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a  b  s  t  r  a  c  t

The  increasing  complexity  of real-world  optimization  problems  raises  new  challenges  to  evolutionary
computation.  Responding  to  these  challenges,  distributed  evolutionary  computation  has  received  consid-
erable attention  over  the past  decade.  This article  provides  a comprehensive  survey  of  the  state-of-the-art
distributed  evolutionary  algorithms  and  models,  which  have  been  classified  into  two  groups  according  to
their  task  division  mechanism.  Population-distributed  models  are  presented  with  master-slave,  island,
cellular,  hierarchical,  and  pool  architectures,  which  parallelize  an  evolution  task  at  population,  individual,
or  operation  levels.  Dimension-distributed  models  include  coevolution  and  multi-agent  models,  which
focus  on  dimension  reduction.  Insights  into  the  models,  such  as  synchronization,  homogeneity,  commu-
nication,  topology,  speedup,  advantages  and  disadvantages  are  also  presented  and  discussed.  The  study
lobal optimization
ultiobjective optimization

of  these  models  helps  guide future  development  of different  and/or  improved  algorithms.  Also  high-
lighted  are  recent  hotspots  in this  area,  including  the  cloud  and  MapReduce-based  implementations,  GPU
and CUDA-based  implementations,  distributed  evolutionary  multiobjective  optimization,  and  real-world
applications.  Further,  a number  of  future research  directions  have  been  discussed,  with a  conclusion  that
the  development  of distributed  evolutionary  computation  will  continue  to  flourish.
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. Introduction

With metaheuristic and stochastic characteristics, evolution-
ry computation (EC) has shown to be effective solvers for hard
ptimization problems in real-world applications. However, with
apid development of the information age and the emergence of
big data”, the increasing size and complexity of the problems has
osed new challenges to EC. This is especially so if the search space

nvolves a huge number of local optima or the computational cost
f fitness evaluation becomes extremely high. When a traditional
equential evolutionary algorithm (EA) is unable to provide satis-
actory results within a reasonable time, a distributed EA (dEA),
hich deploys the population on distributed systems, can improve

he availability. It also offers an opportunity to solve extremely
igh dimensional problems through distributed coevolution using

 divide-and-conquer mechanism. Further, the distributed envi-
onment allows a dEA to maintain population diversity, thereby
voiding local optima and also facilitating multiobjective search.

The framework of developing a distributed EA is illustrated in
ig. 1. Its fundamental algorithms embrace all kinds of EAs includ-
ng the genetic algorithm (GA), evolutionary programming (EP),
volution strategy (ES), genetic programming (GP), and differen-
ial evolution (DE). Moreover, other population-based algorithms,
uch as ant colony optimization (ACO) and particle swarm opti-
ization (PSO), share common features with EAs and are hence also

ncluded in this survey. Then, by employing different distributed
odels to parallelize the processing of EAs, various dEAs can be

esigned. The logistical distributed models have several issues to
ddress, such as the distribution of evolution tasks and the proto-
ols for communications among processors. The granularity of the
istribution may  be at the population level, the individual level, the
perator level, or the variable level. Correspondingly, there can be
arious communication rules in terms of the content, frequency,
nd direction of message passing. In the literature, master-slave
31], island (a.k.a. coarse-grained model) [56,99], and cellular (a.k.a.
ne-grained model) [51,1] models have been commonly used to
uild dEAs. Moreover, other models such as the hierarchy (a.k.a.
ybrid model) [41], pool [104], coevolution [121,122], and multi-
gent models [10] are also widely accepted. After designing a dEA,
ifferent programming languages and tool sets can be adopted to

mplement the algorithm, such as the Message-Passing Interface
MPI) [63], MapReduce [81], and Java [129,38]. There also exist
oftware packages for dEC, such as the Paladin-DEC [126,127] and
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
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aradisEO [14,15]. Finally, the format of the physical platform that
an be used to deploy the algorithms includes cluster [73], grid
39], P2P network [141], cloud [44], and GPU [151]. These plat-
orms have different architectures, network connectivity, resource
 . .  . . .  . .  . . .  .  . . . . . . . . .  . . .  .  . . . . . . .  .  . . . . . .  .  . .  . . . .  .  .  . . .  .  . . . .  .  . .  .  . . . . . .  .  . . .  . .  .  .  .  00

management schemes, and operating systems. Two recent papers,
[133,65], review and discuss the parallel and distributed GAs
in considering different physical platforms. The selection of the
underlying platform partially influences the implementations of
dEA models, and also determines the system performance such as
scalability and fault-tolerance.

As there exist a very large number of research outputs in dEAs, it
is impossible to cover all the relevant works within the page limit
of this article. Therefore, references are presented based on their
influence, rigor, years of publication, numbers of citations, and cov-
erage. Models (the second layer in Fig. 1) continue to be a focus of
interest in developing dEAs and will hence form the main body of
this article.

We  aim at providing readers with an updated, comprehen-
sive and systematic coverage of dEAs and the state-of-the-art
dEA models. The characteristics (or novelties) of this article are
presented as follows. (1) Compared with [3,16,4,131] published
ten years ago, this survey introduces and describes more recent
works in this area. In addition to the master-slave, island, cellular,
and hierarchical models surveyed in the literature [3,16,4,131,97],
we further review some state-of-the-art distributed models for
EC, including resource pool-based model, coevolution model, and
multi-agent model. To the best of our knowledge, no previous
survey of dEC covers these fields. (2) To update with a system-
atic treatment on the research progress, we  semantically divide
dEA models into two  major categories, i.e., population-distributed
models and dimension-distributed models. The operating mech-
anisms of different dEA models are analyzed and compared, as
well as their corresponding performance, advantages, disadvan-
tages, and ranges of applicability. (3) Recent research hotspots,
including cloud and MapReduce-based implementations, GPU
and CUDA-based implementations, multiobjective dEAs, and real-
world applications, are also discussed in this survey. (4) In addition
to a literature review, emerging research directions and applica-
tions are presented for possible further development.

The rest of this article is organized as follows. Section 2
introduces terminologies for a systematic treatment and classifi-
cation. Section 3 presents population-distributed and dimension-
distributed models, followed by a summary and analysis of
characteristics in Section 4. Section 5 is devoted to the four recent
research hotspots. Finally, we highlight some potential future direc-
tions in Section 6 and draw conclusions in Section 7.
ary algorithms and their models: A survey of the state-of-the-art,
.061

2. Terminologies

In this section, we  briefly introduce the terminologies that
will be used throughout this article. The first two  concepts, i.e.,
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Fig. 1. The gen

synchronism/asynchrony” and “homogeneity/heterogeneity”, are
idely used to describe the properties of dEAs, whereas the

speedup”, “distributed efficiency”, “fault-tolerance”, and “scala-
ility” are performance metrics for evaluating dEAs.

