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Abstract 

 

Visual perception is facilitated by the ability to selectively attend to relevant parts of 

the world and to ignore irrelevant regions or features. In visual search tasks, viewers 

are able to segment displays into relevant and irrelevant items, based on a number of 

factors including the colour, motion, and temporal onset of the target and distractors. 

Understanding the process by which viewers prioritise relevant parts of a display can 

provide insights into the effect of top-down control on visual perception. Here we 

investigate the behavioural and neural correlates of segmenting a display, according to 

the expected three dimensional (3D) location of a target. We ask whether this 

segmentation is based on low-level visual features (e.g., common depth or common 

surface) or on higher-order representations of 3D regions. Similar response-time 

benefits and neural activity were obtained when items fell on common surfaces or 

within depth-defined volumes, and when displays were vertical (such that items 

shared a common depth / disparity) or were tilted in depth. These similarities indicate 

that segmenting items according to their 3D location is based on attending to a 3D 

region, rather than a specific depth or surface. Segmenting the items in depth was 

mainly associated with increased activation in depth-sensitive parietal regions, rather 

than depth-sensitive visual regions. We conclude that segmenting items in depth is 

primarily achieved via higher-order, cue invariant representations rather than through 

filtering in lower-level perceptual regions.  
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Introduction 

 

Being able to selectively attend to relevant aspects of the world is critical for efficient 

information processing (Broadbent, 1958; Tsotsos, 1990). Prioritisation of items of 

interest can be based on low-level visual features such as colour (Wolfe, Cave & 

Franzel, 1989) or motion (McLeod, Driver, and Crisp, 1988), or on more complex 

features such as common temporal onset (Watson & Humphreys, 1997). 

Understanding the process by which prioritisation is achieved can provide insights 

into the mechanisms by which cognitive control influences perceptual representations. 

Neuroimaging has revealed that a region of the precuneus is involved in segmenting a 

scene into relevant and irrelevant items based on different features (motion, temporal 

onset; Dent, Allen, & Humphreys, 2011). Activation is also found in the relevant 

feature-specific regions, such as those representing motion (Dent et al., 2011). Here, 

we extend this work to investigate the mechanisms involved in selectively attending 

to items in a relevant 3D region of space. Segmenting a scene into relevant and 

irrelevant 3D regions can help distinguish steps, kerbs and other hazards, or help find 

objects in a crowded shop display. We ask whether the same precuneus region 

involved in segmenting items by motion and time is also involved in segmenting 

items in depth. We also ask if segmenting items in depth is associated with activation 

in visual areas tuned to disparity or surfaces, or parietal regions containing higher 

order 3D representations.  

 

Visual search tasks have proved to be a valuable tool for evaluating the ability to 

segment a visual scene into relevant and irrelevant regions. In visual search tasks, 

participants search for a target item while ignoring irrelevant (distractor) items. When 
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the target is defined by a single feature (e.g. colour), search is highly efficient and not 

dependent on the number of distractors in the display (‘pop-out’ search). When the 

target is defined by a conjunction of features (e.g. colour and form), search time 

increases with increasing numbers of non-target distractors (Treisman & Gelade, 

1980). These data indicate that search is facilitated if participants can segment the 

scene into relevant and irrelevant items, and can direct their attention to only the 

relevant subset of items (see Wolfe & Horowitz, 2004, for a review). When 

participants are able to segment the search display in this way, search is more 

efficient, with search time reflecting the number of distractors in the attended subset 

rather than the number of distractors in the entire display. This has been demonstrated 

with temporal segmentation (‘preview search’, in which a subset of distractors are 

presented in advance; Theeuwes, Kramer, & Atchley, 1990; Watson & Humphreys, 

1997), colour segmentation (Wolfe, Cave & Franzel, 1989), and motion segmentation 

(in which a subset of items are moving, Dent et al., 2011, McLeod, Driver, and Crisp, 

1988; von Muhlenen & Muller, 1990). There is also evidence that depth cues can be 

used to segment items in a display (Finlayson et al., 2013; Nakayama & Silverman, 

1986), with participants able to perform an efficient ‘pop-out’ search within an 

attended depth plane.  

 

Numerous studies have demonstrated that attention can be directed to a specific 

location in 3D space (e.g., Anderson & Kramer, 1993; Nakayama & Silverman, 

1986). However, there is debate over whether attention can be directed to a specific 

depth (disparity), or whether attention is in fact allocated to surfaces within 3D space 

(He & Nakayama, 1995). It also seems that there must be considerable separation 

between the depth planes in order for them to be separately attended (more than 6 
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minutes of arc), even though perceptual stereo thresholds are considerably smaller (on 

the order of seconds rather than minutes; de la Rosa et al., 2008). He and Nakayama 

(1995) found that participants were unable to attend to items that shared a common 

disparity if the individual items were tilted forwards or backwards, preventing them 

from appearing to fall on a common surface. In contrast, the participants were able to 

attend to items on a plane that was tilted in depth, so that the items formed a surface 

but were at different disparities. It may be that separate mechanisms are engaged 

when attention is directed to a specific depth or to a surface in depth. He and 

Nakayama (1995) found that increasing the separation in depth (disparity) between 

target and distractor items impaired selective attention when the items were on 

different planes, but had no effect when those same items appeared to be on a surface 

that was tilted in depth.  

