
A

R

D
s

YQ1

a

b

c

d

a

A
R
R
A
A

K
D
C
E
G
M

C

f
U

Q2

h
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
ARTICLE IN PRESSG Model
SOC 2951 1–15

Applied Soft Computing xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

eview article

istributed evolutionary algorithms and their models: A survey of the
tate-of-the-art�

ue-Jiao Gonga,b, Wei-Neng Chena, Zhi-Hui Zhana, Jun Zhanga,∗, Yun Li c, Qingfu Zhangd

School of Advanced Computing, Sun Yat-Sen University, Guangzhou, China
Faculty of Science and Technology, University of Macau, Macau
School of Engineering, University of Glasgow, UK
School of Computer Science and Electronic Engineering, University of Essex, UK

 r t i c l e i n f o

rticle history:
eceived 20 December 2014
eceived in revised form 29 April 2015
ccepted 30 April 2015
vailable online xxx

eywords:
istributed evolutionary computation
oevolutionary computation
volutionary algorithms

a b s t r a c t

The increasing complexity of real-world optimization problems raises new challenges to evolutionary
computation. Responding to these challenges, distributed evolutionary computation has received consid-
erable attention over the past decade. This article provides a comprehensive survey of the state-of-the-art
distributed evolutionary algorithms and models, which have been classified into two groups according to
their task division mechanism. Population-distributed models are presented with master-slave, island,
cellular, hierarchical, and pool architectures, which parallelize an evolution task at population, individual,
or operation levels. Dimension-distributed models include coevolution and multi-agent models, which
focus on dimension reduction. Insights into the models, such as synchronization, homogeneity, commu-
nication, topology, speedup, advantages and disadvantages are also presented and discussed. The study
lobal optimization
ultiobjective optimization

of these models helps guide future development of different and/or improved algorithms. Also high-
lighted are recent hotspots in this area, including the cloud and MapReduce-based implementations, GPU
and CUDA-based implementations, distributed evolutionary multiobjective optimization, and real-world
applications. Further, a number of future research directions have been discussed, with a conclusion that
the development of distributed evolutionary computation will continue to flourish.

© 2015 Published by Elsevier B.V.
ontents

1. Introduction 00
2. Terminologies 00
3. Models of distributed evolutionary algorithms 00

3.1. Master-slave model 00
3.2. Island model 00
3.3. Cellular model 00
3.4. Hierarchical model 00
3.5. Pool model 00
3.6. Coevolution model 00
3.7. Multi-agent model 00

4. Summary and analysis 00
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

4.1. Parallelism level
4.2. Objective function.
4.3. Search behavior

� This work was supported in part by the National High-Technology Research and Deve
or Distinguished Young Scholars No. 61125205, in part by the NSFC Key Project No. 613
1201258 and No. U1135005.
∗ Corresponding author. Tel.: +86 13570277588.

E-mail address: junzhang@ieee.org (J. Zhang).

ttp://dx.doi.org/10.1016/j.asoc.2015.04.061
568-4946/© 2015 Published by Elsevier B.V.
ary algorithms and their models: A survey of the state-of-the-art,
061

 00
 00

 00

lopment Program (863 Program) of China No. 2013AA01A212, in part by the NSFC
32002, and in part by the NSFC Joint Fund with Guangdong under Key Projects No.

dx.doi.org/10.1016/j.asoc.2015.04.061
dx.doi.org/10.1016/j.asoc.2015.04.061
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:junzhang@ieee.org
dx.doi.org/10.1016/j.asoc.2015.04.061

ARTICLE IN PRESSG Model
ASOC 2951 1–15

2 Y.-J. Gong et al. / Applied Soft Computing xxx (2015) xxx–xxx

4.4. Communication cost 00
4.5. Scalability 00
4.6. Fault-tolerance 00

5. Recent research hotspots of dEAs 00
5.1. Cloud and MapReduce-based implementations 00
5.2. GPU and CUDA-based implementations 00
5.3. Distributed evolutionary multiobjective optimization 00
5.4. Real-world applications 00

6. Future directions. 00
6.1. Highly scalable dEC 00
6.2. Theoretical basis/proof of convergence. 00
6.3. Systematical control of parameters 00
6.4. Many-objective optimization 00
6.5. Evolutionary big data optimization 00
6.6. Mobile evolutionary computation 00

7. Conclusions 00

1
Q3

a
o
r
“
p
i
o
s
f
w
t
h
a
r
a

F
i
e
t
s
m
i
m
d
a
c
d
o
v
a
[
fi
b
h
a
d
i
(
s
P
c
[
f

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127
References

. Introduction

With metaheuristic and stochastic characteristics, evolution-
ry computation (EC) has shown to be effective solvers for hard
ptimization problems in real-world applications. However, with
apid development of the information age and the emergence of
big data”, the increasing size and complexity of the problems has
osed new challenges to EC. This is especially so if the search space

nvolves a huge number of local optima or the computational cost
f fitness evaluation becomes extremely high. When a traditional
equential evolutionary algorithm (EA) is unable to provide satis-
actory results within a reasonable time, a distributed EA (dEA),
hich deploys the population on distributed systems, can improve

he availability. It also offers an opportunity to solve extremely
igh dimensional problems through distributed coevolution using

 divide-and-conquer mechanism. Further, the distributed envi-
onment allows a dEA to maintain population diversity, thereby
voiding local optima and also facilitating multiobjective search.

The framework of developing a distributed EA is illustrated in
ig. 1. Its fundamental algorithms embrace all kinds of EAs includ-
ng the genetic algorithm (GA), evolutionary programming (EP),
volution strategy (ES), genetic programming (GP), and differen-
ial evolution (DE). Moreover, other population-based algorithms,
uch as ant colony optimization (ACO) and particle swarm opti-
ization (PSO), share common features with EAs and are hence also

ncluded in this survey. Then, by employing different distributed
odels to parallelize the processing of EAs, various dEAs can be

esigned. The logistical distributed models have several issues to
ddress, such as the distribution of evolution tasks and the proto-
ols for communications among processors. The granularity of the
istribution may be at the population level, the individual level, the
perator level, or the variable level. Correspondingly, there can be
arious communication rules in terms of the content, frequency,
nd direction of message passing. In the literature, master-slave
31], island (a.k.a. coarse-grained model) [56,99], and cellular (a.k.a.
ne-grained model) [51,1] models have been commonly used to
uild dEAs. Moreover, other models such as the hierarchy (a.k.a.
ybrid model) [41], pool [104], coevolution [121,122], and multi-
gent models [10] are also widely accepted. After designing a dEA,
ifferent programming languages and tool sets can be adopted to

mplement the algorithm, such as the Message-Passing Interface
MPI) [63], MapReduce [81], and Java [129,38]. There also exist
oftware packages for dEC, such as the Paladin-DEC [126,127] and
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

aradisEO [14,15]. Finally, the format of the physical platform that
an be used to deploy the algorithms includes cluster [73], grid
39], P2P network [141], cloud [44], and GPU [151]. These plat-
orms have different architectures, network connectivity, resource
 00

management schemes, and operating systems. Two recent papers,
[133,65], review and discuss the parallel and distributed GAs
in considering different physical platforms. The selection of the
underlying platform partially influences the implementations of
dEA models, and also determines the system performance such as
scalability and fault-tolerance.

As there exist a very large number of research outputs in dEAs, it
is impossible to cover all the relevant works within the page limit
of this article. Therefore, references are presented based on their
influence, rigor, years of publication, numbers of citations, and cov-
erage. Models (the second layer in Fig. 1) continue to be a focus of
interest in developing dEAs and will hence form the main body of
this article.

We aim at providing readers with an updated, comprehen-
sive and systematic coverage of dEAs and the state-of-the-art
dEA models. The characteristics (or novelties) of this article are
presented as follows. (1) Compared with [3,16,4,131] published
ten years ago, this survey introduces and describes more recent
works in this area. In addition to the master-slave, island, cellular,
and hierarchical models surveyed in the literature [3,16,4,131,97],
we further review some state-of-the-art distributed models for
EC, including resource pool-based model, coevolution model, and
multi-agent model. To the best of our knowledge, no previous
survey of dEC covers these fields. (2) To update with a system-
atic treatment on the research progress, we semantically divide
dEA models into two major categories, i.e., population-distributed
models and dimension-distributed models. The operating mech-
anisms of different dEA models are analyzed and compared, as
well as their corresponding performance, advantages, disadvan-
tages, and ranges of applicability. (3) Recent research hotspots,
including cloud and MapReduce-based implementations, GPU
and CUDA-based implementations, multiobjective dEAs, and real-
world applications, are also discussed in this survey. (4) In addition
to a literature review, emerging research directions and applica-
tions are presented for possible further development.

The rest of this article is organized as follows. Section 2
introduces terminologies for a systematic treatment and classifi-
cation. Section 3 presents population-distributed and dimension-
distributed models, followed by a summary and analysis of
characteristics in Section 4. Section 5 is devoted to the four recent
research hotspots. Finally, we highlight some potential future direc-
tions in Section 6 and draw conclusions in Section 7.
ary algorithms and their models: A survey of the state-of-the-art,
.061

2. Terminologies

In this section, we briefly introduce the terminologies that
will be used throughout this article. The first two concepts, i.e.,

128

129

130

dx.doi.org/10.1016/j.asoc.2015.04.061

ARTICLE IN PRESSG Model
ASOC 2951 1–15

Y.-J. Gong et al. / Applied Soft Computing xxx (2015) xxx–xxx 3

eral d

“
w
“
b

a
a
s
a
m

e
d
d
t
l

p
s
r
o
d
i
m
o
p

t
f

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182
Fig. 1. The gen

synchronism/asynchrony” and “homogeneity/heterogeneity”, are
idely used to describe the properties of dEAs, whereas the

speedup”, “distributed efficiency”, “fault-tolerance”, and “scala-
ility” are performance metrics for evaluating dEAs.

Synchronism and asynchrony. An indispensable issue in a dEA
s well as any other distributed algorithm is the communications
mong processors. If all communications are controlled by a clock
ignal, then the algorithm is said to be synchronous, otherwise
synchronous. In an asynchronous dEA, communications take place
ore freely or automatically driven by data.
Homogeneity and heterogeneity. For dEAs, homogeneity and het-

rogeneity are used to describe whether the evolution tasks on
ifferent processors are of the same settings. In a homogeneous
EA, each processor adopts the same operators, control parame-
ers, fitness evaluation, etc., whereas in a heterogeneous dEA, the
ocal algorithmic settings for different processors vary.

Speedup and distributed efficiency. The distributed processing
erformance of dEAs is qualified by a speedup measure, the ratio of
equential execution time to parallel execution time of the algo-
ithm [31]. Ideally, the speedup should be equal to the number
f processors being used. Based on this, distributed efficiency is
efined as the ratio of speedup to the number of processors and its

deal value is 100%. In practice, the speedup and efficiency of dEAs
ay be limited by the computational overhead, the performance

f the most loaded node, and the communication speed between
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

rocessors.
Fault-tolerance. When running EAs on a physical distributed sys-

em, part of the underlying hardware or network may encounter
ailure. Fault-tolerance measures the ability of a dEA to continue
EC framework.

optimization in the condition of some physical components fail-
ing. A fault-tolerant dEA will not be suspended in such condition,
instead, it continues search with the remaining working nodes at a
level of graceful degradation.

Scalability. The scalability of dEAs involves two aspects: “size
scalability” and “task scalability”. Size scalability refers to the ability
of the algorithm to achieve proportionally increased performance
by increasing the number of processors. Task scalability refers to
the ability of algorithm to adapt to the changes in the problem
scale, e.g., whether the algorithm can retain its efficiency when the
problem dimension increases.

As a final note, within this paper, the terms dEC and dEAs are
used in a general sense, which include both the algorithms imple-
mented on parallel systems (where the processors or threads are
tightly coupled with a shared memory) and the algorithms imple-
mented on distributed systems (where the processors are loosely
coupled with a computer network).

