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Particle filtering (PF) based object tracking algorithms have drawn great attention from lots of scholars.The core of PF is to predict
the possible location of the target via the state transition model. One commonly adopted approach is resorting to prior motion
cues under the smoothmotion assumption, which performs well when the target moves with a relatively stable velocity. However, it
would possibly fail if the target is undergoing abruptmotion. To address this problem, inspired by insect vision, we propose a simple
yet effective visual tracking framework based on PF. Utilizing the neuronal computational model of the insect vision, we estimate
the motion of the target in a novel way so as to refine the position state of propagated particles using more accurate transition
mode. Furthermore, we design a novel sample optimization framework where local and global search strategies are jointly used. In
addition, we propose a new method to monitor long duration severe occlusion and we could recover the target. Experiments on
publicly available benchmark video sequences demonstrate that the proposed tracking algorithm outperforms the state-of-the art
methods in challenging scenarios, especially for tracking target which is undergoing abrupt motion or fast movement.

1. Introduction

Visual tracking is of great significance in many vision
applications such as video surveillance and human-computer
interaction. In recent years, numerous algorithms have been
proposed in the development of tracking algorithms and
much success has been demonstrated under various scenar-
ios. Nevertheless, numerous issues, such as abrupt motion,
fast movement, and severe occlusion, remain to be addressed.

Generally, the tracking algorithms fall into twomain cate-
gories: the generative algorithms [1–5] and the discriminative
algorithms [6–10]. Generative tracking algorithms typically
learn a targetmodel to represent the target object and then try
to search for the best image region most similar to the target
model. Discriminative algorithms view the tracking problem
as a binary classification task to separate the target object
from its local background.

The particle filtering- (PF-) based tracking algorithms
are very popular generative algorithms since they can effec-
tively solve the nonlinear and non-Gaussian problems. In

the PF-based tracking process, the state transition model
plays a vital role in predicting the possible location of the
target. One commonly adopted approach to propagate the
sample set is resorting to prior motion cues and amending
the prediction according to the Gaussian distribution [5, 11–
16]. This approach performs well when target moves with a
relatively stable velocity or with a predictable motion pattern
[12, 17]. However, in the real world, abrupt motion or fast
movement scenarios are frequently available, thereby causing
these algorithms to drift away the target objects gradually
and even lose the target. Another predictable and reasonable
approach is utilizing the motion direction and moving speed
of the target to revise the state transitionmodel so as to refine
a more accurate position.

To solve those problems, in this paper, we propose a
simple yet effective insect vision inspired framework of visual
tracking based on PF. In a cluttered moving background, fly-
ing insects demonstrate extraordinary capability in locating
and detecting visual objects. Insect ommateum can respond
to the motion pattern including the motion direction and
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the relative image instant velocity [19, 20]. The insect vision
computational model theory [18] is deduced from the neu-
ronal computational model of the way biological ommateum
processing information. In this work, unlike conventional
state transition models previously mentioned, we take the
motion pattern of the target into consideration to construct a
more accuratemodel so as to refine the position state of prop-
agated particles. Furthermore, to seek a more reliable can-
didate image region, we design a novel sample optimization
frameworkwhere local and global search strategies are jointly
used. The local search method tries to find the best sample
using the improved state transition model in a generative
subspace. For the global search strategy, unlike the conven-
tional methods which usually search the full frame regions
with a sliding window, we try to get the candidate sample in
a discriminative subspace and just test the subregions where
the response of the insect vision computational model is
not zero; that is, the target is likely to appear with a high
probability, and then we compare these subregions with the
template, thus reducing the computational cost. We always
do a local search strategy in every tracking frame while we do
a global search strategy for every constant frame. Therefore,
such compact associations of discriminative subspace and
generative subspace can benefit from each other. In addition,
the target may disappear when severe occlusion occurs. To
address this issue, we propose a new method to monitor the
situation. Once the target is lost, we recover it via the global
search method previously mentioned. Besides, we give an
incremental-learning-based online template update method
to adapt the appearance changes. The main contributions of
this paper are summarized as follows:

(i) an improved transition model that takes into account
the motion information obtained by insect vision
computational theory to refine the position state of
propagated particles in the PF tracking process,

(ii) an efficient optimization framework where local and
global search strategies are jointly used to seek for a
more reliable candidate image region,

(iii) a novel method to judge the tracking failure and a
target recovering mechanism,

(iv)an incremental-learning-based online template update
method.

The remainder of this paper is organized as follows. We
first review the most relevant work in Section 2. Then, the
mathematical concepts of PF and insect vision theory will
be introduced briefly in Section 3.The proposed algorithm is
detailed in Section 4, includingmodel representation,motion
estimation, local and global search strategies, and online
template update method. In Section 5, the experimental
results are presented with comparisons with state-of-the-art
methods on challenging sequences. Section 6 concludes with
a discussion and the future work.

2. Related Work

Most recently, several studies in the literature have given
detailed surveys of tracking [12, 21–24]. Among all the various

algorithms, PF-based tracking algorithms have always drawn
the attention from the researchers since Isard and Blake
[12, 22] first introduced PF into solving tracking problems.
Despite much demonstrated success of these generative
tracking approaches, several problems remain to be solved,
such as abrupt motion, fast movement, and server occlusion.
In this section, we review the two most relevant topics that
motivate this work: the state transition model and the search
strategies.

