
Department of Computer Science

University of Essex, England

Technical Report CSM-343

A Deep Embedding of ZC in Isabelle/HOL

Norbert Völker

July 25, 2001

Abstract

This report describes a deep embedding of the logic ZC [HR00] in Is-
abelle/HOL. The development is based on a general theory of de Bruijn terms.
Wellformed terms, propositions and judgements are represented as inductive
sets. The embedding is used to prove elementary properties of ZC such as
uniqueness of types, type inhabitation and that elements of judgements are
wellformed propositions

1 De Bruijn Terms

The representation of logical syntax in Isabelle/HOL will be based on a poly-
morphic datatype dbterm of de Bruijn terms. This development follows the
example of A. Gordon [Gor94] who constructed a similar theory for the HOL
system. The datatype dbterm is independent of ZC and can be used as a
foundation for deep embeddings in general. For other HOL representations of
terms see [Owe95] and [Von95].

The definition of the datatype (α, β, γ) dbterm of de Bruijn terms is:

(α, β, γ) dbterm = Const α
| Free β
| Bound N
| dAbs ((α, β, γ) dbterm) γ
| ((α, β, γ) dbterm) $ ((α, β, γ) dbterm)

The five type constructors stand for constants, free variables, bound vari-
ables, abstraction and application. The type parameters represent constants
(α), free variables (β) and types (γ). By suitable instantiation of these param-
eters, the datatype dbterm can be adapted to the representation of different

1

logic formalisms. In particular constants and variables can be explicitly typed
or not.

In order to make function applications with several arguments more read-
able, a function App is introduced which applies a constant to a list of argu-
ments:

App :: [α, (α, β, γ) dbterm list] → (α, β, γ) dbterm
App a [] = Const a
App a (ts @ [t]) = App a ts $ t

The infix-operator @ concatenates two lists while # is the cons-operation on
lists:

op @ :: [α list , α list] → α list
[] @ y = y

(a # x) @ y = a # (x@ y)

An simple example for the use of App is:

App “f “ [u, v] = Const “f “ $ u $ v

As usual, binary operators such as $ associate to the left unless explicitly noted
otherwise.

1.1 Degree

The definition of de Bruijn terms permits badly formed terms which contain
bound variables that do not refer to any abstractions. Well formed terms can
be characterised with the help of a a primitive recursive degree function on
terms:

degree :: (α, β, γ) dbterm → N

degree (Const c) = 0
degree (Free v) = 0
degree (Bound n) = n+ 1
degree (dAbs t T) = degree t− 1
degree (t $ t′) = max (degree t) (degree t′)

In [Gor94] it is shown that the terms t with degree t = 0 are exactly those
terms which result from the translation of name-carrying terms to de Bruijn
terms. The importance of these terms is stressed by calling them proper terms.

1.2 Substitution

The main advantage of de Bruijn terms as compared to name-carrying terms is
a simpler definition of substitution. Since bound and free variables are distin-
guished, there is no danger of variable captures. The definition of substitution
is:

([/]) :: [(α, β, γ) dbterm, β, (α, β, γ) dbterm] → (α, β, γ)
t[v/u] = inst 0 (abstract 0 v t) u

2

The two primitive recursive functions abstract and inst replace a free variable
by a bound variable resp. instantiate a bound variable:

abstract :: [N, β, (α, β, γ) dbterm] → (α, β, γ) dbterm
abstract i v (Const c) = Const c
abstract i v (Free w) = (if v = w then Bound i else Free w)
abstract i v (Bound n) = Bound n

abstract i v (dAbs t T) = dAbs (abstract (i+ 1) v t) T
abstract i v (t $ t′) = (abstract i v t) $ (abstract i v t′)

inst :: [N, (α, β, γ) dbterm, (α, β, γ) dbterm] → (α, β, γ) dbterm
inst i (Const c) u = Const c
inst i (Free w) u = Free w
inst i (Bound n) u = (if i = n then u else Bound n)
inst i (dAbs t T) u = dAbs (inst (i+ 1) t u) T
inst i (t $ t′) u = (inst i t u) $ (inst i t′ u)

