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Part I Scattering and Polarimetry 

Spatial anisotropy of hydrometeors implies polarization 
sensitivity. 

Weather radars exploit flattening of raindrops as a function of 
size to help with identification and estimation of drop size 
distribution. 

Ice crystals come in many habits, many of which are plates or 
columns, which can exhibit alignment relative to gravity or 
electric fields. 

For weather radar, the melting layer in which snowflake 
aggregates contain air, ice and meltwater and is complex to 
model. 
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What  to measure? 

The first polarimetric weather radars measured the 
horizontal and vertical reflectivities, 

                                    Zh ,v  

A new observable Zdr was introduced: 

 

This has the advantage (because Shh and Svv are 
generally highly correlated) of being much more 
stable and measurable to ~0.1 dB 
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Circular Polarization Radars 

In Alberta, Canada, McCormick and Hendry developed 
techniques in observing storms with circular 
polarization radar. 

 

CDR appeared to have a great disadvantage in being 
extremely sensitive to propagation effects – at S-
band this was mainly due to differential phase. 
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Differential Phase - KDP 

Targets are generally observed after the radar pulse has 
passed through (mainly)rain and the H/V anisotropy 
of the raindrops induces a differential phase in the 
forward (and return) paths. 

 

But this is a unitary transformation, and invertible if full 
polarmetric data is recorded.   

At S-band this was easy because the Shh and Svv 
amplitudes were in an almost real ratio. 
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Degree of Polarization 

While a volume target returns a random signal, the responses in 
rain for different polarizations are highly correlated.  This 
implies that the degree of polarisation is almost unity. 

 

Loss of degree of polarization requires directional randomness in 
the Stokes vectors... 
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This relates to pairwise summation over scatterers, and to the 
heterogeneity of the scatterer distribution. 



Convective precipitation event 
(Galletti et al 2009) 
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Stratiform precipitation event 
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Fredholm Integral Method 

In 1970’s satellite telecommunications were in their 
heyday – it was not fully anticipated how soon and 
how much optical fibre communications would take 
over. 

National PTT’s funded research on attenuation by rain 
and its management in microwave up- and down 
links. 

 

A number of approaches to calculating the scattering 
amplitudes were taken. 
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Methods for calculating Hydrometeor scattering 
amplitudes 

• Point matching (Morrison & Cross) 

• T-Matrix Extended Boundary Condition (Waterman) 

• Fredholm Integral Method (Holt, Uzunoglu and 
Evans) 

In the weather radar and microwave propagation fields, 
the T-Matrix approach supported by freely available 
codes is now ubiquitous. 
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Advantages of the FIM 

• Does not require explicit solution of boundary conditions 

• Inherently very stable 

• Non-iterative 

• Solution satisfies a Schwinger variational principle 

• Is extensible to inhomogeneous dielectrics 
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Outline of the method 
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G is the dyadic free space Green’s function and Ji is the 
incident field unit dyadic. 
 
The Green’s function is singular and the aim is to 
transform to the Fourier domain and deal with the 
singularity analytically. 
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Fourier domain 
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Solution 

The exact solution is that of the coupled Fredholm 
integral equations, 
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In practice, the integrals are replaced by weighted 
summations and the problem   reduces to an approximate 
solution by solving matrix equations. 
 
The  kernel is non-singular and the method known to be 
remarkably stable 
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Extension to Bodies of Revolution 

The original code of Holt was restricted to ellipsoids  

This arose because it was desired to expand the spatial 
integrals in a Neumann series with Gegenbauer 
polynomial terms  

If, however, we perform the integral for K using the 
spherical analogue of trapezoidal integration we re 
free to use arbitrary shapes. 

In particular, for bodies of revolution, we can calculate 
the U integrals in cylindrical coordinates. The z-
integral becomes a 1-D Fourier transform. 
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Extension to Prisms 

The extension to homogeneous prisms is 
straightforward 

 

The 2-D Fourier transform of a basal slice can be 
computed analytically by transforming to the line 
integral of a fictitious vector field with constant curl. 

 

Hollow columns and prisms can also be handled as 
contributions to the U-integral only occur in the 
dielectric. 
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Extension to Inhomogeneous Dielectrics 
(with Felix Nghobiga) 

The case of snowflakes is complex computationally 
because there are two dielectric constants besides 
air. 

 

We have effective medium theories for two-part 
dielectrics where it can be determined one is an 
inclusion in the other. 