Abruptmotion or fast movement scenarios are frequently
available in tracking process. Most of the tracking methods
cannot handle these problems because of their smooth
motion assumptions. The conventional approach is usually
resorting to prior motion cues. Assuming the target region
moving with constant velocity and scale change, Nummiaro
et al. [11] use a first-order dynamic model to propagate the
sample set. These kinds of dynamic propagate modes are
very popular now, some with slight modification (e.g., using
standard second-order autoregressive process to replace the
first-order model) [13, 23–25]. Sullivan and Rittscher [26]
propose a deterministic search method to guide the random
samples. This method computes the momentum for each
particle. A deterministic search and the stochastic diffusion
are performed alternatively according to the momentum
to generate the offspring of the particles. Zhou et al. [27]
propose an adaptive velocity motion model in the prediction
scheme.The adaptive velocity is calculated using a first-order
linear prediction method based on the appearance difference
between two successive frames. Kwon and Lee [3] decompose
the motion model into multiple basic motion models in
the tracking process. Each basic motion model describes
different types of motions made by a Gaussian perturbation
with a different variance. This method mainly covers two
kinds of motions: the smooth motion with a small variance
and the abrupt motion with a large variance. Similarly, Yao
et al. [28] utilize a variable variance to balance the smooth
motion and fast movement. Kwon and Lee [29] propose a
tracking algorithm based on the Wang-Landau Monte Carlo
sampling method which efficiently deals with the abrupt
motion. This method utilizes the likelihood term and the
density of states term to handle the smooth motions and
abrupt motions, respectively. To address the abrupt motion
problem, Zhou et al. [30] combine a density-gird-based
predictive model with the stochastic approximation Monte
Carlo sampling to give a proposal adaptation scheme. This
method is effective but a large number of particles are needed.

The search strategy is widely used in the tracking process.
There are two main reasons. First, a tracker is likely to fail
when the distance of the target position is too large between
two successive frames (e.g., abrupt motion and fast move-
ment) or severe occlusion occurs. Therefore, target location
plays a key role in recovering tracking. Second, the proposal
scheme predicting the candidate offspring particles is not
entirely convincingwhich clearly implies the need for a search
strategy to give an alternative candidate. The conventional
search strategy utilizes motion detection method to locate
the target, such as frame difference, background subtraction,
and optical flow. However, if the background is cluttered,
the frame differencemethod and the background subtraction



Mathematical Problems in Engineering 3

method are likely to fail to detect the target successfully. The
optical flow method can deal with the changing background
but it is sensitive to the illumination change. Another search
strategy utilizes a sliding window to traverse the entire map
or the local region surrounding the old object location to
locate the target. Zhang et al. [10] deal with the abruptmotion
using the brute force search strategy and good results are
obtained. Vermaak et al. [31] propose a motion-based object
detection method. Based on searching the horizontal and
vertical projections of the frame-difference measurements,
this method utilizes the motion measurement to determine
a rectangular region within which the object is likely to lie.
Su et al. [5] detect the target region from salient regions,
which are obtained in the saliencymap of current frame.This
method can also cover the abrupt motion problem. Once the
target is lost, the algorithm recovers the target via the saliency
map search strategy. Rui et al. [25] identify the target location
in the current frame by minimizing the similarity measure
function. This method determines a possible direction of the
movement of the target center and searches the local optimal
position in the neighborhood of the location of the search
window in the previous frame. The specific strategies go on
until they cover the whole image or the similarity of the
candidate regions with the template feature subspaces meets
the requirements.

3. Preliminary Theories

3.1. Bayesian Filtering. Theobject tracking problem is usually
formulated as Bayesian filtering [32], which is a probabilistic
approach and provides a reasoned solution framework to
estimate states of the dynamic system. Bayesian filtering
consists of two phases: state prediction and state update. The
state prediction phase utilizes the systemmodel to predict the
posterior density. And the state update phase utilizes the latest
observation to amend the posterior density. Let xt denote the
object state at time t. Given observation sequences z1:t =

z1, z2, . . . , zt up to time t, Bayesian filter can estimate the
target state xt. According to Bayes rule, the state prediction
and state update can be formulated recursively as follows:

𝑝 (xt | z1:t) = ∫𝑝 (xt | xt−1) 𝑝 (xt−1 | z1:t−1) 𝑑xt−1, (1)

𝑝 (xt | z1:t) =
𝑝 (zt | xt) 𝑝 (xt | z1:t−1)

𝑝 (zt | z1:t−1)
, (2)

where 𝑝(xt | z1:t) denotes the posterior density at time t,
𝑝(xt | xt−1) indicates the prior model, 𝑝(zt | xt) represents
the observation model, and 𝑝(zt | z1:t−1) is a normalization
constant. However, for nonlinear and non-Gaussian systems,
integral in (1) is often intractable.

3.2. Particle Filtering. Based on Monte Carlo integration
method, particle filtering utilizes sequential importance
resampling (SIR) method to solve the integral problem in
Bayesian filtering. The core idea of SIR particle filtering is to
recursively approximate the posterior probability distribution
via a finite weighted sample set 𝑆 = {xit,𝜔

i
t}𝑖=1,...,𝑁 at each

time step. Each sample represents one hypothetical state of
the target, with a corresponding discrete sampling probability
𝜔
i
t, which satisfies ∑𝑁

𝑖=1
𝜔
i
t = 1. And the posterior density is

approximated by

𝑝 (xt | z1:t) =
𝑁

∑

𝑖=1

𝜔
i
t𝛿 (xt − xit) ,

𝜔
i
t ∝

𝑝(zt | xit) 𝑝 (x
i
t | x

i
t−1)

𝑞 (xit | xit−1, zt)
,

(3)

where 𝛿(⋅) is Dirac function. Let the proposal distribution
𝑞(xit | xit−1, zt) = 𝑝(xit | xit−1), and then we get that 𝜔𝑖

𝑡

is in proportion to the observation model 𝑝(zit | xt). In
practice, the positions of the offspring samples generated
via the transition model play a vital role in improving the
sampling efficiency.