3. Models of distributed evolutionary algorithms

Basically, a distributed EA divides computing tasks based on
two types of models. As illustrated in Fig. 2(a), a “population-
distributed” model distributes individuals of the population (or
subpopulations) to multiple processors or computing nodes, whilst
a “dimension-distributed” model distributes partitions of the prob-
ary algorithms and their models: A survey of the state-of-the-art,
061

lem dimensions (or subspaces). The population-distributed model
can be further divided to master-slave [31], island (a.k.a. coarse-
grained model) [56,99], cellular (a.k.a. fine-grained model) [51,1],
hierarchical (a.k.a. hybrid model) [41], and pool models [104], as

183

184

185

186

dx.doi.org/10.1016/j.asoc.2015.04.061

ARTICLE IN PRESSG Model
ASOC 2951 1–15

4 Y.-J. Gong et al. / Applied Soft Computing xxx (2015) xxx–xxx

nsion

i
m
m

3

t
F
o
b
e
r
m
t
t
a

c
m
a
o
A
a
[
m
w
s
a
m
t
b
s

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246
Fig. 2. Classification of the “population-distributed” and “dime

llustrated in Fig. 2(b). On the other side, the dimension-distributed
odel can be divided to coevolution [121,122] and multi-agent
odels [10].

.1. Master-slave model

The master-slave model summarizes a distributed approach
o the EA operations and domain evaluations as illustrated in
ig. 3. The master performs crossover, mutation, and selection
perations, but sends individuals to slaves for fitness evaluations
ecause these form the majority of the computing load. As the
valuations of individuals are mutually independent, there is no
equirement of communication among slaves. The master-slave
odel is hence simple, in which communications only occur when

he unique master sends individuals to slaves and the slaves return
he corresponding fitness values back to the master in each gener-
tion.

Variants to improve efficiency. For problems whose evaluation
osts are not relatively high, however, employing a master-slave
odel may become inefficient in that communications occupy

 large proportion of time in the dEA. In recent years, variants
f master-slave dEAs have been developed to address this issue.

 commonly used method is to distribute not only the evalu-
tion tasks but also the individual update tasks to slave nodes
63,84,105,61]. Another approach is a coarse-grained master-slave

odel in which each slave processor contains a subpopulation,
hile the master receives the best individual from each slave and

ends the global best information to all slaves [144]. Note that such
 coarse-grained master-slave model is different from the island
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

odel being introduced in the next subsection. First, the control of
he former is centralized whereas the control of an island model can
e either centralized or distributed. Second, as mentioned above,
laves do not communicate with slaves, but in an island model, the

Fig. 3. Illustration of master-slave EAs.

247

248

249

250

251

252

253

254

255

256

257
-distributed” models: (a) task division manners; (b) taxonomy.

islands frequently communicate with each other. The third possi-
ble way to improve the distributed efficiency of master-slave dEAs
is to conduct local search on slaves [147,119]. In the algorithms,
master conducts basic EA for global search whereas the slaves exe-
cute local search by considering the individuals received from the
master as neighborhood centers.

Synchronism and asynchrony. Most existing master-slave dEAs
are synchronous that the master stops and waits to receive the
information of all slaves before proceeding to the next genera-
tion. Some are asynchronous, where the selection operations on the
master node perform on a fraction of the population only [106,107].
In an experimental study of a master-slave PSO algorithm [110], it
is shown that synchronization plays a vital role in algorithm perfor-
mance on load-balanced problems, whilst asynchronous dEAs are
more efficient for load-imbalanced problems.

Speedup. The speedup and efficiency of master-slave dEAs may
be limited by the master’s performance and by the communication
speed between master and slaves [17]. Specifically, the limitation is
determined by the computational costs of the tasks executed on the
slaves. For example, Dubreuil et al. [31] show that the master-slave
model can perform well as long as the individual evaluation time is
much greater than the message passing time, as can be expected.
In their experiment, solving a problem requiring 0.25 s for evalua-
tion yields an efficiency of 82%, but if the evaluation time increases
to 1 s while the communication overhead remains the same, the
efficiency becomes 95%.

Fault-tolerance. For massive dEAs, how to improve the fault-
tolerance is another important issue. Gonzalez and De Vega [55]
argue that master-slave dEAs are intrinsically fault-tolerant. In
[120], a fault-tolerant DE algorithm based on a master-slave
model is proposed, where the individuals are distributed to a
grid of nodes for fitness evaluations and if certain individu-
als fail to return from their nodes in an acceptable time, they
can be replaced with random individuals. This mechanism not
only shows fault-tolerance, but can also help improve population
diversity.

3.2. Island model

An island model, as well as a cellular model, is a spatially dis-
tributed model. The difference between an island model and a
cellular model lies in the parallelization grain. As depicted in Fig. 4,
ary algorithms and their models: A survey of the state-of-the-art,
.061

an island model is coarse-grained, where the global population is
divided into several subpopulations, each of which is processed by
one processor. Communications between the islands occur when
certain individuals in one island migrate to another at a set interval.

258

259

260

261

dx.doi.org/10.1016/j.asoc.2015.04.061

ARTICLE IN PRESSG Model
ASOC 2951 1–15

Y.-J. Gong et al. / Applied Soft Computing xxx (2015) xxx–xxx 5

T
e
m

t
i
c
r
s
w
i

e
p
c
s
S
l
B
e
l
l
r
e
s
f
o
e
s
f

a
f
[
d
s
r
m
d
h
r

s
T
c
l
i
W
d
E

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355
Fig. 4. Illustration of island EAs.

he migration mechanism includes the migration frequency and
xtent, the selection policy on the source island, and the replace-
ent policy on the target island.
Synchronism and asynchrony. An island dEA is often synchronous

hat the best individual on each island propagates to all the other
slands at a specific interval of generation [89,100,148]. Asyn-
hronous island models also exist [30,80], where an island can
eceive migrated information as soon as it is ready. In general,
ynchronous island dEAs are simpler to design and implement,
hereas asynchronous algorithms are more flexible and can max-

mize efficiency.
Homogeneity and heterogeneity. In a homogeneous island model,

ach subpopulation adopts the same settings of operators, control
arameters, and fitness evaluations, etc. There exist two short-
omings. First, if the underlying physical system is heterogeneous,
lower processors will hinder the efficiency of the algorithms.
econd, using the same algorithmic settings on different subpopu-
ations may not balance global exploration and local exploitation.
ecause of these, heterogeneous island models are developed. One
xample is the heterogeneous island GA [112], where subpopu-
ations are arranged in a three-layer hierarchal manner: the top
ayer refines exploitation, the intermediate layer balances explo-
ation and exploitation, and the bottom layer conducts full-on
xploration. A hypercube island model is developed in [56], where
ubpopulations on the front side use different crossover operators
or exploration and the others on the rear side adopt crossover
perators that are more suitable for exploitation. Moreover, the
xploration and exploitation degrees of subpopulations on the
ame side are gradual. Other heterogeneous island dEAs can be
ound in [138,139].

Topology and migration strategy. The original island dEAs adopt
 complete graph as the topology of the islands (i.e., they are
ully connected “using no topology”). Whitley and Starkweather
140] and Lorion et al. [79] put forward that, if the migration con-
ucts among all islands, the distributed algorithm has almost the
ame search behavior as a sequential algorithm. In recent years,
esearch into network topology of island models has attracted
uch attention [140,79,148]. In [62], island DE algorithms with

ifferent network topologies including ring, torus, hypercube, and
ierarchy are studied, and experimental results confirm the supe-
ior performance of adopting a network topology in island DE.

The advantages of using an island model include not only time
aving, but also the improvement of global search ability of EAs.
raditional EAs with a single population suffer from premature
onvergence problem when all individuals gather in a same val-
ey. By deploying a number of subpopulations on isolated islands,
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

t is possible to maintain more than one best individual (attractor).
ithin the time interval between communications, individuals on

ifferent islands can evolve with different directions. This helps
As to maintain population diversity so as to repel local optimality
Fig. 5. Illustration of cellular EAs.

[99,76]. In [7], an island-based distributed DE algorithm is tested on
the well-known CEC 2005 test suite for real-parameter optimiza-
tion [123], with results showing that the algorithm outperformed
eight sequential EAs. Further, the work in [62] shows a tradeoff
between the exploration and convergence feature of DE by using
different migration frequencies. With a higher communication fre-
quency, the island DE can converge faster but may get trapped, and,
oppositely, the algorithm exhibits better global exploration ability
but converges much slower when the communication frequency is
lower. Moreover, the work in [130] indicates that the migration
extent also bears a significant impact on the algorithm perfor-
mance. In [18], a Markov chain model of predicting the expected
solution quality of dEAs is developed, with correctness verified by
numerical experiments.

Scalability and fault-tolerance. Regarding the system perfor-
mance of island model, Hidalgo and Fernandez [58] argue that, as
performance of island-based dEAs is highly sensitive to the number
of islands used and the resulting granularity, scalability of the island
model can be limited. Besides, Hidalgo et al. [59] point out that, to
a certain extent, fault-tolerance also exists in an island model.

3.3. Cellular model

Illustrated in Fig. 5, a cellular model is fine-grained and spatially
structured, which has only one population but arranges the indi-
viduals on the grid, ideally one per processor (cell). The interaction
among individuals is realized through the communication defined
by a network topology. Each individual can only compete and mate
within its neighborhood. As the neighborhood of individuals over-
laps, good individuals can propagate to the entire population.

Synchronism and asynchrony. Similar to an island EA, a cellular EA
(cEA) can also be either synchronous or asynchronous [132]. In the
former, all cells update their individuals simultaneously, whereas in
the latter, the cells are updated one by one. The four commonly used
asynchronous update strategies are the fixed line sweep (LS), fixed
random sweep (FRS), new random sweep (NRS), and uniform choice
(UC), as proposed in [109]. Alba et al. [2] compare the asynchronous
cEAs using these four update strategies with synchronous cEAs on
both discrete and continuous problems. Their experimental results
show that, with respect to discrete problems, asynchronous algo-
rithms are more efficient, but synchronous algorithms can achieve
better fitness. On the contrary, in solving continuous problems, they
draw complementary conclusions that asynchronous cEAs are bet-
ter in solution quality whereas synchronous cEAs win in efficiency.
A novel asynchronous communication method for a cEA is proposed
in [71], which uses self-adaptation of the migration rate to provide
ary algorithms and their models: A survey of the state-of-the-art,
061

a better leverage network capacity than using a fixed migration
rate.

Topology. So far, most efforts in cEAs have been devoted to
analyzing the effects of different topologies on the algorithm

356

357

358

359

dx.doi.org/10.1016/j.asoc.2015.04.061

 ING Model
A

6 ft Com

p
i
G
e
a
m
t
t
s
w
T
h
p

c
a
G
t
t
f
w
e
c
m
a

h
w
T
w
p
t
p
t
r
t
a
c
p

3

t
o
b

d
p
p
o
A
w
l
a
n
t
r

l
d
t
i
i
o
p

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483
ARTICLESOC 2951 1–15

 Y.-J. Gong et al. / Applied So

erformance. In particular, the selection intensity in cEAs on var-
ous topologies has been widely investigated. In [51,47,49,46],
iacobini et al. study the selection intensity of cEAs with lin-
ar topology, toroid topology, and regular lattices as well as the
synchronous cEAs, respectively. In their studies, a takeover time
easure proposed by Goldberg and Deb [53] is used. The takeover

ime is defined as the duration of a single individual propagating
o the entire population with no variation other than selection. The
horter the takeover time is, the higher the selection intensity is,
hich represents a higher exploitation degree of the algorithm.

heir experiments show that choosing of a network topology can
ave significant impact on the selection intensity and the algorithm
erformance.