Synchronism and asynchrony. An indispensable issue in a dEA
s well as any other distributed algorithm is the communications
mong processors. If all communications are controlled by a clock
ignal, then the algorithm is said to be synchronous, otherwise
synchronous. In an asynchronous dEA, communications take place
ore freely or automatically driven by data.
Homogeneity and heterogeneity. For dEAs, homogeneity and het-

rogeneity are used to describe whether the evolution tasks on
ifferent processors are of the same settings. In a homogeneous
EA, each processor adopts the same operators, control parame-
ers, fitness evaluation, etc., whereas in a heterogeneous dEA, the
ocal algorithmic settings for different processors vary.

Speedup and distributed efficiency. The distributed processing
erformance of dEAs is qualified by a speedup measure, the ratio of
equential execution time to parallel execution time of the algo-
ithm [31]. Ideally, the speedup should be equal to the number
f processors being used. Based on this, distributed efficiency is
efined as the ratio of speedup to the number of processors and its

deal value is 100%. In practice, the speedup and efficiency of dEAs
ay  be limited by the computational overhead, the performance

f the most loaded node, and the communication speed between
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

rocessors.
Fault-tolerance. When running EAs on a physical distributed sys-

em, part of the underlying hardware or network may  encounter
ailure. Fault-tolerance measures the ability of a dEA to continue
EC framework.

optimization in the condition of some physical components fail-
ing. A fault-tolerant dEA will not be suspended in such condition,
instead, it continues search with the remaining working nodes at a
level of graceful degradation.

Scalability. The scalability of dEAs involves two aspects: “size
scalability” and “task scalability”. Size scalability refers to the ability
of the algorithm to achieve proportionally increased performance
by increasing the number of processors. Task scalability refers to
the ability of algorithm to adapt to the changes in the problem
scale, e.g., whether the algorithm can retain its efficiency when the
problem dimension increases.

As a final note, within this paper, the terms dEC and dEAs are
used in a general sense, which include both the algorithms imple-
mented on parallel systems (where the processors or threads are
tightly coupled with a shared memory) and the algorithms imple-
mented on distributed systems (where the processors are loosely
coupled with a computer network).

3. Models of distributed evolutionary algorithms

Basically, a distributed EA divides computing tasks based on
two types of models. As illustrated in Fig. 2(a), a “population-
distributed” model distributes individuals of the population (or
subpopulations) to multiple processors or computing nodes, whilst
a “dimension-distributed” model distributes partitions of the prob-
ary algorithms and their models: A survey of the state-of-the-art,
061

lem dimensions (or subspaces). The population-distributed model
can be further divided to master-slave [31], island (a.k.a. coarse-
grained model) [56,99], cellular (a.k.a. fine-grained model) [51,1],
hierarchical (a.k.a. hybrid model) [41], and pool models [104], as
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Fig. 2. Classification of the “population-distributed” and “dime

llustrated in Fig. 2(b). On the other side, the dimension-distributed
odel can be divided to coevolution [121,122] and multi-agent
odels [10].

.1. Master-slave model

The master-slave model summarizes a distributed approach
o the EA operations and domain evaluations as illustrated in
ig. 3. The master performs crossover, mutation, and selection
perations, but sends individuals to slaves for fitness evaluations
ecause these form the majority of the computing load. As the
valuations of individuals are mutually independent, there is no
equirement of communication among slaves. The master-slave
odel is hence simple, in which communications only occur when

he unique master sends individuals to slaves and the slaves return
he corresponding fitness values back to the master in each gener-
tion.

Variants to improve efficiency. For problems whose evaluation
osts are not relatively high, however, employing a master-slave
odel may  become inefficient in that communications occupy

 large proportion of time in the dEA. In recent years, variants
f master-slave dEAs have been developed to address this issue.

 commonly used method is to distribute not only the evalu-
tion tasks but also the individual update tasks to slave nodes
63,84,105,61]. Another approach is a coarse-grained master-slave

odel in which each slave processor contains a subpopulation,
hile the master receives the best individual from each slave and

ends the global best information to all slaves [144]. Note that such
 coarse-grained master-slave model is different from the island
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

odel being introduced in the next subsection. First, the control of
he former is centralized whereas the control of an island model can
e either centralized or distributed. Second, as mentioned above,
laves do not communicate with slaves, but in an island model, the

Fig. 3. Illustration of master-slave EAs.
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-distributed” models: (a) task division manners; (b) taxonomy.

islands frequently communicate with each other. The third possi-
ble way to improve the distributed efficiency of master-slave dEAs
is to conduct local search on slaves [147,119]. In the algorithms,
master conducts basic EA for global search whereas the slaves exe-
cute local search by considering the individuals received from the
master as neighborhood centers.

Synchronism and asynchrony. Most existing master-slave dEAs
are synchronous that the master stops and waits to receive the
information of all slaves before proceeding to the next genera-
tion. Some are asynchronous, where the selection operations on the
master node perform on a fraction of the population only [106,107].
In an experimental study of a master-slave PSO algorithm [110], it
is shown that synchronization plays a vital role in algorithm perfor-
mance on load-balanced problems, whilst asynchronous dEAs are
more efficient for load-imbalanced problems.

Speedup. The speedup and efficiency of master-slave dEAs may
be limited by the master’s performance and by the communication
speed between master and slaves [17]. Specifically, the limitation is
determined by the computational costs of the tasks executed on the
slaves. For example, Dubreuil et al. [31] show that the master-slave
model can perform well as long as the individual evaluation time is
much greater than the message passing time, as can be expected.
In their experiment, solving a problem requiring 0.25 s for evalua-
tion yields an efficiency of 82%, but if the evaluation time increases
to 1 s while the communication overhead remains the same, the
efficiency becomes 95%.

Fault-tolerance. For massive dEAs, how to improve the fault-
tolerance is another important issue. Gonzalez and De Vega [55]
argue that master-slave dEAs are intrinsically fault-tolerant. In
[120], a fault-tolerant DE algorithm based on a master-slave
model is proposed, where the individuals are distributed to a
grid of nodes for fitness evaluations and if certain individu-
als fail to return from their nodes in an acceptable time, they
can be replaced with random individuals. This mechanism not
only shows fault-tolerance, but can also help improve population
diversity.