When reasoning about substitution, the set of free variables of a term plays
an important role. This set is calculated by the primitive recursive function
frees:

frees :: (α, β, γ) dbterm → β set
frees (Const c) = { }
frees (Free v) = {v}
frees (Bound n) = { }
frees (dAbs t T) = frees t
frees (t $ t′) = frees t ∪ frees t′

Types without free variables are called closed . Substitution of a variable v
does not effect a proper term t if v does not occur (free) in t:

[| v 6∈ frees t; degree t = 0 |] =⇒ t[v/u] = t

This theorem is proven easily in HOL using mainly induction over type dbterm
and simplification.

1.3 Introducing name-carrying syntax

Despite its technical disadvantages, name-carrying syntax has its attractions
due to better readability. As shown in [Gor94], named variables can be sim-
ulated on top of de Bruijn terms by a constant Abs. In view of later appli-
cations, it is convenient to restrict the definition of Abs to instantiations of
dbterm which correspond to terms with typed variables:

Abs :: [β × γ, (α, β × γ, γ) dbterm] → (α, β × γ, γ) dbterm
Abs (s, T) t = dAbs (abstract 0 (s, T) t) T

By definition the term (Abs v t) is equal to (dAbs t′) where t′ is the abstraction
of t over v, i.e. all occurrences of (Free v) in t are replaced by (Bound 0). Hence,
(Abs (s, T) t) can be interpreted as an abstraction over a variable with name
s and type T in the term t.

3

1.4 Variants

In many logical formalisms, there is a need for ”fresh” free variables which do
not clash with the free variables of other terms. This is always possible provided
the set of variable names is infinite. When working with concrete variables, it
is also desirable that the name of the variant bears some resemblance to the
original variable name, say by adding a prime or a letter.

In HOL, these concepts can be expressed by an axiomatic type class
variant. The types in this class feature an overloaded variant function which
modifies an element x so that it is not member of a finite set A:

variant :: [α :: variant, α set] → α

variant x A 6= x

finite A =⇒ variant x A 6∈ A

Variable names will be represented as elements of type

string = char list

A variant function can be defined on type string by repeatedly adding a char-
acter (say “a”) to the end of a string until it is not member of a given finite
set. With this definition, it can be proven that type string is in class variant:

string :: variant

For product types, the function variant is defined in such a way that the second
component does not change:

snd (variant (a, b) A) = b

Since variables are modelled as pairs consisting of a name and a type, this
definition ensures that the variant of a variable has the same type as the
original variable. The membership of a product type in class variant follows
from the membership of the first argument in that class.

2 Type-homogenous Records in HOL

The HOL representation of schemas will be based on a type (α rcd) of records
with strings as labels and field values in some type α. It is defined as an
instantiation of a more general type of bindings:

α rcd = (string , α) bdg

Note that these records are type-homogenous: all field values of a record (r ::
α rcd) are elements of the same HOL type α.

Using HOL’s “typedef” mechanisms, the binding type (α, β) bdg was de-
fined as a new type isomorphic to the set of all partial functions from α to β
with finite domain.

(α, β) bdg ∼= {f :: (α→ β option). finite (dom f)}

4

Two basic functions on bindings are:

dom bdg : (α, β) bdg → α set
· :: [(α, β) bdg , α] → β

For a binding f , (dom bdg f) denotes the (finite) set of all elements in the
domain of the binding. Given an element (s ∈ dom bdg f), the value of (f ·s) is
the unique element in the range of f which is bound to s. For (s 6∈ dom bdg f),
the value of (f · s) is not specified. Every binding f is characterised by its
domain (dom bdg f) and the value of (f · s) for (s ∈ dom bdg f):

(f = g) = (dom bdg f = dom bdg g ∧ (∀s ∈ dom bdg f. f · s = g · s))