In recent years, as the network scale of cEAs becomes larger,
omplex networks such as the well-known small-world network
nd scare-free network have been introduced to cEAs. In [50,48],
iacobini et al. use takeover time analysis to investigate the selec-

ion intensity of cEAs based on small-world topology and scale-free
opology, respectively. In [68], the performance of cEAs using
our topologies, including the 2D regular lattice, small-world net-
ork, random graph, and scale-free network, is investigated. Their

xperimental results show that, with the increase of the problem
omplexity, the ideal topology should change from one with a high
ean degree distribution (the regular topologies) to a network with

 high clustering coefficient (the complex networks).
Apart from the takeover time, a ratio measure of the neighbor-

ood radius to the topology radius proposed in [108] has been
idely used to study the performance of cEAs. In [5], Alba and

roya conduct a set of tests to analyze the performance of cEAs
ith different ratio values on different classes of problems. The
aper concludes that a cEA with low ratio is more effetive for mul-
imodal and/or epistatic problems, whereas a cEA with high ratio
erforms better on non-epistatic and simple problems. Based on
hese, a novel cEA with dynamic ratio from low to high during a
un is developed, which is verified to be efficient in the paper. Fur-
her, an adaptive cellular GA is developed in [1], which adaptively
djusts the neighborhood-to-topology ratio during the search pro-
ess according to some rules defined on the average fitness (AF),
opulation entropy (PH), and their combination (AF + PH).

.4. Hierarchical model

The hierarchical model, also known as hybrid model, combines
wo (or more) distributed models hierarchically to take advantages
f both models for improving scalability and problem-solving capa-
ility.

Island – master-slave hybrid. In [12,13,75], the population is
ivided into several subpopulations, which run on different master
rocessors and communicate in some specific time. For each sub-
opulation, the master sends the individual evaluation tasks to its
wn slave processors so as to further improve parallelization grain.
s shown in Fig. 6(a), the model is island and master-slave hybrid,
hich uses island model in upper layer and master-slave model in

ower layer. Such a model not only eases scalability limitation of
n island model but also reduces dependency of the single master
ode in a master-slave model. In [13], Burczyski et al. show that
he speedup of their island–master-slave hierarchical algorithm is
elatively linear.

Island – cellular hybrid. The hybridization of island and cellu-
ar models has also attracted attention. Folino and Spezzano [42]
evelop a distributed GP algorithm running on multiple islands
hat contain local cellular GP approaches. Such a model is shown
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

n Fig. 6(b), where an island and a cellular model are adopted
n the upper and lower layers, respectively. Numerical results
n benchmark functions show that a hierarchical GP algorithm
resents accuracy comparable with classical distributed models,
 PRESS
puting xxx (2015) xxx–xxx

while providing advantages of high scalability and fault-tolerance
[42]. The algorithm has been further improved by Folino et al. and
applied in pattern classification in [41].

Island – island hybrid. Another hierarchical model of dEAs is to
adopt the island models in both upper and lower layers, as shown
in Fig. 6(c). Herrera et al. [57] point out that, in this kind of model, a
key issue is to develop two different migration approaches, i.e., local
and global ones, since they establish the real hierarchy between
basic dEAs and the hierarchical dEAs. Moreover, the advantages of
using such a hierarchical model include improved efficiency of each
node, more diverse collaboration, and good conjunction of homo-
geneous and heterogeneous dEAs. Based on these, Herrera et al.
develop a heterogeneous hierarchical dEA and achieve promising
results.

3.5. Pool model

The above master-slave, island, cellular, and hierarchical models
offer the promise of massive scalability and fault-tolerance if the
problem to solve can be properly adapted to their size and peculiar-
ities [85]. However, there is still certain inflexibility and inefficiency
that hinders the use of these models. For example, in a master-
slave model, with the increase of the number of slave nodes, the
speedup will eventually become poor when the master saturates.
In island and cellular models, the predefined topology and the rigid
connectivity restrict the amount of islands or cells to be used and
the spontaneous cooperation among the nodes. Although the mod-
els can be asynchronous and heterogeneous, the asynchronization
and heterogeneity pose restriction on the performance of corre-
sponding dEAs. Compared with this, a pool model deploys a set
of autonomous processors working on a shared resource pool. The
processors are loosely coupled, which do not know each other’s
existence and interact with only the pool. The model provides a
natural approach to realizing asynchronization and heterogene-
ity.

Instance. For better understanding of the pool model, we
describe a distributed pool architecture for EC proposed by Roy
et al. [104] in detail as an instance. As illustrated in Fig. 7, the pool
is a shared global array of length n representing n individuals in the
population. Then, the array is partitioned into p segments of size u,
which correspond to p processors (or threads). Each processor can
read individuals from any segments of the array, but can only write
the individuals back to its own partition. In the optimization pro-
cess, a processor randomly chooses u individuals from the entire
pool to undergo genetic operations. After generating u offsprings
c1, c2, . . ., cu, the processor writes each new individual ci back to
the ith entry of its own partition if the fitness of ci is better than
that of the current ith entry. In summary, key issues of designing
such a dEA include 1) implementing the resource pool, 2) individual
selection policy (consuming policy on the pool), and 3) individual
replacement policy (producing policy on the pool).

Advantages. As processors are loosely coupled to work on a
shared resource pool, they can accommodate asynchronization and
heterogeneity relatively easily. Moreover, in a pool model, the set
of participating processors can be dynamically changed, and the
system works well even when some of the processors crash. By
replicating (backing up) the resource pool, the model can achieve
superior fault-tolerance. Another possible advantage of such a
loosely coupled distributed model is that it can be cost-efficient.
For example, volunteers around the world can contribute the idle
time of their computers for processing the tasks.

Resource pool. In a pool-based distributed model for EAs, how to
ary algorithms and their models: A survey of the state-of-the-art,
.061

implement the resource pool is a crucial issue to address. Tuple-
Space (TS), the shared-memory programming model of Linda,
provides a virtual shared-memory data storage that processors can
read and write. By mapping a GA onto TS, a pool-based distributed

484

485

486

487

dx.doi.org/10.1016/j.asoc.2015.04.061

ARTICLE IN PRESSG Model
ASOC 2951 1–15

Y.-J. Gong et al. / Applied Soft Computing xxx (2015) xxx–xxx 7

lave h

G
s
w
w
r
a
a
t
e
w
t
b
o

o
t
f
w

3

o
a
s
d
b
i

b
s
o
o

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547
Fig. 6. Illustration of hierarchical EAs: (a) Island–master-s

A is built, with a natural load-balancing effect that faster proces-
ors end up doing more work than slower processors [23]. This
ork is perhaps the first dEA based on a pool model. Since then,
ork has been reported on employing a database as the central

esource pool for dEAs. There are two major advantages of adopting
 database as the pool. First, as suggested by Bollini and Piastra [9],
n object-oriented database management system provides mature
ransaction and data locking mechanisms. It allows any number of
volutionary processes run in parallel on the underlying population
ithout extra control policies. Second, the database can persis-

ently and permanently store the population until it is modified
y the users. Therefore, the computation of dEAs can span weeks
r even months, such as the distributed BEAGLE proposed in [43].

In recent years, there are many pool dEAs developed, based
n matching implementations of EAs to programming models or
oolkits such as MapReduce and CouchDB. As this section mainly
ocuses on the models rather than the implementations, these
orks will be described briefly in Section 5.1.

.6. Coevolution model

A coevolution model is a dimension-distributed model. Instead
f dividing the population, a dimension-distributed model divides

 high dimensional complex problem into several lower dimen-
ional and hence simpler problems. Note that, however, dimension
istributed and population-distributed models have no clear
oundaries, and a dimension-distributed model can also arrange

ts tasks in an island, cellular, or hierarchical manner, etc.
If the problem is decomposable, i.e., the sub-problems can
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

e solved independently, the subcomponent on each proces-
or can evolve without interacting with the others. At the end
f the optimization, by jointing the sub-solutions together, an
ptimal solution of the entire problem emerges. Unfortunately,

Fig. 7. Illustration of resou
ybrid; (b) island-cellular hybrid; (c) island–island hybrid.

most of practical optimization problems exhibit complex inter-
dependencies, for which the solution obtained by the above
divide-conquer-and-joint mechanism may be inferior. It is sug-
gested that a change of one subcomponent (e.g., a new optimal
solution found in one processor) can lead to the deformation or
warping of the fitness landscapes in its interdependent subcompo-
nents. The distributed coevolution model is developed to deal with
the above problem.

In biology, coevolution indicates that the change of a species
triggers the change of its related species, and then leads to an
adaptive change of its own part, and so forth. This way, different
species in the environment have correlative dependence, and, from
a general viewpoint, they evolve cooperatively. The coevolution
model for dEC borrows this concept, where each node performs
a local evolution process in a solution subspace. Then, by inter-
communication, the nodes interact with the others, adaptively
adjust their search direction, and cooperatively find the global opti-
mum. Potter and De Jong [101] point out that, when developing
coevolutionary algorithms, four issues need to be addressed. They
are problem decomposition, the evolution of interdependent sub-
components, credit assignment (evaluation), and maintenance of
diversity.

Fundamental framework. In 2004, Subbu and Sanderson
[121,122] develop a fundamental framework for distributed coevo-
lutionary algorithms, analyze the convergence of the framework,
and examine the network-based performance. As illustrated in
Fig. 8, assuming the variable vector x consisting of p blocks (x1,
x2, . . ., xp), each node i in the algorithm performs a local evolu-
tionary search process by considering the ith block xi primarily and
ary algorithms and their models: A survey of the state-of-the-art,
061

the other p − 1 blocks secondly. Specifically, the local reproduce
operation is conducted on the primary block xi while the remain-
ing variables are clamped. In the evaluation, the fitness of the
whole solution (including both the primary and secondary blocks)

rce pool-based EAs.

548

549

550

551

dx.doi.org/10.1016/j.asoc.2015.04.061

ARTICLE ING Model
ASOC 2951 1–15

8 Y.-J. Gong et al. / Applied Soft Com

i
t
o
n
l
i
M
t
g

d
a
e
b
l
w
c
a
e
s
D
i
o
i
c
t
f
e
a

t
p
a
i
f
g
p
f
s
i
p
s
p
t

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655
Fig. 8. Illustration of distributed coevolutionary algorithms.

s calculated, and the local algorithm is more likely to preserve solu-
ions with better fitness. In this way, the primary variable block
n the node evolves. Then, in the intercommunication phase, the
odes update their secondary variable blocks. By alternating the

ocal search and intercommunication phases, an adaptive system
s built, capable of solving high-dimensional complex problems.

ost recent distributed coevolutionary algorithms have adopted
he above framework, but differ in problem decomposition strate-
ies, local EAs, and intercommunication.

Decomposition strategy. It may be possible to decompose an n-
imensional problem into n one-dimensional problems in some
pplications. However, this is often not the case and hence Yang
t al. [145] suggest using a group-based decomposition strategy to
etter capture variable interdependencies for nonseparable prob-

ems. For this, an adaptive weighting strategy is developed in [145],
here the chance of one dimension to be assigned into a sub-

omponent is adaptively adjusted during the search process. Li
nd Yao [72] further improve the decomposition strategy of Yang
t al. by dynamically changing the group size, and successfully
olve up to 2000-dimensions problems. In [73], a coevolutionary
E is designed for power system optimization. The whole system

s decomposed into a series of subsystems with different numbers
f control variables by using an agglomerative hierarchical cluster-
ng (AHC) method. Each species is responsible for the regulation of
ontrol variables in its own subsystem, while taking the values of
he other control variables from the global best individual found so
ar. Ray and Yao [102] develop an adaptive variable partition strat-
gy, in which all variables involve together at the beginning of the
lgorithm and then be grouped by a correlation coefficient.

Intercommunication and credit assignment. Intercommunica-
ions in [149] are realized through adaptive migration of the best
rimary variable block of each node during the optimization. Potter
nd De Jong [101] and Tan et al. [128] point out that combin-
ng the primary block of one species with only the best blocks
rom the other species is often too greedy, which may result in
etting trapped in local optima. In their proposed algorithms, the
rimary block of each species is first combined with the best blocks
rom other species and then combined with some random repre-
entatives of every other species. After evaluation, the better one
s retained. In [52], Goh and Tan further introduce a competitive
rocess in the coevolution to improve the contribution of each
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

pecies. In their proposed competitive-cooperative coevolutionary
aradigm, the interplay of competition and cooperation facilitates
he discovery of interdependencies among species.
 PRESS
puting xxx (2015) xxx–xxx

3.7. Multi-agent model

In the above coevolution model, the global goal of the entire
system is essentially the local goal of each subcomponent, which
is achieved by coordination of subpopulations. In comparison, a
multi-agent model does not require any direct coordination of
agents to achieve the global goal. Instead, it adopts game-theoretic
method in the field of distributed artificial intelligence (DAI) that
agents optimize local functions and establish some equilibrium.
In the equilibrium, once the local objectives cannot be further
improved, the global goal of the entire system is achieved. In this
way, the global goal is realized by observation rather than evalua-
tion.