3.3. Insect Vision InspiredMotion Detector. To better simulate
the object motion, a more accurate transition model is
clearly needed. However, it is often hard to get detailed
motion information of the object. Insect vision inspired
motion detector is one of the theoretical methods to address
this problem. Flying insects, despite their relatively coarse
vision and tinny nervous systems, are exquisitely sensitive
to motion. Eichner et al. [33] conclude that the insect vision
inspired motion detector can respond to the motion pattern
of the target including the direction and the relative speed.
The theory states that the light distribution of a moving
image is the function of space frequency and time frequency.
Suppose that the coordinate system of the motion pattern is
consistent with the axis of the detector, then the input of the
one-dimension detector is 𝐹 = 𝐹[𝑥 + 𝑠(𝑡)], and the output is

𝐷 (𝑥, 𝑡) = 𝐹 (𝑥 + 𝑠 (𝑡)) ⋅ 𝐹 [𝑥 + Δ𝑥 + 𝑠 (𝑡 − 𝜀)]

− 𝐹 [𝑥 + Δ𝑥 + 𝑠 (𝑡)] ⋅ 𝐹 [𝑥 + 𝑠 (𝑡 − 𝜀)] ,

(4)

where 𝑥 represents the one-dimensional coordinate, 𝑠(𝑡) is
the displacement function, Δ𝑥 and 𝜀 specify the distance of
the two photoreceptors and the delay time constant of the
detector, respectively, and 𝐷(𝑥, 𝑡) determines the direction
of the moving image. Since Δ𝑥 and 𝜀 are small enough, we
differentiate (4) as follows:

𝑑𝐷 (𝑥, 𝑡) = −𝜀 ⋅

𝑑𝑠 (𝑡)

𝑑 (𝑡)

⋅ 𝑆 (𝑥, 𝑡) 𝑑𝑥, (5)

where 𝑑𝑠(𝑡)/𝑑(𝑡) gives the image instant velocity and 𝑆(𝑥, 𝑡) =
{𝜕𝐹[𝑥 + 𝑠(𝑡)]/𝜕𝑥}

2

− 𝐹[𝑥 + 𝑠(𝑡)] ⋅ {𝜕

2

𝐹[𝑥 + 𝑠(𝑡)]/𝜕𝑥

2

} gives
the texture information response of the moving target. More
detailed mathematical material can refer to [33, 34]. This
strong theoretical support motivates us to utilize the relative
accurate motion pattern information to establish a more
adaptive motion transition model to provide a prediction of
possible object movements. In the proposed algorithm, the
improved transition model is quite amenable to the changing
speeds of moving object, that is, to both smooth motion and
abrupt motion or fast movement scenarios.
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Tracking video

Initializing the object
manually

Constructing the particle
set

Calculating the template

Propagating: propagate the particle set via the
improved state transition mode

Estimating: calculate the best object state

Resampling: calculate the weight and generate a
new particle set

Lost detecting: test the two prerequisites to
determine the lost

Lost the target or satisfy a constant frequency

Refining: search the interest regions to seek for a
more accurate state

Weighting: compute the weights and normalize them

Template updating

Motion estimating: utilize the insect vision
detector to estimate the object motion

No

Yes

Yes No

Local search strategy

Global search strategy

Figure 1: Flowchart of the proposed tracking method.

4. Proposed Algorithm

In this section, we present the proposed insect vision embed-
ded particle filter tracking algorithm in detail. To address
the abrupt motion and fast movement problem, in the
particle propagation process, we seek for a more accurate
state transition model to refine the position of the offspring
particles. Though candidate image regions, predicted by the
local search strategy using the improved state transition
model, are reliable in most cases, the result is not entirely
convincing. Thus, for every 𝜂 (a constant) frame, a global
search strategy is adopted to verify if a more similar image
region exists. Besides, a new criterion is investigated to
judge whether the target is lost. The global search strategy is
immediately utilized to recover the target once the criterion
is satisfied. To adapt the changing of the appearance of the
target, an online template update method is detailed. The
flowchart is shown in Figure 1.

4.1. Model Representation. Based on estimating the distribu-
tion of the target state, it is particularly critical to construct
a good model representation to simulate the object motion
in our tracking algorithm. Each sample which is a subimage
region centered around the object represents a hypothesis
state of the target and is defined by x = {𝑥, 𝑦, 𝑢, V, 𝑠, 𝛼}

which consist of the 2D image position (𝑥, 𝑦), the velocity
components (𝑢, V), the scale of the object 𝑠, and the rotation of
the object. And the following constraints should be satisfied:

(1) the position (𝑥, 𝑦), 0 < 𝑥 < 𝑊, 0 < 𝑦 < 𝐻,
where𝑊 and𝐻 are the width and height of the frame,
respectively,

(2) the scale 𝑠 which is initialized to 1.0 and varies with
the changing of the objects size; that is,

𝑠
𝑡
= 𝑠
𝑡−1

+ 𝑞 (𝑠) , (6)

where 𝑞(𝑠) is drawn from zero-mean normal distribu-
tion and the variance 𝜎2

𝑠
is set to 0.001,

(3) the rotation 𝛼, 0∘ ≤ 𝛼 ≤ 360

∘. The 𝛼 is set to 0

∘

in our approach, for the rotation of the object is not
considered in current research.

To propagate the particles, we use the following adaptive
state transition model:

(𝑥, 𝑦)

𝑡
= (𝑥, 𝑦)

𝑡−1
+ 𝑄 (𝑢, V)

𝑡−1
⋅ Δ𝑡 + 𝑞 (𝑥, 𝑦) , (7)

where 𝑞(𝑥, 𝑦) denotes a zero-mean Gaussian noise and Δ𝑡 is
dependent on the frame-rate of the sequence. And 𝑄(𝑢, V)

𝑡−1
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is the velocity calculated by our motion estimation method
and is discussed below. One should note that we do not
assume that the motion is smooth which is commonly
adopted by other algorithms. Instead, we directly use the
velocity to amend the position. We utilize more accurate
motion information to refine a more reliable position in the
next frame.The velocity varies in every frame, and hence our
model can be easily interpreted as a time-varying statemodel.
The motion velocity is estimated as described below.

