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Abstract—The optimal power allocation that maximizes the
secrecy capacity of block fading Gaussian (BF-Gaussian) net-
works with causal channel state information (CSI), M -block
delay tolerance and a frame based power constraint is examined.
In particular, we formulate the secrecy capacity maximization as
a dynamic program. We propose suitable linear approximations
of the secrecy capacity density in the low SNR, the high SNR and
the intermediate SNR regimes, according to the overall available
power budget. Our findings indicate that when the available
power resources are very low (low SNR case) the optimal strategy
is a threshold policy. On the other hand when the available
power budget is infinite (high SNR case) a constant power policy
maximizes the frame secrecy capacity. Finally, when the power
budget is finite (medium SNR case), an approximate tractable
power allocation policy is derived.

Index Terms—delay constrained secrecy capacity, causal CSI,
secure waterfilling, dynamic programming

I. I NTRODUCTION

Physical layer security (PLS) investigates the potential of
taking advantage of the impairments in real communication
media, such as fading or noise in wireless channels, in order
to achieve confidentiality in data exchange. PLS was pioneered
by Wyner, who introduced the wiretap channel and established
the possibility of creating perfectly secure communication
links without relying on private (secret) keys [1]. Recently,
there have been considerable efforts devoted to generalizing
this result to the wireless fading channel and to multi-user
scenarios [2], [3], [4].

In the present study we investigate optimal power allocation
policies in block fading Gaussian (BF-Gaussian) wireless
networks with secrecy and delay constrains. In our model, a
transmitter wishes to broadcast secret messages to a legitimate
user by employing physical layer security approaches, subject
to a strictM -block delay constraint; accordingly, at the source
a stochastic encoder maps the confidential messages to code-
words of lengthn = MN transmitted overM independent
blocks, i.e., we assume that an interleaver of at most depth
M is employed. We assume that the fading realizations are
independent and identically distributed (i.i.d), that they remain
constant over each block ofN channel uses and that they
change independently from one block to the next.

In the investigated setting, in order for random coding
arguments to hold it is required thatn → ∞. For finite n,
the BF-Gaussian channels are typically not information-stable

and the generalized capacity expressions in [5] need to be
employed. In this work, similarly to the work in [6], we bypass
such issues by assuming thatN → ∞. An alternative line
of work was suggested in [7] by jointly employing queues
of secret keys allowing for the avoidance of secrecy outage
events; however this option is not considered at present. The
case ofM → ∞ that corresponds to the ergodic channel has
been investigated in [2] and [3].

The presentation of the present work is organized as fol-
lows. First, we restate the secure waterfilling solution to the
optimal power allocation optimization problem inM -block
BF-Gaussian networks with acausal channel state information
(CSI). This framework is pertinent to applications with parallel
channels (e.g. in the frequency domain) under short-term
power constraints (e.g. OFDM networks with frame based
power constraints). Assuming that theM -block CSI is avail-
able at the transmitting and receiving nodes at the beginning
of the transmission frame, the secure waterfilling policy that
maximizes the network secrecy capacity [8] is discussed.

Next, we investigate BF-Gaussian channels with long term
power constraints. We begin with a “blind scenario” in which
the optimal power allocation is to be decided without any CSI
information; the statistics of the channel gains are the only
variables in the power allocation decision process. We use
this setting to demonstrate that the formulation of the optimal
power allocation problem, maximizing the secrecy capacity
subject to a delay, as a dynamic program leads naturally to
intuitive and analytic solutions. In particular, in absence of
any CSI information we show that the optimal policy is to
equally distribute the power budget in theM transmission
blocks, as long as the expected value of the difference of the
channel gains of the legitimate and eavesdropping terminals is
positive.

Then, we examine networks with causal access to the
legitimate user’s and the eavesdropper’s CSIs over a horizon of
M transmission blocks; the pairs of the legitimate user’s and
eavesdropper’s channel gains are sequentially revealed tothe
network nodes. We distinguish three subcases accounting for
the low, high and intermediate SNR regions. In the low SNR
a threshold transmission policy is shown to be approximately
optimal, in line with earlier results in networks without secrecy
constraints [9]. On the contrary, we demonstrate that in the
high SNR case, the optimal strategy is to transmit with

http://arxiv.org/abs/1401.6790v1


constant power in those blocks in which a non zero secrecy
capacity can be achieved. Finally, for intermediate SNRs we
derive a tractable expression for the transmission policy that
depends on the gap between the legitimate and eavesdropping
receivers’ CSIs.

II. SYSTEM MODEL

We assume a BF-Gaussian channel with i.i.d. realizations.
During the m-th transmission block the legitimate user’s
channel gain is denoted byαm and the eavesdropper’s channel
gain byβm. We can exploit the fact that BF-Gaussian channels
are weakly symmetric [10] to simplify the proofs of the coding
theorems.