Methodology. The main idea of a multi-agent model is to consider
a dEA as a multi-agent system that p players (agents) are playing a
strategy game. Each player in the game has a payoff function that
depends on the actions of itself and its limited neighbors. Then,
each player plays independently in the game and selects actions to
maximize its own payoff selfishly. A widely accepted solution for
this non-cooperative game is the Nash equilibrium point, a p-tuple
of actions for all players that anyone who deviates from it cannot
improve its own payoff [96]. One issue to be addressed here is how
to convert the global optimal solutions of the problem (or the max-
imal price points in the game) into Nash equilibrium points. Not all
practical problems can be solved by dEAs based on a multi-agent
model, unless the problem accommodates the above converting
process.

Loosely coupled GA. EA based on a multi-agent model appeared
as early in the 1990s as the loosely coupled GA (LCGA) proposed by
Seredynski [113]. In this algorithm, each player creates a subpopu-
lation of its actions, and the payoff is considered as the evaluation
value of the local fitness function. Standard genetic operations,
including selection, crossover, and mutation, are applied locally to
the subpopulation of actions. Then, after a number of iterations, the
players find actions corresponding to the Nash equilibrium. Exper-
imental study in [113] has shown that the LCGA can optimize the
global objective in a fully distributed way of evaluating only local
fitness functions. Afterwards, the LCGA is widely used in both func-
tion optimization and real-world applications such as mapping and
scheduling problems [10,114].

Comparisons between multi-agent and coevolution models. A com-
prehensive comparison between the LCGA and the cooperative
coevolutionary GA (CCGA) is reported in [115], which can also
be regarded as a comparison between the multi-agent model
and the coevolution model. As introduced above, the main dif-
ference between LCGA and CCGA is that the former evolves local
objectives on agents and requires no coordination of agents. The
experimental study in [115] illustrates that if the global objec-
tive problem can be expressed in a sum of local objectives, using
LCGA is more efficient, as it can obtain high-quality solutions
at a relatively low computational cost. However, for the other
complex problems that are hard to be expressed in a fully dis-
tributed way, CCGA outperforms LCGA. The study in [22] shows
similar conclusions, although Danoy et al. further point out that
LCGA is more scalable than CCGA. Besides the LCGA, a multi-agent
memetic algorithm named MA2 is developed in [98], in which
each agent in the multi-agent system is a subpopulation of a
memetic algorithm (GA with local search). The algorithm has also
shown its powerfulness in tackling high-dimensional optimization
problems.

4. Summary and analysis
ary algorithms and their models: A survey of the state-of-the-art,
.061

In this section, we summarize and analyze dEC models by
comparing their parallelism, search behaviors, objectives, com-
munication costs, scalability, and fault-tolerance, for the ease to

656

657

658

dx.doi.org/10.1016/j.asoc.2015.04.061

ARTICLE IN PRESSG Model
ASOC 2951 1–15

Y.-J. Gong et al. / Applied Soft Computing xxx (2015) xxx–xxx 9

Table 1
Comparisons of dEC models.

Model Parallelism level Objective function Search behavior Commun. cost Scalability Fault-tolerance

Master-slave Operation, evaluation Global Similar to sequential EA Medium to high Medium High
Island Population Global Better diversity Low to medium Low Medium
Cellular Individual Global Better diversity Medium Medium to high Medium to high
Hierarchical Population, individual, operation Global Better diversity Medium Medium to high Medium to high
Pool Population, individual, operation Global Depending on

gorith
Low High High

imens
imens

r
s
m
r
b
p
n
m
a

4

t
o
l
l
o
i
h
i
m
a
v
v

4

o
D
t
l
d
I
l

4

s
t
t
b
a
i
L
c
[
t
o
t
m
a

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752
al
Coevolution Variable, variable-block Global D
Multi-agent Variable, variable-block Local D

eaders in considering future work. This is conducted in a general
ense regarding our above presentation of models. For example, if
odel A offers a higher scalability than model B, it implies that algo-

ithms with model A “generally” offer a higher scalability than B,
ut exceptions may exist in implementations. Further, in the com-
arisons, we assume that the five population-distributed models do
ot use problem decomposition, which is also in accordance with
ost reported work. The comparisons are summarized in Table 1

nd are explained as follow.

.1. Parallelism level

As a master-slave model parallelizes its individual evaluation
asks as well as some other operations (such as local search)
n the slave nodes, the model has an operation-level of paral-
elism. Island and cellular models are population and individual
evel-based because they deploy subpopulations and individuals
n the processors, respectively. As the hierarchical model can be
sland–master-slave hybrid, island-cellular hybrid, or island–island
ybrid, etc., the parallelism level of the model can be operation-,

ndividual-, and population-based. The two dimension-distributed
odels in Fig. 2(b) divide the evolution tasks by dimensions, where

 model is variable-based if each processor engages with one
ariable only. Otherwise, if each processor optimizes a group of
ariables, the model has a variable block-based parallelism level.

.2. Objective function

The first six models listed in Table 1 apply the unique global
bjective function to evaluate individuals on different processors.
ifferently, in multi-agent model, each processor has a local objec-

ive function to optimize. Nevertheless, it is to be noticed that the
ocal objective-based multi-agent model can be implemented by
ifferent population-distributed models such as island, cellular, etc.

n this sense, these population-distributed models can also have
ocal objective functions on their parallel processors.

.3. Search behavior

The search behavior of master-slave dEAs is similar to that of
equential EAs because it conducts the major evolution process of
he algorithm on its master node and only sends some computa-
ionally expensive tasks to the slave nodes. For an island model,
y deploying a number of subpopulations on isolated islands, the
lgorithm maintains more than one best individual (attractor) dur-
ng the optimization and hence increases the population diversity.
iterature also shows that using an island model not only saves
omputing time but also improves the global search ability of EAs
99,76,7]. For a cellular model, the use of local topologies reduces
he selection intensity as well as the information propagation speed
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

n the population network, which also results in a better popula-
ion diversity. Besides, as a hierarchical model hybridizes the island

odel with others, it exhibits the effect of an increasing diversity
s well.
mic components
ion reduction Medium Low Low
ion reduction Low Low Low

The core method of a pool model is that the processors auto-
matically evolve the individuals in the resource pool. The search
behavior of the corresponding EAs is highly dependent on the
algorithmic components in use (such as individual selection and
replacement policies on the pool). Without specifying implemen-
tations of the algorithm, it is hard to identify the search behavior
of a pool-based dEA. On the other hand, for the two dimension-
distributed models with a divide-and-conquer method, the primary
effect is the reduction of the problem space.

4.4. Communication cost

The entire computational cost of a dEA consists of three parts,
namely, the evaluation cost Ceval of the problem, the operation cost
Coper of the baseline EA, and the communication cost Ccomm of the
distributed model. As Ceval and Coper are relatively fixed, the com-
munication cost Ccomm, if significant, may affect the speedup and
efficiency of the algorithm.

In a master-slave model, the communication cost is relatively
high as the master frequently communicates with slaves send-
ing individuals and receiving fitness values. Some variants, such
as the coarse-grained master-slave model, decrease the frequency
of communication between master and slaves and hence par-
tially reduce the communication cost. For an island model, as the
subpopulations share their information only at set intervals, the
communication cost is relatively low. Nevertheless, the number
of islands and the migration strategy can affect the communica-
tion cost to a great extent. In cellular and hierarchical models,
communications occur between individuals, and hence the com-
munication costs are considered to be medium. These are however
highly related to the topology or hierarchical structure in use. In
pool and multi-agent models, communication costs are relatively
lower because no coordination among processors is needed. In a
coevolution model where local search and intercommunication
phases are alternated, the communication costs lie in a medium
level.

4.5. Scalability

The scalability of a master-slave model is limited by the work-
load of the master node. When it is saturated, increasing the
number of slaves would only decrease the distributed efficiency
of the algorithm. For an island model, as the performance of the
algorithm is sensitive to the number of islands used [58], the scal-
ability is relatively low. In the literature, dEAs with island model
always use a small number of processors. The scalability of a cellu-
lar model is better than an island model. With the introducing of
the complex network-based topologies, the scalability of cellular
models can be further improved.

Considering the hierarchical mode, as described in Section 3.4,
ary algorithms and their models: A survey of the state-of-the-art,
061

it combines different models in a hierarchical fashion to improve
its scalability. The pool model employs loosely coupled processors
that do not know each other’s existence. This offers high scalability.
For the two dimension-distributed models, as the performance of

753

754

755

756

dx.doi.org/10.1016/j.asoc.2015.04.061

 ING Model
A

1 ft Com

t
(
t

4

f
p
a
s
e
o
p
a
t

5

p
m
m
w
d

5

r
t
p
o
c
s
r
i
u
o
[

i
i
b
T
t
a
d
w
o
t
a

t
h
G
p
u
M

e
i
s
a
d
p

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874
ARTICLESOC 2951 1–15

0 Y.-J. Gong et al. / Applied So

he algorithms depends on the problem decomposition strategy
task division mechanism) used by the models to a great extent,
he scalability of these two models is limited.

.6. Fault-tolerance

The master-slave dEAs are fault-tolerant unless the master node
ails. For island, cellular, and hierarchical models, failure of some
rocesses will result in loss of some subpopulations or individu-
ls. The fault-tolerance is medium to high. In a pool model, the
et of participating processors can be dynamically changed, which
nables the algorithms to achieve superior fault-tolerance. On the
ther hand, for the two dimension-distributed models, failure of a
rocessor will result in losing subcomponents of the global solution
nd hence lead to a crash of the entire algorithm. Therefore, these
wo models are not fault-tolerant.

. Recent research hotspots of dEAs

In this section, recent research hotspots of dEAs will be
resented, including the cloud and MapReduce-based imple-
entations, GPU and CUDA-based implementations, distributed
ultiobjective optimization, and some real-world applications. The
ork is however diverse, and hence this article is restricted to
erivations, benefits and representative references.

.1. Cloud and MapReduce-based implementations

Cloud computing represents a pool of virtualized computer
esources. Compared to grid computing, the major difference is
hat cloud computing utilizes virtualization and autonomic com-
uting techniques to realize dynamic resource allocations. As an
n-demand computing paradigm, cloud offers high scalability and
ost-effectiveness. Therefore, it is well suited to building highly
calable and cost-effective dEA systems for solving problems with
equirements of variable demands. Although cluster [73], comput-
ng grid [39,28] and P2P network [141,71,111] have been widely
sed as physical platforms for dEAs, the studies of dEAs based
n a cloud platform has received increasing attention since 2008
44,45,27,16].

MapReduce is a programming model for accessing and process-
ng of scalable data with parallel and distributed algorithms. Since
ntroduced by Dean and Ghemawat [25] in 2004, MapReduce has
een seen in various web-scale and cloud computing applications.
he infrastructure of MapReduce provides detailed implementa-
ions of communications, load balancing, fault-tolerance, resource
llocation, and file distribution, etc. All the things a user has to
o are to implement the Map and the Reduce functions. In this
ay, the user can focus on the problem and algorithm only, with-

ut caring about the distributed implementation details. Because of
his, implementing dEAs using MapReduce has attracted increasing
ttention in recent years [81,64,135,78,142,153,124].

Note that, although Google has described its MapReduce infras-
ructure, it has not released its system to public. Much of the work
as been developed on Hadoop, a Java-based open-source clone of
oogle’s private MapReduce infrastructure (by the Apache Lucene
roject). Moreover, Apache CouchDB, an open-source database, is
sed together with MapReduce to implement pool-based dEAs by
erelo et al. in [85,88,86,87].
Possessing many advantages, such as high scalability, cost-

ffectiveness, and transparency, the cloud and MapReduce-based
mplantations of dEAs still have some shortcomings. Generally, the
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

peedup and distributed efficiency of dEAs deployed on clouds
re lower than those deployed on clusters and computing grids,
ue to the increased communication overhead. The cloud com-
uting paradigm prefers availability to efficiency, and hence the
 PRESS
puting xxx (2015) xxx–xxx

corresponding dEAs are more suitable for business and engineering
applications, but rather the scientific computing where the speedup
and distributed efficiency continue being a core index for perfor-
mance evaluation.