3.2. Island model

An island model, as well as a cellular model, is a spatially dis-
tributed model. The difference between an island model and a
cellular model lies in the parallelization grain. As depicted in Fig. 4,
ary algorithms and their models: A survey of the state-of-the-art,
.061

an island model is coarse-grained, where the global population is
divided into several subpopulations, each of which is processed by
one processor. Communications between the islands occur when
certain individuals in one island migrate to another at a set interval.
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Fig. 4. Illustration of island EAs.

he migration mechanism includes the migration frequency and
xtent, the selection policy on the source island, and the replace-
ent policy on the target island.
Synchronism and asynchrony. An island dEA is often synchronous

hat the best individual on each island propagates to all the other
slands at a specific interval of generation [89,100,148]. Asyn-
hronous island models also exist [30,80], where an island can
eceive migrated information as soon as it is ready. In general,
ynchronous island dEAs are simpler to design and implement,
hereas asynchronous algorithms are more flexible and can max-

mize efficiency.
Homogeneity and heterogeneity. In a homogeneous island model,

ach subpopulation adopts the same settings of operators, control
arameters, and fitness evaluations, etc. There exist two short-
omings. First, if the underlying physical system is heterogeneous,
lower processors will hinder the efficiency of the algorithms.
econd, using the same algorithmic settings on different subpopu-
ations may  not balance global exploration and local exploitation.
ecause of these, heterogeneous island models are developed. One
xample is the heterogeneous island GA [112], where subpopu-
ations are arranged in a three-layer hierarchal manner: the top
ayer refines exploitation, the intermediate layer balances explo-
ation and exploitation, and the bottom layer conducts full-on
xploration. A hypercube island model is developed in [56], where
ubpopulations on the front side use different crossover operators
or exploration and the others on the rear side adopt crossover
perators that are more suitable for exploitation. Moreover, the
xploration and exploitation degrees of subpopulations on the
ame side are gradual. Other heterogeneous island dEAs can be
ound in [138,139].

Topology and migration strategy. The original island dEAs adopt
 complete graph as the topology of the islands (i.e., they are
ully connected “using no topology”). Whitley and Starkweather
140] and Lorion et al. [79] put forward that, if the migration con-
ucts among all islands, the distributed algorithm has almost the
ame search behavior as a sequential algorithm. In recent years,
esearch into network topology of island models has attracted
uch attention [140,79,148]. In [62], island DE algorithms with

ifferent network topologies including ring, torus, hypercube, and
ierarchy are studied, and experimental results confirm the supe-
ior performance of adopting a network topology in island DE.

The advantages of using an island model include not only time
aving, but also the improvement of global search ability of EAs.
raditional EAs with a single population suffer from premature
onvergence problem when all individuals gather in a same val-
ey. By deploying a number of subpopulations on isolated islands,
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

t is possible to maintain more than one best individual (attractor).
ithin the time interval between communications, individuals on

ifferent islands can evolve with different directions. This helps
As to maintain population diversity so as to repel local optimality
Fig. 5. Illustration of cellular EAs.

[99,76]. In [7], an island-based distributed DE algorithm is tested on
the well-known CEC 2005 test suite for real-parameter optimiza-
tion [123], with results showing that the algorithm outperformed
eight sequential EAs. Further, the work in [62] shows a tradeoff
between the exploration and convergence feature of DE by using
different migration frequencies. With a higher communication fre-
quency, the island DE can converge faster but may  get trapped, and,
oppositely, the algorithm exhibits better global exploration ability
but converges much slower when the communication frequency is
lower. Moreover, the work in [130] indicates that the migration
extent also bears a significant impact on the algorithm perfor-
mance. In [18], a Markov chain model of predicting the expected
solution quality of dEAs is developed, with correctness verified by
numerical experiments.

Scalability and fault-tolerance. Regarding the system perfor-
mance of island model, Hidalgo and Fernandez [58] argue that, as
performance of island-based dEAs is highly sensitive to the number
of islands used and the resulting granularity, scalability of the island
model can be limited. Besides, Hidalgo et al. [59] point out that, to
a certain extent, fault-tolerance also exists in an island model.

3.3. Cellular model

Illustrated in Fig. 5, a cellular model is fine-grained and spatially
structured, which has only one population but arranges the indi-
viduals on the grid, ideally one per processor (cell). The interaction
among individuals is realized through the communication defined
by a network topology. Each individual can only compete and mate
within its neighborhood. As the neighborhood of individuals over-
laps, good individuals can propagate to the entire population.

Synchronism and asynchrony. Similar to an island EA, a cellular EA
(cEA) can also be either synchronous or asynchronous [132]. In the
former, all cells update their individuals simultaneously, whereas in
the latter, the cells are updated one by one. The four commonly used
asynchronous update strategies are the fixed line sweep (LS), fixed
random sweep (FRS), new random sweep (NRS), and uniform choice
(UC), as proposed in [109]. Alba et al. [2] compare the asynchronous
cEAs using these four update strategies with synchronous cEAs on
both discrete and continuous problems. Their experimental results
show that, with respect to discrete problems, asynchronous algo-
rithms are more efficient, but synchronous algorithms can achieve
better fitness. On the contrary, in solving continuous problems, they
draw complementary conclusions that asynchronous cEAs are bet-
ter in solution quality whereas synchronous cEAs win in efficiency.
A novel asynchronous communication method for a cEA is proposed
in [71], which uses self-adaptation of the migration rate to provide
ary algorithms and their models: A survey of the state-of-the-art,
061

a better leverage network capacity than using a fixed migration
rate.

Topology. So far, most efforts in cEAs have been devoted to
analyzing the effects of different topologies on the algorithm
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erformance. In particular, the selection intensity in cEAs on var-
ous topologies has been widely investigated. In [51,47,49,46],
iacobini et al. study the selection intensity of cEAs with lin-
ar topology, toroid topology, and regular lattices as well as the
synchronous cEAs, respectively. In their studies, a takeover time
easure proposed by Goldberg and Deb [53] is used. The takeover

ime is defined as the duration of a single individual propagating
o the entire population with no variation other than selection. The
horter the takeover time is, the higher the selection intensity is,
hich represents a higher exploitation degree of the algorithm.

heir experiments show that choosing of a network topology can
ave significant impact on the selection intensity and the algorithm
erformance.

In recent years, as the network scale of cEAs becomes larger,
omplex networks such as the well-known small-world network
nd scare-free network have been introduced to cEAs. In [50,48],
iacobini et al. use takeover time analysis to investigate the selec-

ion intensity of cEAs based on small-world topology and scale-free
opology, respectively. In [68], the performance of cEAs using
our topologies, including the 2D regular lattice, small-world net-
ork, random graph, and scale-free network, is investigated. Their

xperimental results show that, with the increase of the problem
omplexity, the ideal topology should change from one with a high
ean degree distribution (the regular topologies) to a network with

 high clustering coefficient (the complex networks).
Apart from the takeover time, a ratio measure of the neighbor-

ood radius to the topology radius proposed in [108] has been
idely used to study the performance of cEAs. In [5], Alba and

roya conduct a set of tests to analyze the performance of cEAs
ith different ratio values on different classes of problems. The
aper concludes that a cEA with low ratio is more effetive for mul-
imodal and/or epistatic problems, whereas a cEA with high ratio
erforms better on non-epistatic and simple problems. Based on
hese, a novel cEA with dynamic ratio from low to high during a
un is developed, which is verified to be efficient in the paper. Fur-
her, an adaptive cellular GA is developed in [1], which adaptively
djusts the neighborhood-to-topology ratio during the search pro-
ess according to some rules defined on the average fitness (AF),
opulation entropy (PH), and their combination (AF + PH).

.4. Hierarchical model

The hierarchical model, also known as hybrid model, combines
wo (or more) distributed models hierarchically to take advantages
f both models for improving scalability and problem-solving capa-
ility.