Definition: The secrecy capacity density during one trans-
mission block of the BF-Gaussian channel for an input power
γ and channel gains(α, β) can be expressed as

cs(γ, α, β)
.
=

[

log
1 + αγ

1 + βγ

]+

(1)

with [·]+ = max(·, 0). The secrecy capacity of theM -
block transmission frame for a vector of input powers
γ = [γ1, γ2, . . . , γM ] and pairs of channel gains(α, β) =
[(α1, β1), (α2, β2), . . . , (αM , βM )], can be expressed as:

Cs
.
=

1

M

M
∑

m=1

cs(γm, αm, βm). (2)

III. POWER CONTROL WITH SHORT-TERM POWER

CONSTRAINT AND FULL M -BLOCK CSI

The optimal power allocation policy assuming that at the
beginning of the transmission frame the CSI ofM parallel
blocks is revealed to the transmitting and receiving nodes has
been derived in [8] and is repeated below for convenience. This
is the baseline secure waterfilling policy and its performance
cannot be exceeded in the causal scenario.

Without loss of generality we assume that the pairs of
channel gains(αm, βm), m = 1, . . . ,M are already permuted
so that the differences

δm = αm − βm (3)

appear in non-increasing order. The optimal power allocation
problem can be stated as:

max
γ

Cs (4)

s.t.
M
∑

m=1

γm ≤ MP andγm ≥ 0,m = 1, . . . ,M. (5)

We further define the inverse channel gapsdm as:

dm =
1

βm

−
1

αm

. (6)

The power allocationγ∗ = (γ∗
1 , γ

∗
2 , . . . , γ

∗
M ) that maximizes

the secrecy capacity satisfies theM -block power constraint
with equality, i.e,

M
∑

m=1

γ∗
m = MP, (7)

and is given by the secure waterfilling algorithm

γ∗
m

Å

1

λ

ã

=







1
2

[
»

d2m + 4
λ
dm −

Å

2
αm

+ dm

ã

]

, m ∈ Q

0, otherwise
(8)

whereQ = {i : λ−1 ≥ δi
−1}.

The functionsγ∗
m(λ−1) are monotone increasing and con-

tinuous in λ−1. As a result, there exists a unique integer
µ in {1, . . . ,M} such that λ−1 ≥ δm

−1 for m ≤ µ

and λ−1 < δm
−1 for m > µ. The waterlevelλ−1 can

be derived by sequentially pouring water to the functions
γ∗
m(λ−1) until the power constraint is met with equality, i.e.,

∑µ
m=1 γ

∗
m(λ−1) = MP .

IV. POWER CONTROL WITH LONG-TERM POWER

CONSTRAINT WITHOUT CSI

We assume an overall long-term power constraint overM

sequential transmission blocks in the form of (5). Accordingly,
the channel gains of the legitimate user and the eavesdropper
during them-th block are denoted asαm andβm with known
distributionspA(α) and pB(β) respectively. Our objective at
block m, given that we have remaining powerpm, is the
identification of the power allocationγ∗

m that maximizes the
instantaneous secrecy capacity and the secrecy capacity for the
future transmission blocks from blockm+ 1 to M .

A. Blind Scenario

We first consider the case in which during them-th block
we take a decision on the value ofγm without having
information on the current channel gains (αm, βm), except
for their distributions and the remaining powerpm. In this
formulation, our objective is to maximize theexpectedsecrecy
capacity over the entire horizon. Letγ = (γ1, . . . , γM ). The
stochastic optimization objective function can be writtenas
follows:

max
γ

E

{

M
∑

m=1

cs(γm, αm, βm)

}

= max
γ

E

{

M
∑

m=1

cs(γm, α, β)

}

,

(9)
where the expectation taken over the random variablesαm and
βm is re-written with rapport to the generic random variables
α andβ.

The above problem can be written as a stochastic dynamic
program as follows: We letVm(pm) be the aggregate secrecy
capacity density gained from blockm to the end of the
horizon if the optimal power allocation policy is used. Then
the dynamic programming equations can be written as:

Vm(pm) = max
0≤γm≤pm

E{cs(γm, α, β) + Vm+1(pm − γm)}

m = 1, . . . ,M

VM (pM+1) = 0 (resources exhausted). (10)

We perform backward dynamic programming on the opti-
mality equations (10). We define the function:

f(γ) ≡ E

ß

log
1 + αγ

1 + βγ

™

. (11)



We start the dynamic programming recursion at blockm = M ,
where the optimality equations are:

VM (pM ) = max
0≤γM≤pM

f(γM )1E{α−β}>0, (12)

where1F(·) denotes the indicator function. Sincef is nonde-
creasing, the maximization in (12) is achieved atγ∗

M = pM if
E{α−β} > 0 and for any value of the power ifE{α−β} < 0.
The ambiguity in the latter scenario is resolved by imposing
γ∗
M = 0 whenever this occurs, i.e.,

γ∗
M =

ß

pM , if E{α− β} > 0
0, otherwise.