5.2. GPU and CUDA-based implementations

A Graphics Processing Unit (GPU) is a powerful electronic cir-
cuit capable of executing hundreds of threads simultaneously. Early
GPUs functioned as coprocessors to offload CPUs from tedious
graphics tasks in video or game applications. As they are more
efficient than CPUs, modern GPUs are not restricted to accelerate
graphics or video coding, but used as a general-purpose process-
ing unit for algorithms with intensive data processing tasks. With
this trend, some recent research concentrates on implementing EAs
on general-purpose GPUs (GPGPUs) to reduce the communication
overhead and arrive at a high speedup. Numerous GPGPU-based
EAs have thus been designed, with coverage of GA [117,82,83],
GP [103], ES [155], EP [40], DE [136], PSO [151,91,154], and ACO
[8]. Among these works, [40,136,103,83] apply master-slave model,
[82,91] use island model, [117,155,8,154] adopt cellular model, and
[151] applies hierarchical model.

It is to be noted that not all dEAs can benefit from being imple-
mented on a GPU platform, but only the ones being synchronous,
homogeneous, and lightweightly parallelized. The reasons are pre-
sented as follows. First, most GPGPU-based dEAs consider CPU and
GPU as a host and a coprocessor, respectively, in which the data
transferred between CPU and GPU are the population of individ-
uals. The memory transfer process from CPU to GPU is commonly
a synchronous operation, where the bus bandwidth and latency
influence the performance significantly. Second, the “single pro-
gram, multiple data (SPMD)” model of GPU device assumes that
multiple processors execute the same program on different data
(individuals in EAs). Thus, the distributed components of dEAs
should contain the same operators. Third, as the thread of GPU
is lightweight which can be considered as processing a data ele-
ment, the task allocated to a thread by the EA should be in a
very lightweight/fine-grained level. Although has some restric-
tions, a well-designed GPGPU-based EA can bring considerable
speedup, e.g., “121×” when using 2014 threads and “286×” when
using 15360 threads on the platform of Intel XeonTM E5420 CPU
@2.5GHz, 2GB RAM, and nVidia GeForce GTX 280 GPU, as reported
in [155].

Considering the programming environments, the Compute Uni-
fied Device Architecure (CUDA) developed by Nvidia is currently the
most commonly used programming model to implement GPGPU-
based EAs [136,8,155,91,154,103]. CUDA provides a sophisticated
application programming interface (API) for an easy access of the
“single instruction, multiple data (SIMD)” architeture. It builds a
comprehensive environment to translate the C and C++ codes to
the GPU platform, as well as Fortran, C#, Python, etc.

5.3. Distributed evolutionary multiobjective optimization

Unlike traditional single-objective problems (SOPs), a multiob-
jective optimization problem (MOP) involves multiple conflicting
objectives with Pareto optimal solutions. MOPs are more difficult to
solve than SOPs because the algorithms should be able to approx-
imate a Pareto front instead of a single optimum. Because an EA is
population-based, it is suitable to deal with a set of optimal solu-
tions simultaneously in a single run. In order to characterize the
entire Pareto front, a multiobjective EA (MOEA) employs a number
ary algorithms and their models: A survey of the state-of-the-art,
.061

of additional mechanisms, such as Pareto selection, solution main-
tenance, and diversity preservation. These mechanisms are often
time consuming. The emergence of distributed MOEAs (dMOEAs)
helps in speed and also provides a natural way to realize diversity

875

876

877

878

dx.doi.org/10.1016/j.asoc.2015.04.061

 ING Model
A

ft Com

p
d
i
d

G
N
[
a
t
c
a
O
[
t
f
I
m
e
w
e
n
i
t
a
a

h
a
g
i
a
t
t
s
n
s
p
a
t
m
c
w
h
d
m
a
l
a
s
v
a
t
i

5

e
d
t
l
t
m
d
i

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994
ARTICLESOC 2951 1–15

Y.-J. Gong et al. / Applied So

reservation. In 2003, Veldhuizen et al. [134] paint a picture of
MOEAs with different paradigms, which leads dMOEAs to becom-

ng one of the currently hottest research spots in the field of EC,
EC, and MOEAs.

Many dMOEAs are extensions of the Non-dominated Sorting
A (NSGA-II), a well-known MOEA proposed in [26]. Distributed
SGA-II with master-slave [35], island [39,11], and cellular models

69] can be found in the literature. Proposed in 2007, MOEA/D uses
 decomposition method to transform an MOP into a set of SOPs
o solve, which has remarkable performance in optimizing diffi-
ult MOP instances [150]. To make further improvement, parallel
nd distributed versions of MOEA/D are developed in [92,36,32,33].
ther dMOEAs include the distributed Strength Pareto EA (SPEA)

143], the distributed multiobjective PSO (MOPSO) [90], the dis-
ributed vector evaluated PSO (VEPSO) [137], and the parallel single
ront GA (PSFGA) [24], all of which are based on island models.
n comparison, the dMOEAs proposed in [93,34] employ cellular

odels. In addition, Tan et al. [128] developed a distributed coop-
rative coevolutionary algorithm for multiobjective optimization,
here the decision vectors are divided into subcomponents and

volved by cooperative subpopulations. By executing intercommu-
ication of subpopulations residing in the distributed system and

ncorporating archiving, dynamic sharing, and extending operators,
he algorithm is able to efficiently approximate solutions uniformly
long the Pareto front. Other dMOEAs based on divide-and-conquer
nd coevolution techniques can be found in [29,152].

Although being a vibrant area, the research of dMOEAs still
as some critical issues to be further addressed. Existing dMOEAs
ssume an ideal running environment that all processors are homo-
eneous and the communication costs between processors are
dentical, which is not always the case. The design of heterogeneous
nd asynchronous dMOEAs needs exploration. As described in Sec-
ion 3.5, the resource pool-based model provides a natural way
o realize asynchronization and heterogeneity. The model is very
uitable for developing dMOEAs since we can deploy the searched
ondominated solutions (or the so-called external archive) in the
hared resource pool and let processors autonomously access and
rocess them. This also brings more flexibility in designing the
lgorithms because it is now possible to assign heterogeneous
asks, such as individual reproduction, Pareto selection, solution

aintenance, and diversity enhancement, to different sets of pro-
essors. Currently, the study of pool-based dMOEAs is still missing,
hich could be a potentially useful future direction. On the other
and, few efforts have been paid on regularizing the evaluation of
MOEAs such as proposing uniform test suites and performance
etrics. Instead, the test suites and metrics of traditional MOEAs

re applied, however, they are inadequate to investigate and ana-
yze the performance of different dMOEAs, such as the scalability
nd speedup. To fully test the performance of dMOEAs, the test suite
hould cover a wide range of instances, by taking into account the
ariation of computational cost, symmetry, scalability, decompos-
bility, etc. Meanwhile, the metrics of effectiveness, efficiency, or
heir hybrid, can be refined, as well as the significance test method
n the distributed multiobjective environment.

.4. Real-world applications

Because of its powerfulness, dEC can have and has seen a vari-
ty range of applications in science and engineering. Areas where
EAs have shown particular promise are problems with compu-
ationally expensive objective functions and extremely complex
andscapes. The applications are so numerous and diverse that
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

hey exceed the scope of this paper. Hence we focus on several
ain fields and representative references here. Applications of

EAs in the literature can be classified into several categories,
ncluding the system design [99,137,74,118], resource scheduling
 PRESS
puting xxx (2015) xxx–xxx 11

[39,125,70,94], network planning [122,21,20], intelligent trans-
portation [66,67,146], classifier optimization [129,95,6], feature
extraction [77], and parameter training [37]. Compared to sequen-
tial EAs, the main benefits brought by dEAs are two-fold. On one
hand, they improve the efficiency of EAs, and on the other, they
enhance the global search ability and solution accuracy. In this
sense, the dEC techniques improve the availability for solving real-
world problems with large-scale, high-dimensional, and complex
features.

6. Future directions

As surveyed in the above sections, significant efforts have been
devoted to utilizing distributed computing resources to enhance
the performance of EC. It is expected that dEC will continue to be a
hot research topic because the complexity of real-world optimiza-
tion problems is growing rapidly and there still exist many issues
unexplored. In this section, we highlight several research directions
of dEC.

6.1. Highly scalable dEC

Scalability is an important factor in distributed systems. For
dEC, the increasing scale of real-world optimization problems
requires the algorithm to scale up well to satisfy the intensive data
processing need, but an overuse of computing resources is not cost-
effective. Therefore, it is important to develop highly scalable dEC
techniques that can increase or decrease resources, depending on
the problem at hand. To address this issue, adopting a virtualiza-
tion technique and an adaptive population size may be effective.
Besides, some brand new branches of EC, such as the imperialist
competitive algorithm (ICA) [60] and the social learning algorithm
(SLA) [54], can be adopted as baseline algorithms for possible per-
formance enhancement.

6.2. Theoretical basis/proof of convergence

As the communication bandwidth in a dEA is limited, it becomes
harder to make clear how dEAs converge. Beside experimental anal-
yses in the literature, studying the convergence of dEAs from a
theoretical perspective will be appealing and meaningful. By build-
ing up a theoretical base for dEC, it may be convenient to develop
some more powerful dEAs in the future.

6.3. Systematical control of parameters

Another issue introduced by the distributed paradigm is that
dEAs have more parameters than sequential EAs. Compared with
parameters of classical EAs, the newly introduced parameters have
not yet been studied carefully, although they influence the perfor-
mance of dEAs to a large extent. Therefore, it is crucial to control
parameter settings systematically in dEAs or even automatically
during the search process.

6.4. Many-objective optimization

Currently, MOEAs and dMOEAs have been effectively applied
to deal with MOPs with a few, generally two or three, objectives.
However, when facing the many-objective optimization problems
involving four to tens of objectives, the performance of the algo-
rithms deteriorates severely. The challenges arise from both the
increased computational cost for evaluating the objective functions
ary algorithms and their models: A survey of the state-of-the-art,
061

and the rapidly increased number of nondominated solutions in the
population that breaks the Pareto selection pressure. Developing
dEAs for many-objective optimization is promising since, by uti-
lizing the distributed platform, it is now possible to manipulate a

995

996

997

998

dx.doi.org/10.1016/j.asoc.2015.04.061

 ING Model
A

1 ft Com

l
T
b
r
t
o
t
n
r

6

m
l
d
m
t
c
m
t
i
d
r
r
c

6

m
q
m
d
o
s
s
i
d
w
i
f

7

a
h
m
i
a
D
a
c
o
h
t
a
k
d
G
t
o
s

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133
ARTICLESOC 2951 1–15

2 Y.-J. Gong et al. / Applied So

arge population without incurring overlong computational time.
he interplay of local evolution and global migration helps to seek a
alance between convergence and diversity, which plays a decisive
ole in the performance of many-objective optimization. Moreover,
he “many objectives, many processors (MOMP)” scheme, which
ptimizes a single objective on each processor and coordinates
he optimization of different objectives during the intercommu-
ication phase, forms an interesting and potentially useful future
esearch direction.

.5. Evolutionary big data optimization

The coming era of big data poses new challenges to data
anagement and processing since the data involved are always

arge-scale, sparse, unstructured, uncertain, and spatial–temporal
ependent. Owing to that EC does not require explicit mathematical
odels in problem solving, and that it can respond to applica-

ion queries in a relatively short time, the EC paradigm can be
onsidered as a promising solution in current data-driven opti-
ization domain. Further, dEC, especially the cloud-based dEC and

he mobile dEC being described in the next subsection, greatly
mproves the computational volume of EC and the cost-efficiency of
eploying massive EC system, which is rather suitable for handling
eal-world big data optimization applications, such as information
ecommendation, disease prediction, and logistics transportation
ontrol, etc.