Island – master-slave hybrid. In [12,13,75], the population is
ivided into several subpopulations, which run on different master
rocessors and communicate in some specific time. For each sub-
opulation, the master sends the individual evaluation tasks to its
wn slave processors so as to further improve parallelization grain.
s shown in Fig. 6(a), the model is island and master-slave hybrid,
hich uses island model in upper layer and master-slave model in

ower layer. Such a model not only eases scalability limitation of
n island model but also reduces dependency of the single master
ode in a master-slave model. In [13], Burczyski et al. show that
he speedup of their island–master-slave hierarchical algorithm is
elatively linear.

Island – cellular hybrid. The hybridization of island and cellu-
ar models has also attracted attention. Folino and Spezzano [42]
evelop a distributed GP algorithm running on multiple islands
hat contain local cellular GP approaches. Such a model is shown
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

n Fig. 6(b), where an island and a cellular model are adopted
n the upper and lower layers, respectively. Numerical results
n benchmark functions show that a hierarchical GP algorithm
resents accuracy comparable with classical distributed models,
 PRESS
puting xxx (2015) xxx–xxx

while providing advantages of high scalability and fault-tolerance
[42]. The algorithm has been further improved by Folino et al. and
applied in pattern classification in [41].

Island – island hybrid. Another hierarchical model of dEAs is to
adopt the island models in both upper and lower layers, as shown
in Fig. 6(c). Herrera et al. [57] point out that, in this kind of model, a
key issue is to develop two  different migration approaches, i.e., local
and global ones, since they establish the real hierarchy between
basic dEAs and the hierarchical dEAs. Moreover, the advantages of
using such a hierarchical model include improved efficiency of each
node, more diverse collaboration, and good conjunction of homo-
geneous and heterogeneous dEAs. Based on these, Herrera et al.
develop a heterogeneous hierarchical dEA and achieve promising
results.

3.5. Pool model

The above master-slave, island, cellular, and hierarchical models
offer the promise of massive scalability and fault-tolerance if the
problem to solve can be properly adapted to their size and peculiar-
ities [85]. However, there is still certain inflexibility and inefficiency
that hinders the use of these models. For example, in a master-
slave model, with the increase of the number of slave nodes, the
speedup will eventually become poor when the master saturates.
In island and cellular models, the predefined topology and the rigid
connectivity restrict the amount of islands or cells to be used and
the spontaneous cooperation among the nodes. Although the mod-
els can be asynchronous and heterogeneous, the asynchronization
and heterogeneity pose restriction on the performance of corre-
sponding dEAs. Compared with this, a pool model deploys a set
of autonomous processors working on a shared resource pool. The
processors are loosely coupled, which do not know each other’s
existence and interact with only the pool. The model provides a
natural approach to realizing asynchronization and heterogene-
ity.

Instance. For better understanding of the pool model, we
describe a distributed pool architecture for EC proposed by Roy
et al. [104] in detail as an instance. As illustrated in Fig. 7, the pool
is a shared global array of length n representing n individuals in the
population. Then, the array is partitioned into p segments of size u,
which correspond to p processors (or threads). Each processor can
read individuals from any segments of the array, but can only write
the individuals back to its own partition. In the optimization pro-
cess, a processor randomly chooses u individuals from the entire
pool to undergo genetic operations. After generating u offsprings
c1, c2, . . .,  cu, the processor writes each new individual ci back to
the ith entry of its own partition if the fitness of ci is better than
that of the current ith entry. In summary, key issues of designing
such a dEA include 1) implementing the resource pool, 2) individual
selection policy (consuming policy on the pool), and 3) individual
replacement policy (producing policy on the pool).

Advantages. As processors are loosely coupled to work on a
shared resource pool, they can accommodate asynchronization and
heterogeneity relatively easily. Moreover, in a pool model, the set
of participating processors can be dynamically changed, and the
system works well even when some of the processors crash. By
replicating (backing up) the resource pool, the model can achieve
superior fault-tolerance. Another possible advantage of such a
loosely coupled distributed model is that it can be cost-efficient.
For example, volunteers around the world can contribute the idle
time of their computers for processing the tasks.

Resource pool. In a pool-based distributed model for EAs, how to
ary algorithms and their models: A survey of the state-of-the-art,
.061

implement the resource pool is a crucial issue to address. Tuple-
Space (TS), the shared-memory programming model of Linda,
provides a virtual shared-memory data storage that processors can
read and write. By mapping a GA onto TS, a pool-based distributed
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Fig. 6. Illustration of hierarchical EAs: (a) Island–master-s

A is built, with a natural load-balancing effect that faster proces-
ors end up doing more work than slower processors [23]. This
ork is perhaps the first dEA based on a pool model. Since then,
ork has been reported on employing a database as the central

esource pool for dEAs. There are two major advantages of adopting
 database as the pool. First, as suggested by Bollini and Piastra [9],
n object-oriented database management system provides mature
ransaction and data locking mechanisms. It allows any number of
volutionary processes run in parallel on the underlying population
ithout extra control policies. Second, the database can persis-

ently and permanently store the population until it is modified
y the users. Therefore, the computation of dEAs can span weeks
r even months, such as the distributed BEAGLE proposed in [43].

In recent years, there are many pool dEAs developed, based
n matching implementations of EAs to programming models or
oolkits such as MapReduce and CouchDB. As this section mainly
ocuses on the models rather than the implementations, these
orks will be described briefly in Section 5.1.

.6. Coevolution model

A coevolution model is a dimension-distributed model. Instead
f dividing the population, a dimension-distributed model divides

 high dimensional complex problem into several lower dimen-
ional and hence simpler problems. Note that, however, dimension
istributed and population-distributed models have no clear
oundaries, and a dimension-distributed model can also arrange

ts tasks in an island, cellular, or hierarchical manner, etc.
If the problem is decomposable, i.e., the sub-problems can
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

e solved independently, the subcomponent on each proces-
or can evolve without interacting with the others. At the end
f the optimization, by jointing the sub-solutions together, an
ptimal solution of the entire problem emerges. Unfortunately,

Fig. 7. Illustration of resou
ybrid; (b) island-cellular hybrid; (c) island–island hybrid.

most of practical optimization problems exhibit complex inter-
dependencies, for which the solution obtained by the above
divide-conquer-and-joint mechanism may  be inferior. It is sug-
gested that a change of one subcomponent (e.g., a new optimal
solution found in one processor) can lead to the deformation or
warping of the fitness landscapes in its interdependent subcompo-
nents. The distributed coevolution model is developed to deal with
the above problem.

In biology, coevolution indicates that the change of a species
triggers the change of its related species, and then leads to an
adaptive change of its own part, and so forth. This way, different
species in the environment have correlative dependence, and, from
a general viewpoint, they evolve cooperatively. The coevolution
model for dEC borrows this concept, where each node performs
a local evolution process in a solution subspace. Then, by inter-
communication, the nodes interact with the others, adaptively
adjust their search direction, and cooperatively find the global opti-
mum.  Potter and De Jong [101] point out that, when developing
coevolutionary algorithms, four issues need to be addressed. They
are problem decomposition, the evolution of interdependent sub-
components, credit assignment (evaluation), and maintenance of
diversity.