Operations on records are defined by restricting the type of general opera-
tions on bindings. In Isabelle/HOL, this can be done on a purely syntactical
level. Rather than introducing separate logical constants, this means that the
functions on records are abbreviations which are translated implicitly to type-
restricted versions of functions on bindings. For example, the function labels
which returns the set of all labels of a record is defined by translating it to a
type restricted version of function dom bdg :

syntax labels :: α rcd → string set
translations “labels“ ⇒ “dom bdg :: rcd → string set“

Compared to the introduction of new constants, the use of the translation
mechanism has the technical advantage that it makes it unnecessary to ex-
plicitly fold/unfold definitions. Thus, theorems derived for “general binding
functions” apply directly to the functions on records.

Since only records and no general bindings occur in the main paper, the
remainder of this section will concentrate on records for convenience.

Records can be constructed from the empty record (undef) by successive
addition of further elements (update):

undef :: α rcd
labels undef = { }

update :: [α rcd , string , α] → α rcd
labels (update r l a) = labels r ∪ {l}
(update r l a) ·m = if l = m then a else r ·m

The fact that every record can be constructed in this way is expressed by an
induction theorem:

[| P undef ;
∀ r l a. (P r ∧ l 6∈ labels r) =⇒ P (update r l a) |] =⇒ P r

The usual syntax for records can be imitated using Isabelle’s parsing and
pretty-printing tools. Here is the representatio of the record (< x = 1, y =
2 >:: N rcd):

Isabelle/HOL Syntax Translated to
< “x“ = 1, “y“ = 2 > update (update undef “x“ 1) “y“ 2)

5

The definition of function rcd term in Section 3 employs a function sort rcd
which sorts the fields of a record into a list of label/value pairs. The sorting is
done with respect to the lexicographical ordering on labels. The behaviour of
function sort rcd can be described inductively with the help of a function ins
which inserts an element into its right position in a sorted list.

sort rcd :: α rcd → (string × α) list
sort rcd undef = []
sort rcd (update r l a) = ins (λ x y. fst x ≤ fst y) (l, a) (sort rcd r)

It can be proven that the resulting list contains no duplicate labels and is
sorted with respect to the lexicographical ordering on labels. Furthermore,
the function sort rcd is injective.

sorted (λ x y. (fst x ≤ fst y)) (sort rcd r)
nodups (map fst sort rcd r)
set (sort rcd r) = (λl.(l, r · l)) ‘ (labels r)
inj sort rcd

In addition to the function zip rcd which was already described in the main
text, the definition of ZC (tables 4 and 6) uses two further functions on records:

map rcd :: [α → β, α rcd] → β rcd
labels (map rcd f r) = labels r
l ∈ dom bdg r =⇒ map rcd f r · l = f (r · l)

id rcd :: string set → string rcd
finite A =⇒ labels (id rcd A) = A

[| finite A; a ∈ A |] =⇒ id rcd A · a = a

The result of (map rcd f r) is a record with the same labels as r but where
function f has been applied to every field value. For a finite set A of strings,
the result of (id rcd A) is a record where every element (a ∈ A) is bound to
itself.

3 Representation of ZC Types

Typed logics distinguish terms according to their types. Simple type systems
can be modelled directly as HOL datatypes. In the case of the logic ZC [HR00,
HR99a, HR99b] types are build from the natural number type using the type
operators power set, product and record. This leads to the datatype:

zty = NatT
| SetT zty
| PrdT zty zty
| RcdT (zty rcd)

The datatype zty branches recursively over rcd . From a semantic point of
view, this is unproblematic because type (α rcd) is isomorphic to a subset
of type (string → α option). Unfortunately, while branching over the latter

6

FALSE :: term
FALSE = Const “FALSE“

NOT :: term → term
NOT p = App “NOT“ [p]

op EQ :: [term, term] → term
t EQ u = App “EQ“ [t, u]

op OR :: [term, term] → term
p OR q = App “OR“ [p, q]

EX :: [variable, term, term] → term
EX v A p = App “EX“ [A,Abs v p]

Table 1: Representation of ZC formulae in HOL

type is supported by the datatype package of Isabelle99-2/HOL, there is no
automated support for branching over ”subtypes” as yet. Hence the type zty
was defined by an explicit axiomatisation.