4.2. Motion Estimation. In order to determine the velocity
𝑄(𝑢, V), that is, the direction and the shift of the motion from
one frame to the next, we solve the motion estimation prob-
lem in the view of insect vision inspired motion detector. We
deduce a motion estimation method to get the motion infor-
mation in a video sequence by applying the computational
structure of the biological motion-detection system. For a
certain frame of the video, we divide it into orthogonal grids
called photoreceptors. The size of the photoreceptors decides
the resolution of the detector. To focus on the subimage
regions that we are interested in and ignore the unimportant
ones, an 𝑛-rank-resolution strategy is adopted. Specifically,
the closer to the center of the target, the higher the resolution.
In our algorithm, the rank 𝑛 is set to 3 and the side length of
the photoreceptors denoted by 𝑙

𝑝
in the 𝑝th rank is

𝑙
𝑝
= 2

𝑝

+ 1 ∀𝑝 = 1, . . . , 𝑛. (8)

The first rank covers an image region which is a square
area centered at the location of the target and the side length
of the region represented by 𝑠

1
is calculated by

𝑠
1
= 𝜆
1
[(𝑥
𝑡
)]

1/2

, (9)

where (𝑥
𝑡
) represents the area size of the target area (a

rectangle subimage region). The parameter 𝜆
1
is a constant

parameter, which determines the size of the first rank region,
and is set to 1.5 in all experiments. Thus, the number of the
photoreceptors in the first rank is𝑁

1
= (𝑠
1
/𝑙
1
)

2.
Similarly, a bigger constant parameter 𝜆

2
= 2.5 defines a

larger region which is divided into two parts, the central part
for the first rank and the surrounding part for the second
rank; that is, the second one is purely the surrounding region
of the first one but does not embody it. The rest of the entire
frame except the first rank and the second rank belongs to the
third rank; that is, for a certain pixel at location (𝑖, 𝑗), we have

𝜑 (𝑖, 𝑗) =

{
{
{
{

{
{
{
{

{

1 if 0 ≤ 𝑑V ≤
𝑠
1

2

, 0 ≤ 𝑑
ℎ
≤

𝑠
1

2

,

2 if 𝑠1
2

< 𝑑V ≤
𝑠
2

2

,

𝑠
1

2

< 𝑑
ℎ
≤

𝑠
2

2

,

3 others,

(10)

where𝜑(𝑖, 𝑗) denotes the rank that the pixel belongs to, 𝑑V and
𝑑
ℎ
are the vertical and horizontal distances between the loca-

tion of the pixel and the location of the target, respectively,
and 𝑠
1
and 𝑠
2
represent the side lengths of the regions defined

by 𝜆
1
and 𝜆

2
, respectively. This 𝑛-rank resolution strategy is

very similar to the process of the insect observing a target and
can also reduce the computational cost.

Now that a certain frame is divided into finite photorecep-
tors, many detector units are constructed. A single 2D detec-
tor unit is composed of three adjacent photoreceptors, three
direct current filters, three low-pass filters, four multiplier
units, and two adders.The three photoreceptors collect visual
information from central, vertical, and horizontal directions,
respectively. First, for a certain photoreceptor at location
(𝑟, 𝑐) in the 𝑡th frame, let 𝐼(𝑡, 𝑟, 𝑐) denote the average pixel
intensities within the photoreceptor. Next, we apply the direct
current filter and the low-pass filter to obtain the direct
current components 𝐼DC(𝑡, 𝑟, 𝑐) and the alternating current
components 𝐼AC(𝑡, 𝑟, 𝑐), respectively:

𝐼DC (𝑡, 𝑟, 𝑐) =
1

𝑀

𝑀

∑

𝑙=1

𝐼 (𝑡 − 𝑙) ,

𝐼AC (𝑡, 𝑟, 𝑐) = 𝐼 (𝑡, 𝑟, 𝑐) − 𝐼DC (𝑡, 𝑟, 𝑐) ,

(11)

where𝑀 is a time constant in terms of frames and the direct
current component is the average of𝑀 frames from the (𝑡 −
𝑀)th frame to the 𝑡th frame. Now that every photoreceptor
corresponds to its own alternating current component, we
can calculate the output of the 2Ddetector unit in vertical and
horizontal directions, respectively. Let 𝐶

1
(𝑡, 𝑟, 𝑐) = 𝐼AC(𝑡 −

𝜏, 𝑟, 𝑐),𝐻
1
(𝑡, 𝑟, 𝑐) = 𝐼AC(𝑡−𝜏, 𝑟, 𝑐+1),𝐶2(𝑡, 𝑟, 𝑐) = 𝐼AC(𝑡, 𝑟, 𝑐),

and 𝐻
2
(𝑡, 𝑟, 𝑐) = 𝐼AC(𝑡, 𝑟, 𝑐 + 1), where 𝜏 is the delay time

parameter in terms of frames. Then we have

𝑅
𝐻
(𝑡, 𝑟, 𝑐) = 𝐶

1
(𝑡, 𝑟, 𝑐) ⋅ 𝐻

2
(𝑡, 𝑟, 𝑐)

− 𝐶
2
(𝑡, 𝑟, 𝑐) ⋅ 𝐻

1
(𝑡, 𝑟, 𝑐) ,

(12)

where𝑅
𝐻
(𝑡, 𝑟, 𝑐) denotes the horizontal output of the detector

unit and the vertical output can be calculated similarly. All
the 2D detector units have no interdependence and can be
calculated simultaneously in matrix form.

Theoutputs of all the𝑁 detector units construct a velocity
distribution pool 𝐺 = {𝑔

𝑖
| 𝑖 = 1, . . . , 𝑁}, where 𝑔

𝑖
denotes

the output of the 𝑖th detector unit. We then normalize all the
outputs into a canonical range: [−𝜅, 𝜅]. The measure of each
output is computed as follows:

𝑞

∗

= 𝜅 ⋅ sgn (𝑞) ⋅





𝑞






−min ({


𝑔
𝑖






}

𝑁

𝑖=1
)

max ({


𝑔
𝑖






}

𝑁

𝑖=1
) −min ({



𝑔
𝑖






}

𝑁

𝑖=1
)

∀𝑞 ∈ 𝐺,

(13)

where 𝑞∗ is the canonical value of the output 𝑞 and sgn(⋅) is
a sign function. 𝜅 is a constant parameter and is set between
10 and 30 in our experiments. Thereby, for certain detector
units, we obtain the canonical value 𝑄(𝑢, V), where 𝑢 and V
represent the horizontal and vertical velocities, respectively,
and can be computed by (13). We can now substitute 𝑄(𝑢, V)
into (7), yielding (𝑥, 𝑦)

𝑡
.