 

There is as yet no known unique effective medium 
mixing formula when there are three components.   
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Example calculation of the U-integral  
Mie scatterer 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-10

0

10

20

30

40

50

60

Re[k]

R
e
[U

(k
1
,k

2
)]

Number of pivots = 18
Refractive index = 1.333
Size parameter(x) = 2
Frequency  = 2.35GHz

Evaluation of First Born(U) term applying Discrete & Exact methods

 

 

Discrete method

Exact method
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Approaches to calculating the 2nd Born term 
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This looks innocuous enough, but the magnitude p 
integrates from zero – we need to be able to cast the 
integral as a closed contour integral.  U does not normally 
exhibit the required symmetry. 
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Ellipsoids 

For  ellipsoids, Holt, Uzunoglu and Evans (1978) exploited the  
Neumann series, 
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Products of the Bessel functions in p integrate the singularity analytically 
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For Discretized volume 
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In the case of a discrtized volume, the integral for each cell is 
related to a definite integral 

This can be expressed in terms of the Struve function of order 1/2 
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Problems arising 

Whereas with a uniform dielectric, the interior field 
expansion has wave vectors lying on a ‘shell’ the 
interior field in a complex dielectric is more complex. 

In principle, we need a full 3-D Fourier expansion of the 
polarizatibility tensor – making the Matrix problem 
of large N and dense. 

There is no reason why this cannot be done, and this 
case is no worse than DDA in complexity, while 
involving no more approximation than discretization. 
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Can the expansion be truncated? 

Looking at the solution to the scattering amplitude, 

 

For moderately sized scatterers the scattered fields are the 
ones with k < inverse scale of dielectric.   

 

The integral is a convolution – to get output terms of k,  
even if there are large amplitudes in U(k’) for large k’ do 
we get any significant contributions for  C(k’-k) U(k’). That 
is, is there any significant Bragg-like diffraction between 
the internal field and the Polarizability? 
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Part 2 – Overview of Geometric Polarimetry 
(with Laura Carrea) 

Why are coherent polarization states represented as carriers of 
the unitary group SU(2)? 

In quantum terms such a representation appears to be more 
appriate to spin ½ fermions, no spin 1 bosons. 

This can be resolved by spinor representation when it is 
recognized that a second half-spinor is implicit but 
suppressed. 
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Polarimetric scattering as geometrical 
construction 

We can exploit analogy between space-time algebra 
and projective geometry in homogenous coordinates 
to provide a (complex) geometric representation in 
coordinate  (or Fourier) space of scattering 
representations. 

This fully reconciles the analytic signal representation 
and the configuration geometry of monostatic and 
bistatic scattering 
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Complex Bistatic Invariant 

A new result emerging from this is that one can find a 
complex invariant associated with a bistatic 
scattering matrix. 

 

For any transmit polarization there is always one 
unique receive polarization state which nulls the 
voltage.  By projecting the two dipoles to a complex 
projective plane at infinity, this  sets up a 1:1 
correspondence which is related to a unique conic, 
which has a complex projective invariant. 
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projective plane 
 ‘at infinity’ 

Antenna 1 

Antenna 2 

antenna polarization states  
mapped to lines on plane at infinity 

Projective construction 



Corresponding states  
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Constructions for Spherical scatterer 
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For spherical scatterers the 
conic is a real hyperbola. 
 
(a) Bistatic angle = 30 deg 

 
 
 
 
 

(b) Bistatic angle = 60 deg 
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Mapping the complex k-invariant 

Oblate Rayleigh scatterers 
Bistatic angle 60 deg 
 
(a) Axial ratio 0.4 

 
 
 
 
 
 

(b) Axial ratio 0.1 

Arg k  Abs  k 
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Oblate v prolate (0.1 axial ratio) 

Bistatic angle 120 deg 
 
(a) Oblate 

 
 
 
 
 
 

(b) Prolate 
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Conclusions 

• Polarimetry and anisotropy/shape 

– Alignment probed by linear polarization 

– Shape independently of alignment with Cpol 

• Polarimetry and propagation effects 

– Alignment in volume gives rise to exploitable propagation 
effects 

• Polarimetry and distributions 

– Heterogeneity in scatterers revealed in degree of pol 

• Polarimetry and scattering geometry 

– Bistatic scattering may in future provide further degrees of 
freedom to explore particle morphology 
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