.6. Mobile evolutionary computation

Smartphones possess useful computational capacity and the
arket is proliferating rapidly in recent years. The increasing

uantity, mobile data connectivity and computational power have
ade smartphones a new and promising distributed system for

EC. Specifically, mobile crowdsourcing [19] is a probable form
f deploying dEC on smartphones. Most existing mobile crowd-
ourcing applications emphasize on the sensing capability of
martphones, while in the context of dEC, the computation resource
s of a central place. The challenge lies in that the deployment of
EAs on smartphones should not decrease the user experience,
hich is a basic requirement for the success of mobile crowdsourc-

ng. Hence it is necessary to develop adaptive scheduling methods
or executing mobile dEAs.

. Conclusions

This article provides a comprehensive survey of the state-of-the-
rt distributed evolutionary algorithms and models. The models
ave been classified into two groups according to the task division
echanism. Population-distributed models include master-slave,

sland, cellular, hierarchical, and pool models, which parallelize
n optimization task at population, individual, or operation levels.
imension-distributed models include coevolution and multi-
gent models that focus on the reduction of problem space. The
haracteristics of different models, such as the search behaviors,
bjectives, communication costs, scalability, and fault-tolerance,
ave been summarized and analyzed. It can be seen that these dis-
ributed models have different features and characteristics, which
re suitable for developing different dEAs and solving different
inds of problems. We have also highlighted recent hotspots in
EC, including the cloud and MapReduce-based implementations,
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

PU and CUDA-based implementations, dMOEAs for multiobjec-
ive optimization, and real-world applications. Further, a number
f future research directions have been discussed. Based on the
urvey, we believe that the study and development of distributed
 PRESS
puting xxx (2015) xxx–xxx

evolutionary computation will continue to be a vibrant and active
field in the future.

References

[1] E. Alba, B. Dorronsoro, The exploration/exploitation tradeoff in dynamic cel-
lular genetic algorithms, IEEE Trans. Evol. Comput. 9 (2) (2005) 126–142.

[2] E. Alba, B. Dorronsoro, M. Giacobini, M. Tomassini, Decentralized cellular evo-
lutionary algorithms, Handb. Bioinspir. Algorithms Appl. 7 (2005) 103–120.

[3] E. Alba, M. Tomassini, Parallelism and evolutionary algorithms, IEEE Trans.
Evol. Comput. 6 (5) (2002) 443–462.

[4] E. Alba, J.M. Troya, A survey of parallel distributed genetic algorithms, Com-
plexity 4 (4) (1999) 31–52.

[5] E. Alba, J.M. Troya, Cellular evolutionary algorithms: evaluating the influence
of ratio, in: Parallel Problem Solving from Nature (PPSN), 2000, pp. 29–38.

[6] C. Anglano, M. Botta, NOW G-Net: learning classification programs on net-
works of workstations, IEEE Trans. Evol. Comput. 6 (5) (2002) 463–480.

[7] J. Apolloni, G. Leguizamón, J. García-Nieto, E. Alba, Island based distributed
differential evolution: an experimental study on hybrid testbeds, in: Eighth
International Conference on Hybrid Intelligent Systems, 2008, pp. 696–701.

[8] H. Bai, D. OuYang, X. Li, L. He, H. Yu, MAX-MIN ant system on GPU with CUDA,
in: Fourth International Conference on Innovative Computing, Information
and Control (ICICIC), 2009, pp. 801–804.

[9] A. Bollini, M. Piastra, Distributed and persistent evolutionary algorithms: a
design pattern, in: Genetic Programming, 1999, pp. 173–183.

[10] P. Bouvry, F. Arbab, F. Seredynski, Distributed evolutionary optimization, in
manifold: Rosenbrock’s function case study, Inf. Sci. 122 (2) (2000) 141–159.

[11] J. Branke, H. Schmeck, K. Deb, S. Reddy, Parallelizing multi-objective
evolutionary algorithms: cone separation, IEEE Congress on Evolutionary
Computation (CEC) 2 (2004) 1952–1957.

[12] T. Burczynski, W. Kus, Optimization of structures using distributed and paral-
lel evolutionary algorithms, in: Parallel Processing and Applied Mathematics,
Springer, Berlin, Heidelberg, 2004, pp. 572–579.

[13] T. Burczyński, W. Kuś, A. Długosz, P. Orantek, Optimization and defect identi-
fication using distributed evolutionary algorithms, Eng. Appl. Artif. Intell. 17
(4) (2004) 337–344.

[14] S. Cahon, N. Melab, E.-G. Talbi, Building with paradisEO reusable paral-
lel and distributed evolutionary algorithms, Parallel Comput. 30 (5) (2004)
677–697.

[15] S. Cahon, N. Melab, E.-G. Talbi, ParadisEO: a framework for the reusable design
of parallel and distributed metaheuristics, J. Heurist. 10 (3) (2004) 357–380.

[16] E. Cantú-Paz, A survey of parallel genetic algorithms, Calcul. Paralleles
Reseaux Syst. Repart. 10 (2) (1998) 141–171.

[17] E. Cantu-Paz, Efficient and Accurate Parallel Genetic Algorithms, vol.1,
Springer, 2000.

[18] E. Cantu-Paz, Markov chain models of parallel genetic algorithms, IEEE Trans.
Evol. Comput. 4 (3) (2000) 216–226.

[19] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, D. Zeinalipour-Yazti,
Crowdsourcing with smartphones, IEEE Internet Comput. 16 (5) (2012)
36–44.

[20] Y. Chen, B. Wang, W.S. Lin, Y. Wu, K.R. Liu, Cooperative peer-to-peer stream-
ing: an evolutionary game-theoretic approach, IEEE Trans. Circuits Syst. Video
Technol. 20 (10) (2010) 1346–1357.

[21] J.-C. Creput, A. Koukam, T. Lissajoux, A. Caminada, Automatic mesh generation
for mobile network dimensioning using evolutionary approach, IEEE Trans.
Evol. Comput. 9 (1) (2005) 18–30.

[22] G. Danoy, P. Bouvry, O. Boissier, Dafo, a multi-agent framework for decom-
posable functions optimization, in: Knowledge-Based Intelligent Information
and Engineering Systems, 2005, pp. 626–632.

[23] M. Davis, L. Liu, J.G. Elias, VLSI circuit synthesis using a parallel genetic
algorithm, in: IEEE Congress on Evolutionary Computation (CEC), 1994, pp.
104–109.

[24] F. de Toro Negro, J. Ortega, E. Ros, S. Mota, B. Paechter, J. Martın, PSFGA: parallel
processing and evolutionary computation for multiobjective optimisation,
Parallel Comput. 30 (5) (2004) 721–739.

[25] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clus-
ters, Commun. ACM 51 (1) (2008) 107–113.

[26] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[27] J. Decraene, Y.Y. Cheng, M.Y.H. Low, S. Zhou, W. Cai, C.S. Choo, Evolving
agent-based simulations in the clouds, in: Third International Workshop on
Advanced Computational Intelligence, 2010, pp. 244–249.

[28] T. Desell, D.P. Anderson, M. Magdon-Ismail, H. Newberg, B.K. Szymanski, C.A.
Varela, An analysis of massively distributed evolutionary algorithms, in: IEEE
Congress on Evolutionary Computation (CEC), 2010, pp. 1–8.

[29] B. Dorronsoro, G. Danoy, A.J. Nebro, P. Bouvry, Achieving super-linear per-
formance in parallel multi-objective evolutionary algorithms by means of
cooperative coevolution, Comput. Oper. Res. 40 (6) (2013) 1552–1563.

[30] X. Du, L. Ding, L. Jia, Asynchronous distributed parallel gene expression pro-
ary algorithms and their models: A survey of the state-of-the-art,
.061

gramming based on estimation of distribution algorithm, in: International
Conference on Natural Computation, 2008, pp. 433–437.

[31] M. Dubreuil, C. Gagné, M. Parizeau, Analysis of a master-slave architecture
for distributed evolutionary computations, IEEE Trans. Syst. Man Cybern. B:
Cybern. 36 (1) (2006) 229–235.

1134

1135

1136

1137

1138

dx.doi.org/10.1016/j.asoc.2015.04.061

 ING Model
A

ft Com

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305
ARTICLESOC 2951 1–15

Y.-J. Gong et al. / Applied So

[32] J.J. Durillo, A.J. Nebro, jMetal: a java framework for multi-objective optimiza-
tion, Adv. Eng. Softw. 42 (10) (2011) 760–771.

[33] J.J. Durillo, A.J. Nebro, E. Alba, The jmetal framework for multi-objective
optimization: design and architecture, in: IEEE Congress on Evolutionary
Computation (CEC), 2010, pp. 1–8.

[34] J.J. Durillo, A.J. Nebro, F. Luna, E. Alba, Solving three-objective optimization
problems using a new hybrid cellular genetic algorithm, in: Parallel Problem
Solving from Nature (PPSN), 2008, pp. 661–670.

[35] J.J. Durillo, A.J. Nebro, F. Luna, E. Alba, A study of master-slave approaches
to parallelize NSGA-II, in: IEEE International Symposium on Parallel and Dis-
tributed Processing, 2008, pp. 1–8.

[36] J.J. Durillo, Q. Zhang, A.J. Nebro, E. Alba, Distribution of computational effort
in parallel MOEA/D, in: Learning and Intelligent Optimization, Springer, 2011,
pp. 488–502.

[37] M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis, Hardware-friendly higher-
order neural network training using distributed evolutionary algorithms,
Appl. Soft Comput. 10 (2) (2010) 398–408.

[38] G. Escuela, Y. Cardinale, J. González, A Java-based distributed genetic algo-
rithm framework, in: IEEE International Conference on Tools with Artificial
Intelligence, 2007, pp. 437–441.

[39] G. Ewald, W. Kurek, M.A. Brdys, Grid implementation of a parallel multiob-
jective genetic algorithm for optimized allocation of chlorination stations in
drinking water distribution systems: Chojnice case study, IEEE Trans. Syst.
Man Cybern. C: Appl. Rev. 38 (4) (2008) 497–509.

[40] K.-L. Fok, T.-T. Wong, M.-L. Wong, Evolutionary computing on consumer-level
graphics hardware, IEEE Intell. Syst. 22 (2) (2007) 69–78.

[41] G. Folino, C. Pizzuti, G. Spezzano, Training distributed GP ensemble with a
selective algorithm based on clustering and pruning for pattern classification,
IEEE Trans. Evol. Comput. 12 (4) (2008) 458–468.

[42] G. Folino, G. Spezzano, P-cage: an environment for evolutionary com-
putation in peer-to-peer systems, in: Genetic Programming, 2006,
pp. 341–350.

[43] C. Gagné, M. Parizeau, M. Dubreuil, Distributed beagle: An environment for
parallel and distributed evolutionary computations, in: The 17th Annual
International Symposium on High Performance Computing Systems and
Applications, 2003, pp. 201–208.

[44] M. Garcia-Arenas, J.-J. Merelo, A.M. Mora, P. Castillo, G. Romero, J.L.J. Laredo,
Assessing speed-ups in commodity cloud storage services for distributed evo-
lutionary algorithms, in: IEEE Congress on Evolutionary Computation (CEC),
2011, pp. 304–311.

[45] M. García-Arenas, J.J. Merelo Guervós, P. Castillo, J.L.J. Laredo, G. Romero,
A.M. Mora, Using free cloud storage services for distributed evolutionary
algorithms, in: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation (GECCO), 2011, pp. 1603–1610.

[46] M. Giacobini, E. Alba, A. Tettamanzi, M. Tomassini, Modeling selection inten-
sity for toroidal cellular evolutionary algorithms, in: Proceedings of the 6th
Annual Conference on Genetic and Evolutionary Computation (GECCO), 2004,
pp. 1138–1149.

[47] M. Giacobini, E. Alba, M. Tomassini, Selection intensity in asynchronous
cellular evolutionary algorithms, in: Proceedings of the 5th Annual Confer-
ence on Genetic and Evolutionary Computation (GECCO), 2003, pp. 955–
966.

[48] M. Giacobini, M. Preuss, M. Tomassini, Effects of scale-free and small-world
topologies on binary coded self-adaptive CEA, in: Evolutionary Computation
in Combinatorial Optimization, 2006, pp. 86–98.

