω) such

that player i’s posterior is π1
i (resp., q2

i ) conditional on ω1 (resp., ω2), when he uses the

prior pi, and to “control” q2
i so that player i’s posterior is π2

i conditional on ω2, when he

uses the prior p′i. Define λi as follows:

λi(θ)[ω1] =
µ1π

1
i (θ)

pi(θ)
,

λi(θ)[ω2] =
µ2q

2
i (θ)

pi(θ)
,

λi(θ
′)[ω1] =

µ1π
1
i (θ

′)

pi(θ′)
,

λi(θ
′)[ω2] =

µ2q
2
i (θ

′)

pi(θ′)
.

Denote ζi(pi, ω, λi) the posterior belief of player i about the type of his opponent,

conditional on the message ω, when he uses the prior pi. By construction, we have that

ζi(pi, ω1, λi) = π1
i and ζi(pi, ω2, λi) = q2

i . We now derive ζi(p
′
i, ω, λi) for any ω ∈ Ω. We

have

ζi(p
′
i, ω1, λi)[θ] =

π1
i (θ)(p

′
i(θ)/pi(θ))

π1
i (θ)(p

′
i(θ)/pi(θ)) + π1

i (θ
′)(p′i(θ

′)/pi(θ′))
:= q1

i (θ),

ζi(p
′
i, ω2, λi)[θ] =

q2
i (θ)(p

′
i(θ)/pi(θ))

q2
i (θ)(p

′
i(θ)/pi(θ)) + q2

i (θ
′)(p′i(θ

′)/pi(θ′))
,

ζi(p
′
i, ω1, λi)[θ

′] = 1 − ζi(p
′
i, ω1, λi)[θ],

ζi(p
′
i, ω2, λi)[θ

′] = 1 − ζi(p
′
i, ω2, λi)[θ].

So, we want to find q2
i such that ζi(p

′
i, ω2, λi) = π2

i , while q1
i must belong to Πi.

Notice that the function φ : [0, 1] → R+, defined by

φ(y) =
y(p′i(θ)/pi(θ))

y(p′i(θ)/pi(θ)) + (1 − y)(p′i(θ
′)/pi(θ′))

,
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is continuous and increasing in y ∈ [0, 1]. Moreover,

y(p′i(θ)/pi(θ))

y(p′i(θ)/pi(θ)) + (1 − y)(p′i(θ
′)/pi(θ′))

= y
1

y + (1 − y)
p′i(θ

′)

pi(θ′)
pi(θ)
p′i(θ)

≥ y,

since pi(θ) ≤ p′i(θ), pi(θ
′) = 1 − pi(θ), and p′i(θ

′) = 1 − p′i(θ).

For a solution to exist, we need to satisfy the following inequalities:

π1
i (θ) ≤ q1

i (θ) = φ(π1
i (θ)) ≤ π2

i (θ),

φ(π1
i (θ)) ≤ π2

i (θ),

q2
i (θ) ≥ pi(θ).

The first inequality is required for q2
i to be in the convex hull of {π1

i , π
2
i }, the second

inequality is required for the existence of a solution of f(q2
i ) = π2

i , and the last inequality

is required for the µ’s to be well-defined.

Notice that first inequality is equivalent to the second inequality. Moreover, the last

inequality is automatically satisfied if the second is. To see this, observe that the second

inequality implies that there exists q2
i such that φ(q2

i (θ)) = π2
i (θ); this follows from the

intermediate value theorem. By contradiction, assume that q2
i (θ) < pi(θ). Since φ is

increasing, we have that φ(q2
i (θ)) = π2

i (θ) ≤ φ(pi(θ)) = p′i(θ) < π2
i (θ), a contradiction.

From the definition of φ, it follows that a solution exists, whenever

π1
i (θ)

π1
i (θ

′)

π2
i (θ

′)

π2
i (θ)

≤
(p′i(θ

′)/pi(θ
′))

(p′i(θ)/pi(θ))
=

p′i(θ
′)

pi(θ′)

pi(θ)

p′i(θ)
.

The last inequality is satisfied whenever pi(θ) and p′i(θ) are in between π1
i (θ) and π2

i (θ),

as postulated. To summarize, we have that ∪p̃i∈Pi
∪ω∈Ω {ζi(p̃i, ω, λi)} = co{π1

i , q
2
i } ∪

co{q1
i , π

2
i } := Π∗

i ⊆ Πi, as required. �
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