Fundamental framework. In 2004, Subbu and Sanderson
[121,122] develop a fundamental framework for distributed coevo-
lutionary algorithms, analyze the convergence of the framework,
and examine the network-based performance. As illustrated in
Fig. 8, assuming the variable vector x consisting of p blocks (x1,
x2, . . .,  xp), each node i in the algorithm performs a local evolu-
tionary search process by considering the ith block xi primarily and
ary algorithms and their models: A survey of the state-of-the-art,
061

the other p − 1 blocks secondly. Specifically, the local reproduce
operation is conducted on the primary block xi while the remain-
ing variables are clamped. In the evaluation, the fitness of the
whole solution (including both the primary and secondary blocks)

rce pool-based EAs.
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Fig. 8. Illustration of distributed coevolutionary algorithms.

s calculated, and the local algorithm is more likely to preserve solu-
ions with better fitness. In this way, the primary variable block
n the node evolves. Then, in the intercommunication phase, the
odes update their secondary variable blocks. By alternating the

ocal search and intercommunication phases, an adaptive system
s built, capable of solving high-dimensional complex problems.

ost recent distributed coevolutionary algorithms have adopted
he above framework, but differ in problem decomposition strate-
ies, local EAs, and intercommunication.

Decomposition strategy. It may  be possible to decompose an n-
imensional problem into n one-dimensional problems in some
pplications. However, this is often not the case and hence Yang
t al. [145] suggest using a group-based decomposition strategy to
etter capture variable interdependencies for nonseparable prob-

ems. For this, an adaptive weighting strategy is developed in [145],
here the chance of one dimension to be assigned into a sub-

omponent is adaptively adjusted during the search process. Li
nd Yao [72] further improve the decomposition strategy of Yang
t al. by dynamically changing the group size, and successfully
olve up to 2000-dimensions problems. In [73], a coevolutionary
E is designed for power system optimization. The whole system

s decomposed into a series of subsystems with different numbers
f control variables by using an agglomerative hierarchical cluster-
ng (AHC) method. Each species is responsible for the regulation of
ontrol variables in its own subsystem, while taking the values of
he other control variables from the global best individual found so
ar. Ray and Yao [102] develop an adaptive variable partition strat-
gy, in which all variables involve together at the beginning of the
lgorithm and then be grouped by a correlation coefficient.

Intercommunication and credit assignment. Intercommunica-
ions in [149] are realized through adaptive migration of the best
rimary variable block of each node during the optimization. Potter
nd De Jong [101] and Tan et al. [128] point out that combin-
ng the primary block of one species with only the best blocks
rom the other species is often too greedy, which may  result in
etting trapped in local optima. In their proposed algorithms, the
rimary block of each species is first combined with the best blocks
rom other species and then combined with some random repre-
entatives of every other species. After evaluation, the better one
s retained. In [52], Goh and Tan further introduce a competitive
rocess in the coevolution to improve the contribution of each
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

pecies. In their proposed competitive-cooperative coevolutionary
aradigm, the interplay of competition and cooperation facilitates
he discovery of interdependencies among species.
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3.7. Multi-agent model

In the above coevolution model, the global goal of the entire
system is essentially the local goal of each subcomponent, which
is achieved by coordination of subpopulations. In comparison, a
multi-agent model does not require any direct coordination of
agents to achieve the global goal. Instead, it adopts game-theoretic
method in the field of distributed artificial intelligence (DAI) that
agents optimize local functions and establish some equilibrium.
In the equilibrium, once the local objectives cannot be further
improved, the global goal of the entire system is achieved. In this
way, the global goal is realized by observation rather than evalua-
tion.

Methodology. The main idea of a multi-agent model is to consider
a dEA as a multi-agent system that p players (agents) are playing a
strategy game. Each player in the game has a payoff function that
depends on the actions of itself and its limited neighbors. Then,
each player plays independently in the game and selects actions to
maximize its own  payoff selfishly. A widely accepted solution for
this non-cooperative game is the Nash equilibrium point, a p-tuple
of actions for all players that anyone who  deviates from it cannot
improve its own payoff [96]. One issue to be addressed here is how
to convert the global optimal solutions of the problem (or the max-
imal price points in the game) into Nash equilibrium points. Not all
practical problems can be solved by dEAs based on a multi-agent
model, unless the problem accommodates the above converting
process.

Loosely coupled GA. EA based on a multi-agent model appeared
as early in the 1990s as the loosely coupled GA (LCGA) proposed by
Seredynski [113]. In this algorithm, each player creates a subpopu-
lation of its actions, and the payoff is considered as the evaluation
value of the local fitness function. Standard genetic operations,
including selection, crossover, and mutation, are applied locally to
the subpopulation of actions. Then, after a number of iterations, the
players find actions corresponding to the Nash equilibrium. Exper-
imental study in [113] has shown that the LCGA can optimize the
global objective in a fully distributed way of evaluating only local
fitness functions. Afterwards, the LCGA is widely used in both func-
tion optimization and real-world applications such as mapping and
scheduling problems [10,114].

Comparisons between multi-agent and coevolution models. A com-
prehensive comparison between the LCGA and the cooperative
coevolutionary GA (CCGA) is reported in [115], which can also
be regarded as a comparison between the multi-agent model
and the coevolution model. As introduced above, the main dif-
ference between LCGA and CCGA is that the former evolves local
objectives on agents and requires no coordination of agents. The
experimental study in [115] illustrates that if the global objec-
tive problem can be expressed in a sum of local objectives, using
LCGA is more efficient, as it can obtain high-quality solutions
at a relatively low computational cost. However, for the other
complex problems that are hard to be expressed in a fully dis-
tributed way, CCGA outperforms LCGA. The study in [22] shows
similar conclusions, although Danoy et al. further point out that
LCGA is more scalable than CCGA. Besides the LCGA, a multi-agent
memetic algorithm named MA2 is developed in [98], in which
each agent in the multi-agent system is a subpopulation of a
memetic algorithm (GA with local search). The algorithm has also
shown its powerfulness in tackling high-dimensional optimization
problems.

4. Summary and analysis
ary algorithms and their models: A survey of the state-of-the-art,
.061

In this section, we summarize and analyze dEC models by
comparing their parallelism, search behaviors, objectives, com-
munication costs, scalability, and fault-tolerance, for the ease to
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Table  1
Comparisons of dEC models.