The adaptive improved transition model is simple yet
effective.We test our state transitionmodel on a large number
of publicly available video sequences and find that it is quite
amenable to various motions, such as smoothmotion, abrupt
motion, and fast movement.
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4.3. The Joint Local and Global Search Strategies for Visual
Tracking. The aforementioned state transition model is used
for local search and it works in most cases but not entirely
convincing.When severe or long termocclusion occurs,most
trackers only based on local search are likely to lose the target.
What is worse is that local search tends to lead the tracker
falling into local optimum. To address those problems, a
global search strategy is adopted. Unlike conventional global
search strategy which utilizes a sliding window to search
every single pixel of the entire frame, we are only interested
in the specific subimage regions where the responses of the
insect vision inspired detector are not zero. We calculate the
similarities of the regions of interest and the template to
determine the likeness of the regions.

In our algorithm, the local search and global search are
jointly used to seek for a more accurate candidate image
region. First, for every coming frame, we search the object
location based on the previous object location by propagating
the samples via the improved state transition model. There
exist two situations where we apply the global search strategy.
For the first situation, the global search is carried out
according to a constant frequency, for example, for every 𝜂
frame (the 𝜂 is set as 10 in all the experiments). The other is
when the tracker loses the target; that is, when the local search
cannot find a convincing candidate image region or causes
local optimum, the global search is used to recover the target.

Now, we give a detailed discussion about the method to
judge whether a tracker loses the target. For state 𝑥

𝑡
at time

𝑡, the weight responding to each sample is normalized to
the range of [0, 1]. And the sample with a bigger weight is
assigned with a higher confidence of belonging to the target.
We set a threshold 𝜃

𝑜
to count the number of the valid

samples. In other words, if the weight of a sample is bigger
than 𝜃

𝑜
, the sample is valid, otherwise, invalid. Then we have

Φ =

𝑁
𝑜

∑

𝑖=1

1

2

(1 + sgn (𝜔
𝑖
− 𝜃
𝑜
)) , (14)

where𝜔
𝑖
is theweight of the 𝑖th sample,𝑁

𝑜
is the total number

of the samples, and Φ denotes the number of the valid
samples. When the following two prerequisites are satisfied,
the tracker loses the target:

(1) Φ < 𝛾⋅𝑁
𝑜
, where 𝛾 denotes the lost factor which is set

to 0.15 in this paper; that is, the number of the valid
samples is less than 𝛾 ⋅ 𝑁

𝑜
,

(2) the prerequisite one occurs for𝑇 frames consecutively
where 𝑇 = 5 in this paper.

The global search strategy can definitely reduce the
probability of falling into a local optimum by sampling in the
interest global state space in a constant frequency.Meanwhile,
it can effectively recover our tracker from drifts or heavy
occlusions. The lost-judgment prerequisites detect heavy or
full occlusions and offer signal to the global search strategy.
Therefore, the joint local search and global search strategies
seek a more reliable candidate image region making the
tracker more convincing.

4.4. Incremental Learning Based Online Template Update.
Under challenging situations such as drastic luminance
change and severe occlusion, the appearance of a target
changes over time. Tracking with a fixed template is not
likely to capture the appearance variations for a long duration
due to the low importance weight of the samples. So, it
is important to update the template online to enhance
the adaptivity of the tracker. By doing so, we employ an
incremental-learning-based online template update method.
In the scheme, a sequence of 𝐻 max-weighted samples is
stored during the tracking process. For every 𝑈 frame, we
choose the oldest sample from the sequence set and replace
it with the latest tracking result of the object. Note that we
reserve the sample initialized manually in the first frame.
Once the new target location is determined, the template is
updated as follows:

Ω

(𝑘)

= 𝜇 ⋅ Ω

(0)

+ (1 − 𝜇)

⋅ (Ω

(𝑘−1)

− SToldest + STlatest) ,
(15)

where Ω

(𝑘) is the 𝑘th template and Ω

(0) is the template
initialized manually in the first frame, SToldest and STlatest
denote the oldest sample and the latest sample (with the
highest weight), respectively, and 𝜇 is the learning rate. In
our experiment, the lengths of sequence 𝐻 and the spacing
interval 𝑈 are set as 5 and 3, respectively, and the learning
rate 𝜇 is set as 0.3.

The incremental-learning-based online template update
method ensures that the most recent object appearances are
reflected in the template, and the manually initial template
is reserved. In this manner, our tracker will not delete all
information of the target and keep on learning the appearance
changes at the same time, which avoids the drift problem and
improves tracking stability.

It is interesting to note that the approach proposed in
[34] also uses the latest tracking result to update the template.
Our update method is different from [34] in that (1) we store
a max-weighted samples sequence for the updating while
they store a large number of regions (e.g., 1000 regions) for
the updating, (2) we reserve the manually initial sample and
utilize a learning rate while they utilize an update rate to
decide the number of regions to be updated, and (3) we use
the latest tracking result to replace the oldest sample for every
𝑈 frame while they set a prerequisite to determine when to
update in every frame.

The main steps of our algorithm are summarized in
Algorithm 1.

5. Experiments

In this section, to demonstrate the performance of the
proposed tracking algorithm, extensive experiments are per-
formed on challenging sequences from the existingworks. All
the sequences are publicly available and the details are listed
in Table 1. The challenges include abrupt motion, fast move-
ment, part or full occlusion, illumination changes, and pose
variation. In addition, we test other 10 state-of-the-art track-
ers (the implementations are provided by the authors) on the
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Input: image sequence, particle set {x(𝑖)
𝑡−1
,𝜔
(𝑖)

𝑡−1
}

𝑁
𝑜

𝑖=1

Output: particle set {x(𝑖)
𝑡
,𝜔
(𝑖)

𝑡
}

𝑁
𝑜

𝑖=1
and the object state x∗

𝑡

Initialization:
(1) Initializing the tracked object manually.
(2) Constructing the particle set {x(𝑖)

0
,𝜔
(𝑖)

0
}

𝑁
𝑜

𝑖=1
.

(3) Calculating the template Ω(0).
Object tracking:
(1) for 𝑘 from 1 to the last frame do
(2) Estimate the object motion utilizing the proposed insect vision inspired detector and

obtain the response 𝑄
𝑡
.