4 Representation of ZC Formulae and Terms

Both formulae and terms of ZC will be represented as elements of type

term = (string , variable, zty) dbterm

where the type variable is an abbreviation for the cartesian product

variable = string × zty

The membership of type variable in class variant

variable :: variant

follows from the membership of type string in this class, see Section 1.4. Since
type term is simply an instantiation of datatype dbterm, the technical frame-
work of Section 1 applies.

The syntactic representation of ZC logical constants on top of type term
is straightforward, see Table 1. In fact, there is nothing specific to ZC about
these constants - they are simply a minimal set of constants for first-order
predicate logic. The representation of further, derived logical constants is
entirely analogous.

The HOL representation of ZC terms is complicated by two aspects:

1. terms can be constructed from records of other terms and

2. terms can be restricted to types

7

ZERO = Const “0 “
SUC x = App “Suc“ [x]
PAIR x y = App “PAIR“ [x, y]
RCD ts = App “RCD“ (rcd term ts)
NAT SET = Const “NAT SET“
POW SET x = App “POW SET“ [x]
PRD SET x y = App “PROD SET“ [x, y]
RCD SET ts = App “RCD SET“ (rcd term ts)
COMPREH v x p = App “COMPREH “ [x, Abs v p]
x DOT s = App “DOT“ [x, Const s]
x FILTER T = App “FILTER“ [x, rep typ T]
FST x = App “FST“ [x]
SND x = App “SND“ [x]

Table 2: Representation of ZC terms in HOL

The first problem is solved by the introduction of an injective function
rcd term which represents a record of terms as a list of terms. Its definition
utilises a function sort rcd which transforms a record to a list of pairs sorted
by their labels and a representation of pairs within type term.

rcd term :: term rcd → term list
rcd term = map (λ(x, y).App “PAIR“ [Const x, y]) ◦ sort rcd

The representation of terms which contain references to types requires a repre-
sentation of types as elements of type term. This is provided by the following
primitive recursive function:

rep typ :: zty → term
rep typ NatT = Const “NatT“
rep typ (SetT T) = App “SetT“ [rep typ T]
rep typ (PrdT U V) = App “PrdT“ [rep typ U, rep typ V]
rep typ (RcdT S) = App “RcdT“ (rcd term (map rcd rep typ S))

Injectivity of function rep typ can be proven by structural induction on the
datatype zty . Table 2 shows the representation of ZC terms as elements of
type term.

As an example, here is the translation of the term {x ∈ N | suc (x) = 0} to
HOL:

COMPREH (”x”,NatT) NAT SET (SUC (Free(”x”,NatT)) EQ ZERO)

A fundamental property of the HOL representation of ZC syntax is its faith-
fulness - different ZC terms are mapped to different HOL terms. Technically
this amounts to freeness properties of the HOL constants which represent the

8

syntax, i.e. they are injective functions and their ranges are disjoint. For
example:

((x EQ y) = (x′ EQ y′)) = ((x = x′) ∧ (y = y′))
(x EQ y) 6= NOT p

An explicit formulation of the freeness properties would lead to a number of
theorems quadratic in the number of constants. Fortunately, the Isabelle/HOL
simplifier can establish these properties on the fly whenever they are needed
in proofs.