Model Parallelism level Objective function Search behavior Commun. cost Scalability Fault-tolerance

Master-slave Operation, evaluation Global Similar to sequential EA Medium to high Medium High
Island Population Global Better diversity Low to medium Low Medium
Cellular Individual Global Better diversity Medium Medium to high Medium to high
Hierarchical Population, individual, operation Global Better diversity Medium Medium to high Medium to high
Pool  Population, individual, operation Global Depending on

gorith
Low High High
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Coevolution Variable, variable-block Global D
Multi-agent Variable, variable-block Local D

eaders in considering future work. This is conducted in a general
ense regarding our above presentation of models. For example, if
odel A offers a higher scalability than model B, it implies that algo-

ithms with model A “generally” offer a higher scalability than B,
ut exceptions may  exist in implementations. Further, in the com-
arisons, we assume that the five population-distributed models do
ot use problem decomposition, which is also in accordance with
ost reported work. The comparisons are summarized in Table 1

nd are explained as follow.

.1. Parallelism level

As a master-slave model parallelizes its individual evaluation
asks as well as some other operations (such as local search)
n the slave nodes, the model has an operation-level of paral-
elism. Island and cellular models are population and individual
evel-based because they deploy subpopulations and individuals
n the processors, respectively. As the hierarchical model can be
sland–master-slave hybrid, island-cellular hybrid, or island–island
ybrid, etc., the parallelism level of the model can be operation-,

ndividual-, and population-based. The two dimension-distributed
odels in Fig. 2(b) divide the evolution tasks by dimensions, where

 model is variable-based if each processor engages with one
ariable only. Otherwise, if each processor optimizes a group of
ariables, the model has a variable block-based parallelism level.

.2. Objective function

The first six models listed in Table 1 apply the unique global
bjective function to evaluate individuals on different processors.
ifferently, in multi-agent model, each processor has a local objec-

ive function to optimize. Nevertheless, it is to be noticed that the
ocal objective-based multi-agent model can be implemented by
ifferent population-distributed models such as island, cellular, etc.

n this sense, these population-distributed models can also have
ocal objective functions on their parallel processors.

.3. Search behavior

The search behavior of master-slave dEAs is similar to that of
equential EAs because it conducts the major evolution process of
he algorithm on its master node and only sends some computa-
ionally expensive tasks to the slave nodes. For an island model,
y deploying a number of subpopulations on isolated islands, the
lgorithm maintains more than one best individual (attractor) dur-
ng the optimization and hence increases the population diversity.
iterature also shows that using an island model not only saves
omputing time but also improves the global search ability of EAs
99,76,7]. For a cellular model, the use of local topologies reduces
he selection intensity as well as the information propagation speed
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

n the population network, which also results in a better popula-
ion diversity. Besides, as a hierarchical model hybridizes the island

odel with others, it exhibits the effect of an increasing diversity
s well.
mic components
ion reduction Medium Low Low
ion reduction Low Low Low

The core method of a pool model is that the processors auto-
matically evolve the individuals in the resource pool. The search
behavior of the corresponding EAs is highly dependent on the
algorithmic components in use (such as individual selection and
replacement policies on the pool). Without specifying implemen-
tations of the algorithm, it is hard to identify the search behavior
of a pool-based dEA. On the other hand, for the two dimension-
distributed models with a divide-and-conquer method, the primary
effect is the reduction of the problem space.

4.4. Communication cost

The entire computational cost of a dEA consists of three parts,
namely, the evaluation cost Ceval of the problem, the operation cost
Coper of the baseline EA, and the communication cost Ccomm of the
distributed model. As Ceval and Coper are relatively fixed, the com-
munication cost Ccomm, if significant, may  affect the speedup and
efficiency of the algorithm.

In a master-slave model, the communication cost is relatively
high as the master frequently communicates with slaves send-
ing individuals and receiving fitness values. Some variants, such
as the coarse-grained master-slave model, decrease the frequency
of communication between master and slaves and hence par-
tially reduce the communication cost. For an island model, as the
subpopulations share their information only at set intervals, the
communication cost is relatively low. Nevertheless, the number
of islands and the migration strategy can affect the communica-
tion cost to a great extent. In cellular and hierarchical models,
communications occur between individuals, and hence the com-
munication costs are considered to be medium. These are however
highly related to the topology or hierarchical structure in use. In
pool and multi-agent models, communication costs are relatively
lower because no coordination among processors is needed. In a
coevolution model where local search and intercommunication
phases are alternated, the communication costs lie in a medium
level.

4.5. Scalability

The scalability of a master-slave model is limited by the work-
load of the master node. When it is saturated, increasing the
number of slaves would only decrease the distributed efficiency
of the algorithm. For an island model, as the performance of the
algorithm is sensitive to the number of islands used [58], the scal-
ability is relatively low. In the literature, dEAs with island model
always use a small number of processors. The scalability of a cellu-
lar model is better than an island model. With the introducing of
the complex network-based topologies, the scalability of cellular
models can be further improved.

Considering the hierarchical mode, as described in Section 3.4,
ary algorithms and their models: A survey of the state-of-the-art,
061

it combines different models in a hierarchical fashion to improve
its scalability. The pool model employs loosely coupled processors
that do not know each other’s existence. This offers high scalability.
For the two  dimension-distributed models, as the performance of
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he algorithms depends on the problem decomposition strategy
task division mechanism) used by the models to a great extent,
he scalability of these two models is limited.

.6. Fault-tolerance

The master-slave dEAs are fault-tolerant unless the master node
ails. For island, cellular, and hierarchical models, failure of some
rocesses will result in loss of some subpopulations or individu-
ls. The fault-tolerance is medium to high. In a pool model, the
et of participating processors can be dynamically changed, which
nables the algorithms to achieve superior fault-tolerance. On the
ther hand, for the two dimension-distributed models, failure of a
rocessor will result in losing subcomponents of the global solution
nd hence lead to a crash of the entire algorithm. Therefore, these
wo models are not fault-tolerant.

. Recent research hotspots of dEAs

In this section, recent research hotspots of dEAs will be
resented, including the cloud and MapReduce-based imple-
entations, GPU and CUDA-based implementations, distributed
ultiobjective optimization, and some real-world applications. The
ork is however diverse, and hence this article is restricted to
erivations, benefits and representative references.

.1. Cloud and MapReduce-based implementations

Cloud computing represents a pool of virtualized computer
esources. Compared to grid computing, the major difference is
hat cloud computing utilizes virtualization and autonomic com-
uting techniques to realize dynamic resource allocations. As an
n-demand computing paradigm, cloud offers high scalability and
ost-effectiveness. Therefore, it is well suited to building highly
calable and cost-effective dEA systems for solving problems with
equirements of variable demands. Although cluster [73], comput-
ng grid [39,28] and P2P network [141,71,111] have been widely
sed as physical platforms for dEAs, the studies of dEAs based
n a cloud platform has received increasing attention since 2008
44,45,27,16].

MapReduce is a programming model for accessing and process-
ng of scalable data with parallel and distributed algorithms. Since
ntroduced by Dean and Ghemawat [25] in 2004, MapReduce has
een seen in various web-scale and cloud computing applications.
he infrastructure of MapReduce provides detailed implementa-
ions of communications, load balancing, fault-tolerance, resource
llocation, and file distribution, etc. All the things a user has to
o are to implement the Map  and the Reduce functions. In this
ay, the user can focus on the problem and algorithm only, with-

ut caring about the distributed implementation details. Because of
his, implementing dEAs using MapReduce has attracted increasing
ttention in recent years [81,64,135,78,142,153,124].