(3) Local search strategy:
(4) Propagating: According to the proposed state transition model (7),

propagate each particle state 𝑥(𝑖)
𝑡−1

to get a new state 𝑥(𝑖)
𝑡
for time 𝑡.

(5) Re-sampling: Based on the state 𝑥(𝑖)
𝑡
and the template, compute the weight 𝜔(𝑖)

𝑡
of each

propagated particle at time 𝑡, and then normalize the particles weight.
Generate a new particle set {𝑥(𝑖)

𝑡
, 𝜔

(𝑖)

𝑡
}.

(6) Lost detection: (to address severe occlusion and drifts problems)
(7) Count the number of valid samples and test the Two-Prerequisites. If the Two-Prerequisites are satisfied,

let LF = 1, otherwise, LF = 0. (LF is the label to mark the lost.)
(8) Global search strategy:
(9) if LF = 1 (the tracker loses the object) or for every 𝜂 frames then
(10) Refining: Search the interest image region where 𝑄

𝑡
̸= 0 to seek for a more accurate state 𝑥(𝑖)

𝑡
.

(11) Weighting: Based on the state 𝑥(𝑖)
𝑡
and the template, compute the weight �̂�(𝑖)

𝑡
of each particle at time 𝑡

and normalize it.
(12) end if
(13) Estimating:
(14) Calculate the object position at time 𝑡 and get the best state: 𝑥∗

𝑡
= 𝑥

𝑖max
𝑡

, where 𝑖max = argmax
𝑖∈(0,𝑁

𝑜
)
(𝜔

𝑖

𝑡
).

(15) Online template update:
(16) Update the template according to (15) for every 𝑈 frames.
(17) end for

Algorithm 1: Insect vision embedded particle filter tracking.

same sequences for comparison. The 10 evaluated trackers
are the Markov Chain Monte Carlo (MCMC) tracker [35],
the adaptive MCMC tracker [36], the Wang-Landau Monte
Carlo (WLMC) tracker [29], TLD tracker [37], sparsity-based
collaborativemodel (SCM) tracker [38], the fragment tracker
(Frag) [39], distribution field (DF) tracker [40], compressive
tracker (CT) [10], circulant structure tracker (CST) [41], and
adaptive structural local sparse appearance (ASLA) tracker
[42]. For fair comparisons, all the evaluated trackers startwith
the same initial position of the videos and the quantitative
results are obtained over 10 runs. For trackers that involve
particle filter, we use the same number of samples.

5.1. Quantitative Evaluation. Two evaluation criteria are used
to evaluate the proposed algorithm in our experiments. The
first criterion is the center location error which is defined as
follows:

𝐶error = √(𝐶𝐺 − 𝐶𝑇)
2

,
(16)

where𝐶
𝐺
and𝐶

𝑇
denote the center locations of the manually

labeled ground truth and the tracked object, respectively.The
other criterion is the success rate. Let area(𝑅

𝐺
∩𝑅
𝑇
)/area(𝑅

𝐺
∪

𝑅
𝑇
) denote the overlap ratio, where 𝑅

𝐺
is the ground truth

bounding box and 𝑅
𝑇
is the tracking bounding box. If the

overlap ratio is larger than 0.5 in one frame, the tracking result
is considered as a success. The success rate indicates the ratio
between the number of successfully tracked frames and the
number of total frames.

Table 2 and Figure 2 show the tracking center location
errors of all the methods. Table 3 and Figure 3 show the
tracking results in terms of success rate. We note that, in
the bird sequence, the target disappears for dozens of frames
where we cannot determine the ground truth of the target,
so we ignore these frames when we compute both evaluation
criteria. And the overlap rate plots frame-by-frame shown
in Figure 3(b) indicate that when a tracker loses the target,
few methods can recover from failure except ours. Besides,
the TLD tracker does not report tracking result (or bounding
box) when the drift problem occurs and the target object is
redetected. Thus, we only report the center location errors
for the sequences in which the TLD method does not lose
track of target objects. The proposed algorithm achieves the
best or the second best performance in most of the sequences
against the state-of-the-art algorithms based on both center
location error and success rate. The qualitative evaluation of
the tracking results of different trackers is detailed below.
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Table 1: The details of video sequences.

Sequence Frames Initial position Challenges
Biker [10, 35] 1-180 250 110 45 75 Abrupt motion
Bird [9] 1-408 443 94 37 27 Abrupt motion, disappear, and reappear
Bolt [9, 10, 35] 1-350 336 165 25 60 Fast movement
Cartoon 1-200 83 134 56 56 Significant pose variation
Coke [8] 1-292 148 82 20 35 Drastic illumination variation and occlusion
Dragon baby [35] 1-112 167 74 40 70 Abrupt motion, pose variation
Girl move [5, 9] 1-1500 303 161 28 113 Significant occlusion
Indian dancer 1-150 157 61 20 23 Pose variation and abrupt motion
Lemming [9] 1-681 40 200 54 92 Abrupt motion and significant occlusion
Liquor [9] 1-1553 257 226 67 125 Occlusion and fast movement
Panda [10, 37] 1-241 257 171 45 55 Fast movement, occlusion, and pose variation
Stennis [5] 1-55 133 39 23 23 Abrupt motion and fast movement
Surfer [35] 1-400 282 165 35 45 Significant and long duration occlusion
Sylvester [2, 10] 1-1344 125 56 43 50 Drastic illumination and pose variations
Woman [38, 41] 1-553 208 125 27 75 Occlusion and significant appearance changes

Table 2: Center location error (CLE) (in pixels).