The free variables of a ZC term or proposition can be calculated simply by
unfolding definitions.

frees FALSE = { }
frees (NOT t) = frees t
frees (t EQ u) = frees t ∪ frees u
frees (t OR u) = frees t ∪ frees u
frees (t IN u) = frees t ∪ frees u
frees (EX v x p) = frees x ∪ (frees p− {v})

The effect of substitution on ZC propositions other than quantifications is
straightforward:

FALSE [v/t] = FALSE
(NOT p) [v/t] = NOT (p [v/t])
(r EQ s) [v/t] = r [v/t] EQ s [v/t]
(r IN s) [v/t] = r [v/t] IN s [v/t]
(r OR s) [v/t] = r [v/t] OR s [v/t]

Substitution of an existentially quantified proposition requires variable renam-
ing:

[|degree p = 0; degree t = 0 |] =⇒
(EX v x p) [w/t] = (let z = variant v ({w} ∪ frees p ∪ frees t)

in EX z (x [w/t]) (p [v/Free z] [w/t]))

Similar rules can be derived for substitution applied to wellformed ZC terms.
The definition of derived logical connectives or term operations in ZC is

mirrored in HOL by completely analogous definitions of constants operating on
type term. For example, the HOL representation of the ZC subset relationship
is defined as:

op SUBSET :: [term, term] → term
A SUBSET B = A IN POW SET B

5 Representation of Typing and Wellformed-
ness

The typed terms and wellformed propositions of ZC are represented in HOL
by two sets tterm and prop:

tterm :: (term × zty) set
prop :: term set

9

FALSE ∈ prop
[| t : T ; u : T |] =⇒ (t EQ u) ∈ prop
[| t : T ; s : SetT T |] =⇒ (t IN s) ∈ prop
p ∈ prop =⇒ NOT p ∈ prop

[| p ∈ prop; q ∈ prop |] =⇒ (p OR q) ∈ prop
[| x : SetT T ; p ∈ prop |] =⇒ EX (s, T) x p ∈ prop

Table 3: ZC formation rules in HOL

Membership of a pair (t, T) in the set tterm is written as t : T . Typeable
elements of term are also called wellformed terms. Since variables are explicitly
typed, there is no need for separate typing contexts.

The sets tterm and prop are defined inductively where the introduction
rules correspond directly to the ZC typing and proposition formation rules of
[HR00]. The only difficulty was the translation of the “ellipses” which occur
in rules dealing with records. In order to express these succinctly, a HOL
constant zip rcd was introduced:

zip rcd :: (α× β) set → (α rcd × β rcd) set
zip rcd r = {(x, y). labels x = labels y

∧ (∀s ∈ labels x.(x.s, y.s) : r)}

By definition, two records x and y are elements of the set (zip rcd r) if and
only if x and y have the same set of labels and if for every label, the values
attached with that label in x and y are in the relationship r.

Tables 3 and 4 show the introduction rules of the sets tterm and prop.
Note that these rules are mutually recursive. The wellformedness of terms
containing derived ZC constants such as SUBSET can be derived by unfolding
the definition of such constants.

Inductive sets are defined in Isabelle/HOL to be least fixed points of a
monotonic set valued function [Pau94]. This made it necessary to prove mono-
tonicity of the function zip rcd before the definition of the sets tterm and prop
could be processed by the inductive set package:

A ⊆ B =⇒ zip rcd A ⊆ zip rcd B

Isabelle/HOL automatically proves several theorems about inductively de-
fined sets. Unfortunately in its raw form, the automatically generated mutual
induction theorem for wellformed terms and propositions turned out to be un-
suitable for the proof of some ZC properties. The problem is caused by variable
binding and will be illustrated with existential quantification. Trying to prove
properties (P p) and (Q t T) for all propositions p and wellformed terms t : T
using the automatically generated mutual induction theorem leads (amongst
others) to the following proof obligation:

∀ p s x. [| x : SetT T ; p ∈ prop;
P p; Q x (SetT T) |] =⇒ P (EX (s, T) x p)