Note that, although Google has described its MapReduce infras-
ructure, it has not released its system to public. Much of the work
as been developed on Hadoop, a Java-based open-source clone of
oogle’s private MapReduce infrastructure (by the Apache Lucene
roject). Moreover, Apache CouchDB, an open-source database, is
sed together with MapReduce to implement pool-based dEAs by
erelo et al. in [85,88,86,87].
Possessing many advantages, such as high scalability, cost-

ffectiveness, and transparency, the cloud and MapReduce-based
mplantations of dEAs still have some shortcomings. Generally, the
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

peedup and distributed efficiency of dEAs deployed on clouds
re lower than those deployed on clusters and computing grids,
ue to the increased communication overhead. The cloud com-
uting paradigm prefers availability to efficiency, and hence the
 PRESS
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corresponding dEAs are more suitable for business and engineering
applications, but rather the scientific computing where the speedup
and distributed efficiency continue being a core index for perfor-
mance evaluation.

5.2. GPU and CUDA-based implementations

A Graphics Processing Unit (GPU) is a powerful electronic cir-
cuit capable of executing hundreds of threads simultaneously. Early
GPUs functioned as coprocessors to offload CPUs from tedious
graphics tasks in video or game applications. As they are more
efficient than CPUs, modern GPUs are not restricted to accelerate
graphics or video coding, but used as a general-purpose process-
ing unit for algorithms with intensive data processing tasks. With
this trend, some recent research concentrates on implementing EAs
on general-purpose GPUs (GPGPUs) to reduce the communication
overhead and arrive at a high speedup. Numerous GPGPU-based
EAs have thus been designed, with coverage of GA [117,82,83],
GP [103], ES [155], EP [40], DE [136], PSO [151,91,154], and ACO
[8]. Among these works, [40,136,103,83] apply master-slave model,
[82,91] use island model, [117,155,8,154] adopt cellular model, and
[151] applies hierarchical model.

It is to be noted that not all dEAs can benefit from being imple-
mented on a GPU platform, but only the ones being synchronous,
homogeneous, and lightweightly parallelized. The reasons are pre-
sented as follows. First, most GPGPU-based dEAs consider CPU and
GPU as a host and a coprocessor, respectively, in which the data
transferred between CPU and GPU are the population of individ-
uals. The memory transfer process from CPU to GPU  is commonly
a synchronous operation, where the bus bandwidth and latency
influence the performance significantly. Second, the “single pro-
gram, multiple data (SPMD)” model of GPU device assumes that
multiple processors execute the same program on different data
(individuals in EAs). Thus, the distributed components of dEAs
should contain the same operators. Third, as the thread of GPU
is lightweight which can be considered as processing a data ele-
ment, the task allocated to a thread by the EA should be in a
very lightweight/fine-grained level. Although has some restric-
tions, a well-designed GPGPU-based EA can bring considerable
speedup, e.g., “121×” when using 2014 threads and “286×” when
using 15360 threads on the platform of Intel XeonTM E5420 CPU
@2.5GHz, 2GB RAM, and nVidia GeForce GTX 280 GPU, as reported
in [155].

Considering the programming environments, the Compute Uni-
fied Device Architecure (CUDA) developed by Nvidia is currently the
most commonly used programming model to implement GPGPU-
based EAs [136,8,155,91,154,103]. CUDA provides a sophisticated
application programming interface (API) for an easy access of the
“single instruction, multiple data (SIMD)” architeture. It builds a
comprehensive environment to translate the C and C++ codes to
the GPU platform, as well as Fortran, C#, Python, etc.

5.3. Distributed evolutionary multiobjective optimization

Unlike traditional single-objective problems (SOPs), a multiob-
jective optimization problem (MOP) involves multiple conflicting
objectives with Pareto optimal solutions. MOPs are more difficult to
solve than SOPs because the algorithms should be able to approx-
imate a Pareto front instead of a single optimum. Because an EA is
population-based, it is suitable to deal with a set of optimal solu-
tions simultaneously in a single run. In order to characterize the
entire Pareto front, a multiobjective EA (MOEA) employs a number
ary algorithms and their models: A survey of the state-of-the-art,
.061

of additional mechanisms, such as Pareto selection, solution main-
tenance, and diversity preservation. These mechanisms are often
time consuming. The emergence of distributed MOEAs (dMOEAs)
helps in speed and also provides a natural way to realize diversity
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reservation. In 2003, Veldhuizen et al. [134] paint a picture of
MOEAs with different paradigms, which leads dMOEAs to becom-

ng one of the currently hottest research spots in the field of EC,
EC, and MOEAs.

Many dMOEAs are extensions of the Non-dominated Sorting
A (NSGA-II), a well-known MOEA proposed in [26]. Distributed
SGA-II with master-slave [35], island [39,11], and cellular models

69] can be found in the literature. Proposed in 2007, MOEA/D uses
 decomposition method to transform an MOP  into a set of SOPs
o solve, which has remarkable performance in optimizing diffi-
ult MOP  instances [150]. To make further improvement, parallel
nd distributed versions of MOEA/D are developed in [92,36,32,33].
ther dMOEAs include the distributed Strength Pareto EA (SPEA)

143], the distributed multiobjective PSO (MOPSO) [90], the dis-
ributed vector evaluated PSO (VEPSO) [137], and the parallel single
ront GA (PSFGA) [24], all of which are based on island models.
n comparison, the dMOEAs proposed in [93,34] employ cellular

odels. In addition, Tan et al. [128] developed a distributed coop-
rative coevolutionary algorithm for multiobjective optimization,
here the decision vectors are divided into subcomponents and

volved by cooperative subpopulations. By executing intercommu-
ication of subpopulations residing in the distributed system and

ncorporating archiving, dynamic sharing, and extending operators,
he algorithm is able to efficiently approximate solutions uniformly
long the Pareto front. Other dMOEAs based on divide-and-conquer
nd coevolution techniques can be found in [29,152].

Although being a vibrant area, the research of dMOEAs still
as some critical issues to be further addressed. Existing dMOEAs
ssume an ideal running environment that all processors are homo-
eneous and the communication costs between processors are
dentical, which is not always the case. The design of heterogeneous
nd asynchronous dMOEAs needs exploration. As described in Sec-
ion 3.5, the resource pool-based model provides a natural way
o realize asynchronization and heterogeneity. The model is very
uitable for developing dMOEAs since we can deploy the searched
ondominated solutions (or the so-called external archive) in the
hared resource pool and let processors autonomously access and
rocess them. This also brings more flexibility in designing the
lgorithms because it is now possible to assign heterogeneous
asks, such as individual reproduction, Pareto selection, solution

aintenance, and diversity enhancement, to different sets of pro-
essors. Currently, the study of pool-based dMOEAs is still missing,
hich could be a potentially useful future direction. On the other
and, few efforts have been paid on regularizing the evaluation of
MOEAs such as proposing uniform test suites and performance
etrics. Instead, the test suites and metrics of traditional MOEAs

re applied, however, they are inadequate to investigate and ana-
yze the performance of different dMOEAs, such as the scalability
nd speedup. To fully test the performance of dMOEAs, the test suite
hould cover a wide range of instances, by taking into account the
ariation of computational cost, symmetry, scalability, decompos-
bility, etc. Meanwhile, the metrics of effectiveness, efficiency, or
heir hybrid, can be refined, as well as the significance test method
n the distributed multiobjective environment.