Sequence Ours SCM TLD MCMC AMCMC AWLMC Frag DF CT CST ASLA
Biker 7 41 — 18 20 20 88 99 27 12 65
Bird 11 38 — 40 122 222 156 146 33 368 215
Bolt 4 512 — 16 16 77 129 207 327 409 158
Cartoon 20 68 — 21 15 14 71 126 73 96 68
Coke 9 56 7 55 55 77 42 32 16 60 38
Dragon baby 17 52 — 65 39 18 43 67 63 170 45
Girl move 7 282 — 49 31 16 309 242 154 884 158
Indian dancer 4 14 6 5 9 25 15 31 17 12 14
Lemming 9 44 12 7 7 15 168 99 24 30 114
Liquor 10 31 16 143 93 32 138 229 184 165 122
Panda 6 18 — 131 136 20 90 96 88 119 13
Stennis 3 13 3 15 88 21 28 45 7 97 26
Surfer 8 13 11 19 19 43 27 94 43 290 85
Sylvester 11 18 13 9 9 11 14 53 22 10 11
Woman 3 10 37 5 5 39 116 99 124 8 7
Average CLE 8 80 13 39 44 43 95 111 80 182 75
Bold fonts indicate the top three best performances. The total number of evaluated frames is 8019.

5.2. Qualitative Evaluation

5.2.1. Abrupt Motion and Fast Movement. For the biker
sequence shown in Figure 4(a), the target object undergoes
abrupt movements with 180-degree out-of-plane rotation
when the biker jumps from one side of the railway to the
other. The AMCMC, MCMC, AWLMC, and CST methods
and our method perform well on this sequence. The MCMC
method replaces the traditional importance sampling step in
the particle filter with aMarkov chainMonte Carlo (MCMC)
sampling to obtain a more efficient filter and the AMCMC
method automatically tunes the Markov chain parameters
during a run.TheWLMCmethod utilizes the density of states
(DoS) which is estimated by the Wang-Landau algorithm
to capture abrupt motions, so these three methods work

well during tracking. The CST method performs well due
to the use of circulant structure of tracking-by-detection
with kernels mechanism. In the bird 1 sequence shown in
Figure 4(b), the target moves flexibly.Worse yet, it disappears
from frame 130 and reappears in frame 190. Our method
can quickly locate the target and recover tracking when the
target appears again due to the use of the global search
mechanism for target detection, while most other methods
work well before the long duration occlusion occurs but lost
the target and cannot relocate after occlusion because they
have no mechanism to recover tracking. Some methods are
disturbed by the similar bird flying aside. In Figure 4(c),
the target object moves fast. Only MCMC and AMCMC
methods and our method perform well on this sequence.
The WLMC method cannot handle the sequence since it



Mathematical Problems in Engineering 9

20 40 60 80 100 120 140 160 180

Frame number

0

50

100

150

200

250

Biker

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

(a)

50 350300100 150 200 250 400

Frame number

0

500

100

600

200

300

400

700

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

Bird 1
AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

(b)

50 100 150 200

50

350

300

100

150

200

250

400

Frame number

0

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

Cartoon
AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

(c)

50 350300100 150 200 250

Frame number

0

500

100

600

200

300

400

800

700

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

Bolt
AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

(d)

50 100 150 250200

50

100

150

200

250

Frame number

0

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

Coke
AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

(e)

20 40 60 80 100

Frame number

0

500

100

200

300

400

600

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

Dragon baby
AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

(f)

200 400 600 800 1000

Frame number

0

AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

500

100

600

200

300

400

700

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

Girl move

(g)

20 12080 10040 60 140

Frame number

0

40

20

80

60

100

120

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

Indian dancer

(h)

500 600100 400300200

50

350

300

100

150

200

250

400

Frame number

0

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

Lemming

(i)

200 400 600 800 1000

0

500

100

600

200

300

400

Frame number

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

Liquor

(j)

50

350

300

100

150

200

250

450

400

0
50 100 150 200

Frame number

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

Panda

(k)

20 4030 5010

Frame number

0

160

100

20

40

60

80

120

140

180

C
en

te
r l

oc
at

io
n 

er
ro

r (
pi

xe
l)

AMCMC
ASLA
AWLMC
CST
CT
DF
Frag
MCMC
Ours
SCM
TLD

Tennis

(l)

Figure 2: Continued.
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Figure 2: Center location error plots for all test sequences (the red curve denotes the proposed method). For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.

Table 3: Success rate (SR) (%).

Sequence Ours SCM TLD MCMC AMCMC AWLMC Frag DF CT CST ASLA
Biker 90.0 49.4 8.9 58.9 41.7 32.8 29.4 27.2 9.4 55.0 47.8
Bird 46.8 17.4 — 15.7 19.8 3.9 3.9 15.4 10.8 2.2 2.5
Bolt 84.6 3.7 1.1 32 38.3 7.4 2.6 2.6 0.2 0.9 1.1
Cartoon 44 3.0 0.5 51 62.0 73.5 5.5 3.5 6.0 2.0 2.5
Coke 48.3 3.4 56.5 4.1 4.1 1.7 2.1 5.5 34.9 21.6 4.1
Dragon baby 76.8 27.7 13.4 35.7 47.3 18.8 28.6 17.8 9.8 4.5 30.3
Girl move 80.3 6.2 16.6 58.3 59.5 47.1 5.3 5.7 10.9 6.9 16.1
Indian dancer 84.0 3.3 39.3 44.7 48.7 32.7 28.0 12.0 11.3 7.3 8.7
Lemming 89.0 56.0 73.7 93.4 93.5 71.7 5.6 48.5 47.7 72.7 45.4
Liquor 91.0 68.8 88.8 30.7 42.9 71.4 23.3 26.0 23.4 30.1 43.8
Panda 92.5 44.4 41.5 24.9 25.3 47.3 19.5 44.4 25.3 19.9 48.5
Tennis 87.3 67.3 60 63.6 21.8 40.0 36.4 32.7 45.5 16.4 43.6
Surfer 84.5 41.0 45.3 24.3 18.8 14.5 13.0 8.5 10.0 11.0 14.0
Sylvester 63.2 49.1 60.7 68.5 68.5 60.2 55.4 27.7 56.9 60.0 69.4
Woman 64.7 51.7 32.2 91.5 92.7 39.2 24.6 29.5 11.9 74.1 5.2
Average SR 75.1 32.8 38.4 46.4 45.6 37.5 18.8 20.5 20.9 25.6 25.5
Bold fonts indicate the top three best performances. The total number of evaluated frames is 8019.

assumes that the object can go anywhere in a scene even
at one proposal step. This mechanism avoids the local-trap
problem and is effective to abrupt motion, but it leads the
method to be susceptible to interference, for example, the
athlete wearing the similar clothwith Bolt. In the dragon baby
sequence (Figure 4(d)), the target moves abruptly in action
scene. Despite all the abrupt movements and 360-degree out-
of-plane rotation, our tracker and the AWLMC method are
able to track the baby well. For the tennis sequence shown
in Figure 4(e), the ping pong moves fast and changes its
motion direction suddenly when it hits the racket.The feature
of the target is not significant since it is small. Only the
WLMC, SCM, and TLD methods and our method perform
well on this sequence.The TLD approach works well because
it maintains a detector which uses Haar-like features during
tracking.The proposed algorithmhandles abruptmotion and
fast movement well as the adopted state transitionmodel and

the joint local and global searches mechanism well describe
the characteristic of the motion in a real scene.