10

Free (s, T) : T
ZERO : NatT

t : NatT =⇒ SUC t : NatT
[| t : T ; u : U |] =⇒ PAIR t u : PrdT T U

(ts, Ts) ∈ zip rcd tterm =⇒ RCD ts : RcdT Ts

NAT SET : SetT NatT
x : SetT T =⇒ POW SET x : SetT (SetT T)
[| t : SetT T ; u : SetT U |] =⇒ PRD SET t u : SetT (PrdT T U)
(ts,map rcd SetT Ts) ∈ zip rcd tterm

=⇒ RCD SET ts : SetT (RcdT Ts)
[| p ∈ prop; x : SetT T |] =⇒ COMPREH (s, T) x p : SetT T

p : PrdT T U =⇒ FST p : T
p : PrdT T U =⇒ SND p : U
[| t : RcdT Ts; Us ⊆ Ts; U = RcdT Us |]

=⇒ (t FILTER U) : U
[| t : RcdT Ts; l ∈ labels Ts |] =⇒ (t DOT l) : (Ts · l)

Table 4: ZC typing rules in HOL

This proof obligation is problematic because due to possible variable renaming,
the proposition (EX (s, T) x p) does in general not contain p as a subterm.
Hence the induction hypothesis (P p) is often not sufficient in order to establish
(P (EX (s, T) x p)).

There are several ways to solve this problem by strengthening the induction
theorem. Our approach was based on applying wellfounded induction where
the generic size-function on the HOL datatype dbterm was taken as the mea-
sure function. For the existential quantifier, this leads to the following, more
amenable proof obligation:

∀ p s x. [| x : SetT T ; p ∈ prop;
∀p′ ∈ prop. size p′ ≤ size p =⇒ P p′;
∀x′ T ′. x′ : SetT T ′ ∧ size x′ ≤ size x =⇒ Q x′ (SetT T ′)

|] =⇒ P (EX (s, T) x p)

Using the improved induction theorem, several basic properties of the HOL
representation of typed terms and propositions were established. In particular,
typed terms and wellformed propositions are disjoint and consist of proper
terms only:

{t. ∃ T.t : T} ∩ prop = { }
p : prop =⇒ degree p = 0
t : T =⇒ degree t = 0

A fundamental result about ZC is that typing is unique and that all types are

11

inhabited by a closed, wellformed term:

[| t : T ; t : U |] =⇒ T = U

∀T. ∃t. degree t = 0 ∧ frees t = { } ∧ t : T

The ZC formation and typing rules in tables 3 and 4 are in form of implica-
tions. Because of freeness properties of the formula and term representation,
it is possible to extend most of these implications to equivalences. This result
is sometimes called the “generation lemma”. For example:

(NOT p ∈ prop) = (p ∈ prop)
(POW SET C : T) = (∃ U. T = SetT (SetT U) ∧ C : SetT U)

6 Representation of Judgements

The formulation of ZC in [HR00] employs judgements which relate a set of
propositions (the assumptions) with another proposition (the conclusion). Be-
cause propositions are modelled as elements of type term, the set zc which
represents all valid ZC judgements in HOL is of type:

zc :: (term set × term) set

Membership of a pair (ps, q) in zc is written as ps ` q:

op ` :: [term set , term] → bool
ps ` q = (ps, q) ∈ zc

In analogy to the definition of the sets prop and tterm, the definition of zc
takes the form of an inductive set definition where the introduction rules are
HOL translations of ZC inference rules. Table 5 shows rules dealing with the
logical quantifiers and equality. Table 6 contains inference rules dealing with
other ZC constants.

Several ZC inference rules contain assumptions about typing resp. mem-
bership in prop. These assumptions were chosen carefully in order to guarantee
that all elements of a judgement are wellformed propositions:

ps ` q =⇒ (ps ∪ {q}) ⊆ prop

Of course, from the basic ZC inference rules, further ZC judgements can be
derived in Isabelle/HOL. As an example, we proved some basic monotonicity
theorems:

x ` A SUBSET B =⇒ x ` POW SET A SUBSET POW SET B

[| x ` A SUBSET B;x ` C SUBSET D |]
=⇒ x ` PRD SETA C SUBSET PRD SETB D

[| x ⊆ prop; (xs, ys) : zip rcd {(a, b). x ` a SUBSET b} |]
=⇒ x ` RCD SET xs SUBSET RCD SET ys

The derivation of these ZC theorems on top of HOL involved explicit proofs
of syntactic properties such as freeness of variables, typing of terms and cal-
culating the result of substitutions. While the proofs in themselves were not
that hard, it has to be said that the mixture of “logical” proof goals” with
“syntactic side condition” proof goals led to clutter in some proof states.