.4. Real-world applications

Because of its powerfulness, dEC can have and has seen a vari-
ty range of applications in science and engineering. Areas where
EAs have shown particular promise are problems with compu-
ationally expensive objective functions and extremely complex
andscapes. The applications are so numerous and diverse that
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04.

hey exceed the scope of this paper. Hence we  focus on several
ain fields and representative references here. Applications of

EAs in the literature can be classified into several categories,
ncluding the system design [99,137,74,118], resource scheduling
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[39,125,70,94], network planning [122,21,20], intelligent trans-
portation [66,67,146], classifier optimization [129,95,6], feature
extraction [77], and parameter training [37]. Compared to sequen-
tial EAs, the main benefits brought by dEAs are two-fold. On one
hand, they improve the efficiency of EAs, and on the other, they
enhance the global search ability and solution accuracy. In this
sense, the dEC techniques improve the availability for solving real-
world problems with large-scale, high-dimensional, and complex
features.

6. Future directions

As surveyed in the above sections, significant efforts have been
devoted to utilizing distributed computing resources to enhance
the performance of EC. It is expected that dEC will continue to be a
hot research topic because the complexity of real-world optimiza-
tion problems is growing rapidly and there still exist many issues
unexplored. In this section, we highlight several research directions
of dEC.

6.1. Highly scalable dEC

Scalability is an important factor in distributed systems. For
dEC, the increasing scale of real-world optimization problems
requires the algorithm to scale up well to satisfy the intensive data
processing need, but an overuse of computing resources is not cost-
effective. Therefore, it is important to develop highly scalable dEC
techniques that can increase or decrease resources, depending on
the problem at hand. To address this issue, adopting a virtualiza-
tion technique and an adaptive population size may  be effective.
Besides, some brand new branches of EC, such as the imperialist
competitive algorithm (ICA) [60] and the social learning algorithm
(SLA) [54], can be adopted as baseline algorithms for possible per-
formance enhancement.

6.2. Theoretical basis/proof of convergence

As the communication bandwidth in a dEA is limited, it becomes
harder to make clear how dEAs converge. Beside experimental anal-
yses in the literature, studying the convergence of dEAs from a
theoretical perspective will be appealing and meaningful. By build-
ing up a theoretical base for dEC, it may  be convenient to develop
some more powerful dEAs in the future.

6.3. Systematical control of parameters

Another issue introduced by the distributed paradigm is that
dEAs have more parameters than sequential EAs. Compared with
parameters of classical EAs, the newly introduced parameters have
not yet been studied carefully, although they influence the perfor-
mance of dEAs to a large extent. Therefore, it is crucial to control
parameter settings systematically in dEAs or even automatically
during the search process.

6.4. Many-objective optimization

Currently, MOEAs and dMOEAs have been effectively applied
to deal with MOPs with a few, generally two  or three, objectives.
However, when facing the many-objective optimization problems
involving four to tens of objectives, the performance of the algo-
rithms deteriorates severely. The challenges arise from both the
increased computational cost for evaluating the objective functions
ary algorithms and their models: A survey of the state-of-the-art,
061

and the rapidly increased number of nondominated solutions in the
population that breaks the Pareto selection pressure. Developing
dEAs for many-objective optimization is promising since, by uti-
lizing the distributed platform, it is now possible to manipulate a
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arge population without incurring overlong computational time.
he interplay of local evolution and global migration helps to seek a
alance between convergence and diversity, which plays a decisive
ole in the performance of many-objective optimization. Moreover,
he “many objectives, many processors (MOMP)” scheme, which
ptimizes a single objective on each processor and coordinates
he optimization of different objectives during the intercommu-
ication phase, forms an interesting and potentially useful future
esearch direction.

.5. Evolutionary big data optimization

The coming era of big data poses new challenges to data
anagement and processing since the data involved are always

arge-scale, sparse, unstructured, uncertain, and spatial–temporal
ependent. Owing to that EC does not require explicit mathematical
odels in problem solving, and that it can respond to applica-

ion queries in a relatively short time, the EC paradigm can be
onsidered as a promising solution in current data-driven opti-
ization domain. Further, dEC, especially the cloud-based dEC and

he mobile dEC being described in the next subsection, greatly
mproves the computational volume of EC and the cost-efficiency of
eploying massive EC system, which is rather suitable for handling
eal-world big data optimization applications, such as information
ecommendation, disease prediction, and logistics transportation
ontrol, etc.

.6. Mobile evolutionary computation

Smartphones possess useful computational capacity and the
arket is proliferating rapidly in recent years. The increasing

uantity, mobile data connectivity and computational power have
ade smartphones a new and promising distributed system for

EC. Specifically, mobile crowdsourcing [19] is a probable form
f deploying dEC on smartphones. Most existing mobile crowd-
ourcing applications emphasize on the sensing capability of
martphones, while in the context of dEC, the computation resource
s of a central place. The challenge lies in that the deployment of
EAs on smartphones should not decrease the user experience,
hich is a basic requirement for the success of mobile crowdsourc-

ng. Hence it is necessary to develop adaptive scheduling methods
or executing mobile dEAs.

. Conclusions

This article provides a comprehensive survey of the state-of-the-
rt distributed evolutionary algorithms and models. The models
ave been classified into two groups according to the task division
echanism. Population-distributed models include master-slave,

sland, cellular, hierarchical, and pool models, which parallelize
n optimization task at population, individual, or operation levels.
imension-distributed models include coevolution and multi-
gent models that focus on the reduction of problem space. The
haracteristics of different models, such as the search behaviors,
bjectives, communication costs, scalability, and fault-tolerance,
ave been summarized and analyzed. It can be seen that these dis-
ributed models have different features and characteristics, which
re suitable for developing different dEAs and solving different
inds of problems. We  have also highlighted recent hotspots in
EC, including the cloud and MapReduce-based implementations,
Please cite this article in press as: Y.-J. Gong, et al., Distributed evolution
Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.04

PU and CUDA-based implementations, dMOEAs for multiobjec-
ive optimization, and real-world applications. Further, a number
f future research directions have been discussed. Based on the
urvey, we believe that the study and development of distributed
 PRESS
puting xxx (2015) xxx–xxx

evolutionary computation will continue to be a vibrant and active
field in the future.
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