[49] M. Giacobini, M. Tomassini, A. Tettamanzi, Modeling selection intensity for
linear cellular evolutionary algorithms, in: Artificial Evolution, 2004, pp.
345–356.

[50] M. Giacobini, M. Tomassini, A. Tettamanzi, Takeover time curves in random
and small-world structured populations, in: Proceedings of the 7th Annual
Conference on Genetic and Evolutionary Computation (GECCO), 2005, p.
1333-L1340.

[51] M. Giacobini, M. Tomassini, A.G. Tettamanzi, E. Alba, Selection intensity in
cellular evolutionary algorithms for regular lattices, IEEE Trans. Evol. Comput.
9 (5) (2005) 489–505.

[52] C.-K. Goh, K. Chen Tan, A competitive-cooperative coevolutionary paradigm
for dynamic multiobjective optimization, IEEE Trans. Evol. Comput. 13 (1)
(2009) 103–127.

[53] D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in
genetic algorithms, Urbana 51 (1991) 61801–62996.

[54] Y.-J. Gong, J. Zhang, Y. Li, From the social learning theory to a social learn-
ing algorithm for global optimization, in: IEEE International Conference on
Systems, Man and Cybernetics (SMC), 2014, pp. 222–227.

[55] D.L. Gonzalez, F.F. de Vega, On the intrinsic fault-tolerance nature of Parallel
Genetic Programming, in: EUROMICRO International Conference on Parallel,
Distributed and Network-Based Processing, 2007, pp. 450–458.

[56] F. Herrera, M. Lozano, Gradual distributed real-coded genetic algorithms, IEEE
Trans. Evol. Comput. 4 (1) (2000) 43–63.

[57] F. Herrera, M. Lozano, C. Moraga, Hierarchical distributed genetic algorithms,
Int. J. Intell. Syst. 14 (11) (1999) 1099–1121.

[58] J.I. Hidalgo, F. Fernández, Balancing the computation effort in genetic algo-
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

rithms, in: IEEE Congress on Evolutionary Computation (CEC), 2005, pp.
1645–1652.

[59] J.I. Hidalgo, J. Lanchares, F. Fernández de Vega, D. Lombraña, Is the island
model fault tolerant? in: Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation (GECCO), 2007, pp. 2737–2744.
 PRESS
puting xxx (2015) xxx–xxx 13

[60] S. Hosseini, A. Al Khaled, A survey on the imperialist competitive algorithm
metaheuristic: implementation in engineering domain and directions for
future research Appl. Soft Comput. 24 (2014) 1078–1094.

[61] I. Iimura, K. Hamaguchi, T. Ito, S. Nakayama, A study of distributed parallel
processing for queen ant strategy in ant colony optimization, in: Interna-
tional Conference on Parallel and Distributed Computing, Applications and
Technologies, 2005, pp. 553–557.

[62] T. Ishimizu, K. Tagawa, A structured differential evolutions for various net-
work topologies, Int. J. Comput. Commun. 4 (1) (2010) 1–8.

[63] M.A. Ismail, Parallel genetic algorithms (PGAs): master-slave paradigm
approach using MPI, in: E-Tech, 2004, pp. 83–87.

[64] C. Jin, C. Vecchiola, R. Buyya, MRPGA: an extension of mapreduce for par-
allelizing genetic algorithms, in: IEEE Fourth International Conference on
eScience, 2008, pp. 214–221.

[65] F.M. Johar, F.A. Azmin, M.K. Suaidi, A.S. Shibghatullah, B.H. Ahmad, S.N. Salleh,
M.Z.A.A. Aziz, M. Md Shukor, A review of genetic algorithms and parallel
genetic algorithms on graphics processing unit (GPU), in: 2013 IEEE Interna-
tional Conference on Control System, Computing and Engineering (ICCSCE),
2013, pp. 264–269.

[66] L. Kattan, B. Abdulhai, Distributed evolutionary estimation of dynamic traf-
fic origin/destination, in: 13th International IEEE Conference on Intelligent
Transportation Systems, 2010, pp. 911–916.

[67] L. Kattan, B. Abdulhai, Sensitivity analysis of an evolutionary-based time-
dependent origin/destination estimation framework, IEEE Trans. Intell.
Transp. Syst. 13 (3) (2012) 1442–1453.

[68] M. Kirley, R. Stewart, An analysis of the effects of population structure on
scalable multiobjective optimization problems, in: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation (GECCO), 2007,
pp. 845–852.

[69] M. Kirley, R. Stewart, Multiobjective evolutionary algorithms on com-
plex networks, in: Evolutionary Multi-criterion Optimization, 2007,
pp. 81–95.

[70] Y.-K. Kwok, I. Ahmad, Efficient scheduling of arbitrary task graphs to multi-
processors using a parallel genetic algorithm, J. Parallel Distrib. Comput. 47
(1) (1997) 58–77.

[71] J.L.J. Laredo, P.A. Castillo, A.M. Mora, J. Merelo, Evolvable agents, a fine grained
approach for distributed evolutionary computing: walking towards the peer-
to-peer computing frontiers, Soft Comput. 12 (12) (2008) 1145–1156.

[72] X. Li, X. Yao, Cooperatively coevolving particle swarms for large scale opti-
mization, IEEE Trans. Evol. Comput. 16 (2) (2012) 210–224.

[73] C. Liang, C. Chung, K. Wong, X. Duan, Parallel optimal reactive power flow
based on cooperative co-evolutionary differential evolution and power sys-
tem decomposition, IEEE Trans. Power Syst. 22 (1) (2007) 249–257.

[74] J. Lienig, A parallel genetic algorithm for performance-driven VLSI routing,
IEEE Trans. Evol. Comput. 1 (1) (1997) 29–39.

[75] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, B.-S. Lee, Efficient hierarchical parallel
genetic algorithms using grid computing, Future Gener. Comput. Syst. 23 (4)
(2007) 658–670.

[76] D.H. Lim, H.N. Luong, C.W. Ahn, A novel differential evolution incorporated
with parallel processing mechanism, in: 2nd International Workshop on Intel-
ligent Systems and Applications, 2010, pp. 1–4.

[77] J. Liu, Y.Y. Tang, Y. Cao, An evolutionary autonomous agents approach
to image feature extraction, IEEE Trans. Evol. Comput. 1 (2) (1997)
141–158.

[78] X. Llora, A. Verma, R.H. Campbell, D.E. Goldberg, When huge is routine:
scaling genetic algorithms and estimation of distribution algorithms via data-
intensive computing, in: Parallel and Distributed Computational Intelligence,
Springer, Berlin, Heidelberg, 2010, pp. 11–41.

[79] Y. Lorion, T. Bogon, I.J. Timm, O. Drobnik, An agent based parallel particle
swarm optimization-APPSO, in: IEEE Swarm Intelligence Symposium, 2009,
pp. 52–59.

[80] M. Manfrin, M. Birattari, T. Stützle, M. Dorigo, Parallel ant colony optimization
for the traveling salesman problem, in: Ant Colony Optimization and Swarm
Intelligence, 2006, pp. 224–234.

[81] A.W. McNabb, C.K. Monson, K.D. Seppi, Parallel PSO using mapreduce, in: IEEE
Congress on Evolutionary Computation (CEC), 2007, pp. 7–14.

[82] N. Melab, E.-G. Talbi, GPU-based island model for evolutionary algorithms,
in: Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation (GECCO), 2010, pp. 1089–1096.

[83] N. Melab, E.-G. Talbi, Parallel hybrid evolutionary algorithms on GPU, in: IEEE
Congress on Evolutionary Computation (CEC), 2010, pp. 1–8.

[84] A. Mendiburu, J.A. Lozano, J. Miguel-Alonso, Parallel implementation of EDAs
based on probabilistic graphical models, IEEE Trans. Evol. Comput. 9 (4) (2005)
406–423.

[85] J. Merelo, A.M. Mora, C.M. Fernandes, A.I. Esparcia-Alcázar, Designing and test-
ing a pool-based evolutionary algorithm, Nat. Comput. 12 (2) (2013) 149–162.

[86] J.-J. Merelo-Guervós, A. Mora, J.A. Cruz, A.I. Esparcia-Alcazar, Pool-based dis-
tributed evolutionary algorithms using an object database, in: Applications of
Evolutionary Computation, Springer, Berlin, Heidelberg, 2012, pp. 446–455.

[87] J.J. Merelo-Guervos, A. Mora, J.A. Cruz, A.I. Esparcia-Alcazar, C. Cotta, Scaling
in distributed evolutionary algorithms with persistent population, in: IEEE
ary algorithms and their models: A survey of the state-of-the-art,
061

Congress on Evolutionary Computation (CEC), 2012, pp. 1–8.
[88] J.J. Merelo-Guervós, A.M. Mora, C.M. Fernandes, A.I. Esparcia-Alcazar, J.L.J.

Laredo, Pool vs. island based evolutionary algorithms: an initial exploration,
in: International Conference on P2P, Parallel, Grid, Cloud and Internet Com-
puting, 2012, pp. 19–24.

1306

1307

1308

1309

1310

dx.doi.org/10.1016/j.asoc.2015.04.061

 ING Model
A

1 ft Com

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477
ARTICLESOC 2951 1–15

4 Y.-J. Gong et al. / Applied So

[89] R. Michel, M. Middendorf, An island model based ant system with lookahead
for the shortest supersequence problem, in: Parallel Problem Solving from
Nature (PPSN), 1998, pp. 692–701.

[90] S. Mostaghim, J. Branke, H. Schmeck, Multi-objective particle swarm opti-
mization on computer grids, in: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation (PPSN), 2007, pp. 869–875.

[91] L. Mussi, Y.S. Nashed, S. Cagnoni, GPU-based asynchronous particle swarm
optimization, in: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation (GECCO), 2011, pp. 1555–1562.

[92] A.J. Nebro, J.J. Durillo, A study of the parallelization of the multi-objective
metaheuristic MOEA/D, in: Learning and Intelligent Optimization, Springer,
Berlin, Heidelberg, 2010, pp. 303–317.

[93] A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, E. Alba, Mocell: a cellular genetic
algorithm for multiobjective optimization, Int. J. Intell. Syst. 24 (7) (2009)
726–746.

[94] S. Nesmachnow, H. Cancela, E. Alba, A parallel micro evolutionary algorithm
for heterogeneous computing and grid scheduling, Appl. Soft Comput. 12 (2)
(2012) 626–639.

[95] Y. Nojima, S. Mihara, H. Ishibuchi, Ensemble classifier design by parallel dis-
tributed implementation of genetic fuzzy rule selection for large data sets, in:
IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–8.

[96] P.C. Ordeshook, Game Theory and Political Theory: An Introduction, Cam-
bridge University Press, 1986.

[97] M. Pedemonte, S. Nesmachnow, H. Cancela, A survey on parallel ant colony
optimization, Appl. Soft Comput. 11 (8) (2011) 5181–5197.

[98] P.C. Pendharkar, A multi-agent memetic algorithm approach for distributed
object allocation, J. Comput. Sci. 2 (4) (2011) 353–364.

[99] H. Pierreval, J.-L. Paris, Distributed evolutionary algorithms for simulation
optimization, IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 30 (1) (2000)
15–24.

[100] D.A.L. Piriyakumar, P. Levi, A new approach to exploiting parallelism in ant
colony optimization, in: International Symposium on Micromechatronics and
Human Science, 2002, pp. 237–243.

[101] M.A. Potter, K.A. De Jong, Cooperative coevolution: An architecture for evolv-
ing coadapted subcomponents, Evol. Comput. 8 (1) (2000) 1–29.

[102] T. Ray, X. Yao, A cooperative coevolutionary algorithm with correlation based
adaptive variable partitioning, in: IEEE Congress on Evolutionary Computa-
tion (CEC), 2009, pp. 983–989.

[103] D. Robilliard, V. Marion, C. Fonlupt, High performance genetic programming
on GPU, in: Proceedings of Bio-Inspired Algorithms for Distributed Systems,
2009, pp. 85–94.