12

P ∈ prop =⇒ {P} ` P

[| x ` P ; x ⊆ y; y ⊆ prop |] =⇒ y ` P

[| Q ∈ prop; x ` P |] =⇒ x ` P OR Q

[| P ∈ prop; x ` Q |] =⇒ x ` P OR Q

[| x ` P OR Q; x ∪ {P} ` R; x ∪ {Q} ` R |] =⇒ x ` R

{P} ∪ x ` FALSE =⇒ x ` NOT P

[| x ` P ; x ` NOT P |] =⇒ x ` FALSE
` NOT (NOT P) =⇒ x ` P

P ∈ prop =⇒ {FALSE} ` P

[| x ` P [(s, T)/t]; x ` t IN C; t : T ; P ∈ prop |] =⇒ x ` EX (s, T) C P

[| x ` EX z C P ; y 6∈ (frees Q ∪ (
⋃
a ∈ x. frees a));

x ∪ {Free y IN C,P [z/Free y]} ` Q |] =⇒ x ` Q

t : T =⇒ {} ` t EQ t

x ` t EQ u =⇒ x ` u EQ t

[| x ` t EQ u; x ` P [(s, T)/t]; P ∈ prop; t : T |] =⇒ x ` P [(s, T)/u]

Table 5: ZC inference rules in HOL (I)

7 Carrier Sets

In ZC , the set of elements of a type plays an important role. This concept can
be formalised in HOL by the introduction of a function carrier which takes
types to sets. This function is defined by primitive recursion over the datatype
zty of ZC types:

carrier :: zty → term
carrier NatT = NAT SET
carrier (SetT T) = POW SET (carrier T)
carrier (PrdT U V) = PRD SET (carrier U) (carrier V)
carrier (RcdT Ts) = RCD SET (map rcd carrier Ts)

By induction over zty , one can prove easily two basic properties of (carrier T):

carrier T : SetT T

frees (carrier T) = { }

Finally, it can be proven that a closed term of type T is a member of the carrier
set of T . Notice that this membership is a judgement of ZC :

[| t : T ; frees t = { }; x ⊆ prop |] =⇒ x ` (t IN carrier T)

The proof was carried out by induction over the term t.

13

[| RCD ts : RcdT Ts; s ∈ labels ts |] =⇒ {} ` (RCD ts DOT s) EQ (ts · s)

t : RcdT Ts =⇒ {} ` t EQ RCD (map rcd (λs.t DOT s) (id rcd (labels Ts)))

[| t : T ; u : U |] =⇒ {} ` FST (PAIR t u) EQ t

[| t : T ; u : U |] =⇒ {} ` SND (PAIR t u) EQ u

PAIR t : PrdT U V =⇒ {} ` PAIR (FST t) (SND t) EQ t

[| x ` P [(s, T)/t]; x ` t IN C;
P ∈ prop; t : T |] =⇒ x ` t IN COMPREH (s, T) C P

x ` t IN COMPREH z C P =⇒ x ` t IN C

[| x ` t IN COMPREH (s, T) C P ;
P ∈ prop; t : T |] =⇒ x ` P [(s, T)/t]