5.2.2. Occlusion and Drift. The target object in the girl move
sequence in Figure 5(a) undergoes heavy occlusion (from
frame 108 to frame 123 and from frame 1384 to frame
1400). Only the AWLMC method and our method perform
well after the severe occlusion. In the lemming sequence
(Figure 5(b)), the target undergoes heavy occlusion. Overall,
the AMCMC,MCMC,AWLMC,CST, and TLDmethods and
our method perform well on this sequence. The SCM algo-
rithm uses a sparsity-based discriminative classifier (SDC)
and a sparsity-based generative model (SGM), so it works
well in most frames. But the heavy occlusion can damage the
SDC and SGMmechanisms seriously and hence this method
is less effective in handling severe occlusion. Due to the same
reasons, the SCM method fails to track the target object
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Figure 3: Continued.
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Figure 3: Overlap rate plots for all test sequences (the red curve denotes the proposed method). For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.

(a) Tracking results of the biker sequence

(b) Tracking results of the bird 1 sequence

(c) Tracking results of the Bolt sequence

(d) Tracking results of the dragon baby sequence
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CT
DF

Frag
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TLD

(e) Tracking results of the tennis sequence

Figure 4: Screenshots of some sample tracking results when there are abrupt motion and fast movement.
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(a) Tracking results of the girl sequence

(b) Tracking results of the lemming sequence

(c) Tracking results of the liquor sequence

(d) Tracking results of the panda sequence

AMCMC
ASLA
AWLMC
CST
CT
DF

Frag
MCMC
Ours
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TLD

(e) Tracking results of the surfer sequence

Figure 5: Screenshots of some sample tracking results when there are severe occlusion and drift.

stably in the liquor sequence (Figure 5(c)). In the liquor
sequence, the bottle undergoes several heavy occlusions (e.g.,
frames 508, 727, 772, 1183, and 1236). Only AWLMC and TLD
methods and ourmethod track the object stably. In the panda
sequence (Figure 5(d)), the target undergoes in-plane pose
variation, occlusion, and fastmotion. Tables 2 and 3 show that
only the proposed method outperforms the other methods
on this sequence in terms of success rate and center location
error. In the surfer sequence shown in Figure 5(e), the
target object undergoes heavy occlusion and the appearance
changes dramatically. In addition, the resolution of the video

sequence is low, which make it a challenge to track the target.
It is clear to see that, in terms of both success rate and
center location error, our method performs better than the
other methods on this sequence.The SCM and TLDmethods
work well on this sequence as both of them select adaptive
appearance model to account for appearance change.

The proposed algorithm handles occlusion and drift well
as we utilize a joint local and global searchmechanism, where
the two strategies complement each other to get a more
reliable location of the target. Furthermore, the proposed
algorithm performs well even when the target undergoes
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(a) Tracking results of the coke sequence

(b) Tracking results of the cartoon sequence

(c) Tracking results of the Indian dancer sequence

(d) Tracking results of the Sylvester sequence
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CT
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Frag
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(e) Tracking results of the woman sequence

Figure 6: Screenshots of some sample tracking results when there are severe occlusion and drift.

long duration or full occlusion as we can detect the severe
occlusion. Once the algorithm determines that the target is
lost, the global search strategy is used to relocate the target
and recover the tracking immediately.

5.2.3. Pose and Illumination Change. For the coke sequence
shown in Figure 6(a), the appearance changes dramatically
due to illumination and pose variation when the target
moves here and there under a table lamp. The target object

shown in Figure 6(d) undergoes the similar problems. The
CT and TLD methods and our method achieve favorable
performance on these two sequences. In the cartoon sequence
shown in Figure 6(b), the target object has a large pose
variation and shape deformation. In addition, the target
object undergoes abrupt movements.The AMCMC,MCMC,
and AWLMC methods and our method work well on this
sequence. In Figure 6(c), the appearance of the target object
changes when the dancer moves up and down, left and right.
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Most methods cannot track the target stably and drift away
from the target object. When the illumination variations
and partial occlusion both occur in the woman sequence
(Figure 6(e)), most algorithms fail to track the target object
well. Our method utilizes an effective incremental-learning-
based online template update mechanism to adapt to the
appearance changes. Thereby, we can handle the pose and
illumination changes in the test sequences. Furthermore, the
proposed algorithms can predict a more accurate position via
the adaptive state transitionmodel, whichmakes ourmethod
more flexible.

6. Conclusion

In this paper, we propose a novel insect vision embedded
particle filter tracking algorithm. An adaptive state transi-
tion model utilizing the insect vision detector is adopted
to cope with abrupt motion and fast movement tracking
problems. We use the joint local and global search strategies
to refine a more accurate candidate state. Furthermore, a
two-prerequisite method is discussed to detect the lost target
caused by heavy occlusion and drift problems. Once the
target is lost, the interesting regions where the responses of
the insect vision detector are not zero will be detected via the
global search strategy to determine the most similar region.
Moreover, to address the dramatic appearance changes prob-
lem, an incremental-learning-based online template update
method is adopted. Numerous experiments on challenging
sequences demonstrate that the proposed tracking algorithm
performs well against state-of-the-art algorithms. In our
future work, we will consider a mixture appearance model to
strengthen the prior knowledge of the target.
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