[104] G. Roy, H. Lee, J.L. Welch, Y. Zhao, V. Pandey, D. Thurston, A distributed pool
architecture for genetic algorithms, in: IEEE Congress on Evolutionary Com-
putation (CEC), 2009, pp. 1177–1184.

[105] A. Ruiz-Andino, L. Araujo, F. Sáenz, J.J. Ruz, A hybrid evolutionary approach for
solving constrained optimization problems over finite domains, IEEE Trans.
Evol. Comput. 4 (4) (2000) 353–372.

[106] S.M. Said, M. Nakamura, Asynchronous strategy of parallel hybrid approach
of GA and EDA for function optimization, in: International Conference on
Networking and Computing, 2012, pp. 420–428.

[107] S.M. Said, M. Nakamura, Parallel enhanced hybrid evolutionary algorithm
for continuous function optimization, in: International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, 2012, pp. 125–131.

[108] J. Sarma, K. De Jong, An analysis of the effects of neighborhood size and
shape on local selection algorithms, in: Parallel Problem Solving From Nature
(PPSN), 1996, pp. 236–244.

[109] B. Schönfisch, A. de Roos, Synchronous and asynchronous updating in cellular
automata, BioSystems 51 (3) (1999) 123–143.

[110] J.F. Schutte, J.A. Reinbolt, B.J. Fregly, R.T. Haftka, A.D. George, Parallel global
optimization with the particle swarm algorithm, Int. J. Numer. Methods Eng.
61 (13) (2004) 2296–2315.

[111] I. Scriven, A. Lewis, D. Ireland, J. Lu, Decentralised distributed multi-
ple objective particle swarm optimisation using peer to peer networks,
in: IEEE Congress on Evolutionary Computation (CEC), 2008, pp. 2925–
2928.

[112] M. Sefrioui, J. Périaux, A hierarchical genetic algorithm using multiple models
for optimization, in: Parallel Problem Solving from Nature (PPSN), 2000, pp.
879–888.

[113] F. Seredynski, Loosely coupled distributed genetic algorithms, in: Parallel
Problem Solving from Nature (PPSN), 1994, pp. 514–523.

[114] F. Seredynski, Competitive coevolutionary multi-agent systems: The applica-
tion to mapping and scheduling problems, J. Parallel Distrib. Comput. 47 (1)
(1997) 39–57.

[115] F. Seredynski, A.Y. Zomaya, P. Bouvry, Function optimization with coevolu-
tionary algorithms, in: Intell. Inf. Process. Web Min., 2003, pp. 13–22.

[16] D. Sherry, K. Veeramachaneni, J. McDermott, U.-M. OReilly, Flex-GP: genetic
programming on the cloud, in: Applications of Evolutionary Computation,
Springer, Berlin, Heidelberg, 2012, pp. 477–486.

[117] N. Soca, J.L. Blengio, M. Pedemonte, P. Ezzatti, PUGACE, a cellular evolutionary
algorithm framework on GPUs, in: IEEE Congress on Evolutionary Computa-
tion (CEC), 2010, pp. 1–8.
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

[118] J. Starzynski, R. Szmurlo, J. Kijanowski, B. Dawidowicz, B. Sawicki, S.
Wincenciak, Distributed evolutionary algorithm for optimization in electro-
magnetics, IEEE Trans. Magn. 42 (4) (2006) 1243–1246.

[119] T. Stützle, Parallelization strategies for ant colony optimization, in: Parallel
Problem Solving from Nature (PPSN), 1998, pp. 722–731.
 PRESS
puting xxx (2015) xxx–xxx

[120] S. Su, C. Chung, K. Wong, Y. Fung, D. Yeung, Fault tolerant differential evolution
based optimal reactive power flow, in: International Conference on Machine
Learning and Cybernetics, 2006, pp. 4083–4088.

[121] R. Subbu, A.C. Sanderson, Modeling and convergence analysis of distributed
coevolutionary algorithms, IEEE Trans. Syst. Man Cybern. B: Cybern. 34 (2)
(2004) 806–822.

[122] R. Subbu, A.C. Sanderson, Network-based distributed planning using coevo-
lutionary agents: architecture and evaluation, IEEE Trans. Syst. Man Cybern.
A: Syst. Hum. 34 (2) (2004) 257–269.

[123] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari,
Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session
on Real-parameter Optimization, KanGAL Report 2005005, 2005.

[124] K. Tagawa, T. Ishimizu, Concurrent differential evolution based on MapRe-
duce, Int. J. Comput. 4 (4) (2010) 161–168.

[125] K.C. Tan, E.F. Khor, J. Cai, C. Heng, T.H. Lee, Automating the drug scheduling of
cancer chemotherapy via evolutionary computation, Artif. Intell. Med. 25 (2)
(2002) 169–185.

[126] K.C. Tan, W. Peng, T.H. Lee, J. Cai, Development of a distributed evolutionary
computing package, in: IEEE Congress on Evolutionary Computation (CEC),
2003, pp. 77–84.

[127] K.C. Tan, A. Tay, J. Cai, Design and implementation of a distributed evolution-
ary computing software, IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 33 (3)
(2003) 325–338.

[128] K.C. Tan, Y. Yang, C.K. Goh, A distributed cooperative coevolutionary algo-
rithm for multiobjective optimization, IEEE Trans. Evol. Comput. 10 (5) (2006)
527–549.

[129] K.C. Tan, Q. Yu, T.H. Lee, A distributed evolutionary classifier for knowledge
discovery in data mining, IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 35 (2)
(2005) 131–142.

[130] D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos, M.N. Vrahatis, Parallel differential
evolution, in: IEEE Congress on Evolutionary Computation (CEC), 2004, pp.
2023–2029.

[131] M. Tomassini, Parallel and distributed evolutionary algorithms: a review,
Citeseer (1999).

[132] M. Tomassini, Spatially Structured Evolutionary Algorithms: Artificial Evolu-
tion in Space and Time, Springer, 2005.

[133] A. Umbarkar, M. Joshi, Review of parallel genetic algorithm based on comput-
ing paradigm and diversity in search space, ICTACT J. Soft Comput. 3 (2013)
615–622.

[134] D.A. Van Veldhuizen, J.B. Zydallis, G.B. Lamont, Considerations in engineering
parallel multiobjective evolutionary algorithms, IEEE Trans. Evol. Comput. 7
(2) (2003) 144–173.

[135] A. Verma, X. Llora, D.E. Goldberg, R.H. Campbell, Scaling genetic algorithms
using mapreduce, in: Ninth International Conference on Intelligent Systems
Design and Applications, 2009, pp. 13–18.

[136] L.d.P. Veronese, R.A. Krohling, Differential evolution algorithm on the GPU
with C-CUDA, in: IEEE Congress on Evolutionary Computation (CEC), 2010,
pp. 1–7.

[137] J.G. Vlachogiannis, K.Y. Lee, Determining generator contributions to trans-
mission system using parallel vector evaluated particle swarm optimization,
IEEE Trans. Power Syst. 20 (4) (2005) 1765–1774.

[138] M. Weber, F. Neri, V. Tirronen, Distributed differential evolution with
explorative-exploitative population families, Genet. Program. Evol. Mach. 10
(4) (2009) 343–371.

[139] M. Weber, V. Tirronen, F. Neri, Scale factor inheritance mechanism in
distributed differential evolution, Soft Comput. 14 (11) (2010) 1187–
1207.

[140] D. Whitley, T. Starkweather, Genitor II: A distributed genetic algorithm, J. Exp.
Theor. Artif. Intell. 2 (3) (1990) 189–214.

[141] W. Wickramasinghe, M. van Steen, A. Eiben, Peer-to-peer evolutionary algo-
rithms with adaptive autonomous selection, in: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation (GECCO), 2007, pp.
1460–1467.

[142] B. Wu, G. Wu, M. Yang, A mapreduce based ant colony optimization approach
to combinatorial optimization problems, in: International Conference on Nat-
ural Computation (ICNC), 2012, pp. 728–732.

[143] S. Xiong, F. Li, Parallel strength pareto multi-objective evolutionary algorithm
for optimization problems, in: IEEE Congress on Evolutionary Computation
(CEC), 2003, pp. 2712–2718.

[144] L. Xu, F. Zhang, Parallel particle swarm optimization for attribute reduction,
in: ACIS International Conference on Software Engineering, Artificial Intel-
ligence, Networking, and Parallel/Distributed Computing, vol. 1, 2007, pp.
770–775.

[145] Z. Yang, K. Tang, X. Yao, Large scale evolutionary optimization using cooper-
ative coevolution, Inf. Sci. 178 (15) (2008) 2985–2999.

[146] B. Yu, Z. Yang, X. Sun, B. Yao, Q. Zeng, E. Jeppesen, Parallel genetic algorithm in
bus route headway optimization, Appl. Soft Comput. 11 (8) (2011) 5081–5091.

[147] W. Yu, W. Zhang, Study on function optimization based on master-slave struc-
ture genetic algorithm, in: International Conference on Signal Processing, vol.
3, 2006, pp. 1–4.

[148] C. Zhang, J. Chen, B. Xin, Distributed memetic differential evolution with the
ary algorithms and their models: A survey of the state-of-the-art,
.061

synergy of Lamarckian and Baldwinian learning, Appl. Soft Comput. 13 (5)
(2013) 2947–2959.

[149] J. Zhang, H.S.-H. Chung, W.-L. Lo, Pseudocoevolutionary genetic algorithms
for power electronic circuits optimization, IEEE Trans. Syst. Man Cybern. C:
Appl. Rev. 36 (4) (2006) 590–598.

1478

1479

1480

1481

1482

dx.doi.org/10.1016/j.asoc.2015.04.061

 ING Model
A

ft Com

[

[

[

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492
ARTICLESOC 2951 1–15

Y.-J. Gong et al. / Applied So

150] Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm
based on decomposition, IEEE Trans. Evol. Comput. 11 (6) (2007) 712–
731.
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

151] J. Zhao, W. Wang, W. Pedrycz, X. Tian, Online parameter optimization-based
prediction for converter gas system by parallel strategies, IEEE Trans. Control
Syst. Technol. 20 (3) (2012) 835–845.

152] W. Zhao, S. Alam, H.A. Abbass, MOCCA-II: A multi-objective co-operative co-
evolutionary algorithm, Appl. Soft Comput. 23 (2014) 407–416.
 PRESS
puting xxx (2015) xxx–xxx 15

[153] C. Zhou, Fast parallelization of differential evolution algorithm using MapRe-
duce, in: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation (GECCO), 2010, pp. 1113–1114.
ary algorithms and their models: A survey of the state-of-the-art,
061

[154] Y. Zhou, Y. Tan, GPU-based parallel particle swarm optimization, in: IEEE
Congress on Evolutionary Computation (CEC), 2009, pp. 1493–1500.

[155] W. Zhu, Nonlinear optimization with a massively parallel evolution strategy-
pattern search algorithm on graphics hardware, Appl. Soft Comput. 11 (2)
(2011) 1770–1781.

1493

1494

1495

1496

1497

dx.doi.org/10.1016/j.asoc.2015.04.061

	Distributed evolutionary algorithms and their models: A survey of the state-of-the-art
	1 Introduction
	2 Terminologies
	3 Models of distributed evolutionary algorithms
	3.1 Master-slave model
	3.2 Island model
	3.3 Cellular model
	3.4 Hierarchical model
	3.5 Pool model
	3.6 Coevolution model
	3.7 Multi-agent model

	4 Summary and analysis
	4.1 Parallelism level
	4.2 Objective function
	4.3 Search behavior
	4.4 Communication cost
	4.5 Scalability
	4.6 Fault-tolerance

	5 Recent research hotspots of dEAs
	5.1 Cloud and MapReduce-based implementations
	5.2 GPU and CUDA-based implementations
	5.3 Distributed evolutionary multiobjective optimization
	5.4 Real-world applications

	6 Future directions
	6.1 Highly scalable dEC
	6.2 Theoretical basis/proof of convergence
	6.3 Systematical control of parameters
	6.4 Many-objective optimization
	6.5 Evolutionary big data optimization
	6.6 Mobile evolutionary computation

	7 Conclusions
	References