{ } ` ZERO IN NAT SET
x ` n IN NAT SET =⇒ x ` SUC n IN NAT SET

n : NatT =⇒ {} ` NOT (ZERO EQ SUC n)
x ` SUC n EQ SUC m =⇒ x ` n EQ m

[| x ` P [z/ZERO]; z = (s,NatT)
x ∪ {P} ` P [z/SUC (Free z)] |] =⇒ x ` P

[| x ` t IN T ; x ` u IN U |] =⇒ x ` PAIR t u IN PRD SET T U

x ` a IN PRD SET T U =⇒ x ` FST a IN T

x ` a IN PRD SET T U =⇒ x ` SND a IN U

[| ({Free z IN C} ∪ x) ` Free z IN D; z 6∈ frees C ∪ frees D|]
=⇒ x ` C IN POW SET D

[| x ` C IN POW SET D; x ` t IN C |] =⇒ x ` t IN D

[| (ts, cs) ∈ zip rcd{(a, b). x ` a IN b}; x ⊆ prop|]
=⇒ x ` RCD ts IN RCD SET cs

[| x ` t IN RCD SET cs; s ∈ labels cs |] =⇒ x ` (t DOT s) IN (cs · s)

[| x ` A SUBSET B; x ` B SUBSET A |] =⇒ x ` A EQ B

[| t : RcdT Ts; Us ≤ Ts; s ∈ labels Us |]
=⇒ {} ` ((t FILTER RcdT Us) DOT s) EQ (t DOT s)

Table 6: ZC inference rules in HOL (II)

14

8 Conclusions

This paper presents a deep embedding of the logic ZC in Isabelle/HOL. The
embedding is based on a general HOL theory of de Bruijn terms. This theory
is highly reusable and could provide a useful foundation for other logic embed-
dings. Another characteristic feature of our approach is the use of inductive
set definitions for wellformed terms, propositions and judgements. Main re-
sults are mechanical proofs of the uniqueness of types, type inhabitation and
that elements of judgements are wellformed propositions. Furthermore, a car-
rier set function is defined and the membership of closed typed terms in the
corresponding carrier set is established.

A strong point of the deep embedding is that it allows explicit reasoning
in Isabelle about concepts such as substitution, freeness of variables or typing.
Unfortunately, this also is one of the weaknesses of the deep embedding -
because such syntactic matters are represented explicitly, they cause proof
obligations about syntactic side conditions when performing ZC reasoning on
top of HOL. Even with Isabelle/HOL’s powerful proof tactics, this tends to
introduce a lot of clutter during ZC derivations. This suggests that for the
purpose of actually performing ZC reasoning on top of HOL, it is preferable
to use more semantic embeddings. In contrast to the deep embedding, the
similarity of ZC and HOL should allow a considerable reuse of HOL theories
in such semantic embeddings.

References

[Gor94] A. Gordon. A mechanisation of name-carrying syntax up to alpha-
conversion. In J.J. Joyce and C.-J.H. Seger, editors, International
Workshop on Higher Order Logic Theorem Proving and its Applica-
tions, volume 780 of Lecture Notes in Computer Science, pages 414–
427. Springer-Verlag, 1994.

[HR99a] Henson and Reeves. Revising Z: Part i - logic and semantics. Formal
Apects of Computing, 11:359–380, 1999.

[HR99b] Henson and Reeves. Revising Z: Part ii - logical development. Formal
Apects of Computing, 11:381–401, 1999.

[HR00] Henson and Reeves. Investigating Z. JLC: Journal of Logic and
Computation, 10:43–73, 2000.

[Owe95] Chris Owens. Coding binding and substitution explicitly in isabelle.
In L.C. Paulson, editor, Proceedings of the First Isabelle Users Work-
shop, Technical Report 379, pages 36–52. Computer Laboratory, Uni-
versity of Cambridge, September 1995.

[Pau94] L.C. Paulson. A fixedpoint approach to implementing (co)inductive
definitions. In A. Bundy, editor, Automated Deduction — CADE-12,
LNAI 814, pages 148–161. Springer-Verlag, 1994.

[Von95] J. Von Wright. Representing higher-order logic proofs in HOL. The
Computer Journal, 38(2):171–179, 1995.

15