(13)

When the conditionE{α − β} > 0 is satisfied, we have
VM (pM ) = f(pM ). In this case, at blockm = M − 1 the
optimality equations are:

VM−1(pM−1) = max
0≤γM−1≤pM−1

f(γM−1) + f(pM−1 − γM−1).

(14)
Let h(γ) = f(γ) + f(p − γ). Note thath′(γ) = f ′(γ) −
f ′(p − γ), and sincef ′(γ) is nonincreasing andf ′(p − γ)
is nondecreasing inγ, we have thath′ is nonincreasing. This
means that it can have at most one extreme point in the interval
[0, p], and the extreme point must be a maximum. Atγ = p

2
we have:h′

(

p
2

)

= f ′(p2 ) − f ′(p2 ) = 0. Therefore in (14) the
maximum is achieved atγ∗

M−1 = pM−1

2 andVM−1(pM−1) =
2f(pM−1

2 ).
Continuing the recursion we get

VM−n(pM−n) = (n+ 1)f
(pM−n

n+ 1

)

(15)

and the optimal decision isγ∗
M−n = pM−n

n+1 . This implies
that if we have no information about the channel the optimal
thing to do is to divide the power into as many equal parts as
there are periods remaining, i.e., form = 1, . . . ,M and any
distributionspA(α) andpB(β)

γ∗
m =

ß

P
M
, if E{δ} > 0

0, otherwise,
(16)

with δ defined as the gap of channel gains given in (3).
The above results are intuitive; as expected, the blind

maximization of a function of the outcomes ofM independent
trials can be achieved by equidistribution of the available
resources. What is surprising though, is that the results are
independent of the statistics of the underlying processes and
only require knowledge of the expected value of the gap
between the legitimate and eavesdropper’s channel gains.

V. POWER CONTROL WITH LONG-TERM POWER

CONSTRAINT AND CAUSAL CSI

In the current section we investigate the case in which
during them-th transmission block we causally obtain infor-
mation regarding the channel state, i.e., we have access to
(αm, βm). In this setting, during them-th transmission block,

we have to solve the optimization problem

Vm(pm) = max
0≤γm≤pm

cs(αm, βm, γm)

+ E

{

M
∑

n=m+1

cs(γn, α, β)

}

, (17)

s.t.
M
∑

m=1

γm ≤ MP. (18)

We distinguish three cases, according to the available power
budgetP ; the low SNR, the high SNR and the intermediate
SNR cases.

A. Low SNR

In the low SNR, the available power is assumed small,
i.e., P ≪ 1. As a result a valid linear approximation of the
logarithmic function would belog(1 + z) ≃ z, leading to an
approximate expression for the secrecy capacity density given
by:

cs(γ, α, β) ≃ [α− β]+γ = [δ]+γ, (19)

with δ defined in (3). The functionVm to be optimized at
m = M could then be written as

VM (pM ) = max
0≤γM≤pM

[δM ]+γM . (20)

The objective is thus approximated as a linear function of the
power, so that atm = M the optimal power allocation is
straightforwardly given by

γ∗
M =

ß

pM , if δM > 0,
0, otherwise

= [δM ]+pM . (21)

At m = M − 1 the objective function takes the form

VM−1(pM−1) = max
0≤γM−1≤pM−1

[δM−1]
+γM−1

+ E{[δ]+}(pM−1 − γM−1). (22)

Thus, atm = M − 1, the optimal power allocation is given
by

γ∗
M−1 =

ß

0, if [δM−1]
+ ≤ E{[δ]+}

pM−1, if [δM−1]
+ > E{[δ]+}

(23)

Continuing on the backwards recursion, the optimal power
policy during them-th block is derived as:

γ∗
m =

ß

0, if [δm]+ ≤ E{[δ]+}
pm, if [δm[+> E{[δ]+}

(24)

for m = 0, . . . ,M−1. In the proposed threshold power policy,
whenever a ”good enough” gap in the channel gainsδm of
the legitimate and the eavesdropping receivers occurs thenwe
transmit at full power.

Intuitively, in the low SNR there will not be many op-
portunities for achieving high values of the secrecy capacity
density, so whenever such an opportunity occurs it should be
seized in order to maximize the secrecy capacity over the
whole horizon. The threshold is fixed to the expected value
of the gap between the channel gains of the legitimate user



and the eavesdropper, lower bounded by zero. Even when
the legitimate user’s channel is on average worse than the
eavesdropper’s, it is still possible to transmit at some non-
zero rate even in the low SNR, given a long enough horizon,
i.e., for M ≫.

B. High SNR

In the high SNR, i.e., forP → ∞, we can transmit at very
high power during any of the transmission blocks. A good
approximation for the secrecy capacity density during them-
th block is derived as

lim
γ→∞

cs(γ, α, β) =

[

log
α

β

]+

. (25)

The optimization problem of the secrecy capacity density is
as a result independent of the power allocation and any trans-
mission policy could be used. Accounting for other important
considerations, e.g. the minimization of the information leak-
age, it is proposed to only transmit during the blocks that
satisfy the conditionδm > 0, i.e.,

γ∗
m =

ß

0, if δm ≤ 0
pm

M−m
, if δm > 0

= [δm]+
pm

M −m
, (26)

with p1 = P andm = 1, . . . ,M .

C. Intermediate SNR

Aiming at producing tractable expressions for the power
allocation, we propose using the following approximation for
the logarithmic function [11]:

ln(z) = 2

∞
∑

n=0

1

2n+ 1

(z − 1

z + 1

)2n+1

⇒

log(z) ≃
2

ln(2)

z − 1

z + 1
. (27)

In addition, we will use the following first order approxima-
tion: for the correlated random variablesX andY and linear
functionsF (·) andG(·),

E

{

F (X)

G(Y )

}

≃
E{F (X)}

E{G(Y )}
. (28)

Using (27), the secrecy capacity density can be expressed
as:

cs(γ, α, β) ≃
2

ln(2)

[δ]+γ

2 + (δ + 2β)γ
, (29)

while employing (28)

E{cs(γ, α, β)} ≃
2

ln(2)

E{[δ]+}γ

2 + E{(δ + 2β)}γ
. (30)

Notably, the quantityδ defined in (3) of the acausal CSI secure
waterfilling case reappears in the optimization problem.

Performing backward dynamic programming on the opti-
mality equations we get:
⊲ At block m = M ,

VM (pM ) = max
0≤γM≤pM

2

ln(2)

[δM ]+γM
2 + (δM + 2βM )γM

⇒

γ∗
M = [δM ]+pM , (31)

while for pM = γ∗
M , we get

VM (pM ) =
2

ln(2)

δ2MpM

2 + (δM + 2βM )[δM ]+pM
. (32)

⊲ For the blockm = M−1, the objective equation is given
at the bottom of the page. We note that the objective function
is concave in the interval[0, pM−1]. The optimal policy is as
a result derived as

γ∗
M−1 = ρM−1 (34)

with ρM−1 being the positive root of the quadratic equation
∂VM−1

∂γM−1

= 0, that can be evaluated in analytic form.
Although the analytic expression for the quantity

VM−1(γ
∗
M−1) is overly complicated to be included at

present, we note that its expectation is easier to evaluate.
⊲ Continuing backwards we get that atm = M − 2 the

objective function is also concave in the interval[0, pM−2].
The optimal policy is derived as

γ∗
M−2 = ρM−2, (35)

with ρM−2 being the positive root of the equation∂VM−2

∂γM−2

= 0.
Generalizing we find that the optimal policy is expressed as:

γ∗
m = ρm, (36)

whereρm is the positive root of the equation∂Vm

∂γm

= 0.

D. Semi-blind Scenario

The derived results apply also in the semi-blind scenario in
which only the legitimate user CSI is causally made available
to the transmitting and receiving nodes by substitutingδ by
α in the equations (24), (26) and (36). However, in this case
the minimization of the probability of secrecy outage should
in principle be investigated instead of the maximization ofthe
secrecy capacity density. At present this is left as future work,
along with the numerical evaluation of the performance of the
outlined policies.

VM−1(pM−1) = max
0≤γM−1≤pM−1

2

ln(2)

[δM−1]
+γM−1

2 + (δM−1 + 2βM−1)γM−1
+

2

ln(2)

E{δ2}(pM−1 − γM−1)

2 + E{(δ + 2β)E{[δ]+}(pM−1 − γM−1)
(33)



VI. CONCLUSIONS

In the present work we investigate the optimal power
allocation in delay constrainedM -block BF-Gaussian net-
works. By studying the blind case with no CSI availability
during the decision process we conclude that the optimal
policy consists in equally distributing the power along the
transmission blocks as long as a positive gap between the
channel gains of the legitimate user and the eavesdropper is
anticipated. Furthermore, the study of networks with causal
access to the CSI was performed accounting for three distinct
cases; the low, high and medium SNR. In the low SNR
we derived a near optimal threshold policy whereas in the
high SNR a constant transmission policy is shown to be
optimal. Finally, for intermediate values of the SNR we derive
an approximate, analytically tractable dynamic program of
reduced computational complexity.
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