 

Wheatley, Cook and Vidyasagar (2004) suggested that different surfaces are 

preattentively segregated. Participants were asked to detect the number of targets that 

differed in depth from background items. Search was efficient when the target items 

fell on the same surface, even when it was tilted in depth, but inefficient when items 

appeared on different depth planes. Pre-attentive segregation of depth planes has also 

been demonstrated in multiple-object tracking tasks (Haladjian et al., 2008). 

Viswanathan and Mingolla (2002), for example, found that performance on a tracking 

task was improved when targets and distractors were presented in two depth planes 

rather than one, and when items appeared on tilted surfaces. Interestingly, unlike in 

the visual search studies described above, a benefit was also found when items 

appeared within depth-defined volumes. This finding is consistent with results on 

flanker interference (Anderson & Kramer, 1993), where there is an attentional 
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gradient in depth, with flanker interference decreasing as the separation in depth of 

targets and flankers increases. These studies indicate that it may be possible to 

selectively attend to items within a depth-defined region of space, even when those 

items do not form a common surface. This is in keeping with real-world examples of 

segmentation search, such as searching for a friend arriving at a train station where we 

may exclude from search a) people who have been on the station for some time 

(segmentation by time / preview search); b) people who are stationary (segmentation 

by motion); and c) people who are nearer or further down the platform, who are 

unlikely to be coplanar (segmentation in depth).  

 

In the present study, we examined the neural basis of segmenting items in depth, 

using fMRI while participants performed a difficult search task, in which they did or 

did not know the likely 3D location of the target. Participants searched for a target 

among distractors, with items appearing in front and behind the fixation plane. 

Displays were identical in the two top-down segmentation conditions, the only 

difference being that when the 3D location of the target was known, participants could 

use this information to segment the scene into relevant and irrelevant items, searching 

only the relevant items. (Factor 1. Target depth known versus unknown. Figure 1A). 

Two further factors were included to separate effects of attending to depths and 

surfaces. Displays were either vertical (fronto-parallel) or tilted backwards 45° 

(Factor 2. Display type: vertical or tilted. Figure 1B). Within the display condition, 

letters in front and behind fixation were either presented with a common disparity (so 

that letters formed planes at different depths) or within depth-defined volumes (so that 

letters were jittered in depth and did not form planes). (Factor 3. Letter placement: 

planes or jittered. Figure 1C). Depth regions were therefore defined by either common 
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disparity (vertical displays, planes), common surfaces (vertical and tilted displays, 

planes), or a depth-defined region of space only (vertical and tilted displays, jittered). 

Comparing activation when target depth was known versus unknown, for the different 

display types and letter placement conditions, allows us to isolate activation 

associated with selectively attending to a specific region of 3D space, whether defined 

by a common disparity, common surface, or depth-defined regions.  

 

-- insert Figure 1 about here -- 

 

Previous work has indicated that segmentation by time and motion activates a 

common region of the precuneus, as well as task-specific regions (Dent, Allen, & 

Humphreys, 2011). The precuneus is likely to be involved in maintaining a spatial 

representation of distractor locations, and activity in this region is correlated with the 

amount of benefit obtained from segmenting the display (Dent et al., 2011). During 

segmentation by motion, activation was also found in motion-processing areas (Dent 

et al., 2011). In this case, segmentation may be at least partially based on a motion 

filter in the feature-specific region MT/MT+, which is used to guide attention to 

moving items and to filter out stationary items (Ellison, Lane, & Schenk, 2007; 

McLeod et al., 1988). We hypothesise that segmenting items according to their 3D 

location will recruit the same region of the precuneus as that identified by the 

previous segmentation tasks, demonstrating the supramodal nature of visual 

segmentation in this brain region (Dent et al., 2011). We are also interested in whether 

segmenting items according to their 3D location leads to increased activation in visual 

regions sensitive to depth perception (kinetic occipital area (KO), motion area 

MT/MT+, and lateral occipital cortex (LO)), or in higher-order depth-sensitive 
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regions along the intraparietal sulcus (IPS) (Preston et al., 2008). If segmenting items 

in depth is achieved through filtering in depth-sensitive visual regions, we might 

expect increased activation in the target-known condition, as is the case in MT/MT+ 

when participants attend to motion (e.g., Dent et al., 2011; Saenz, Buracas & 

Boynton, 2003). An alternative possibility is that visual regions may show reduced 

activation due to attention being focused on only part of the display.  

 

We are also interested in whether activity in the visual and parietal depth-sensitive 

regions is cue invariant, or if it depends on the cues available to target depth (i.e., 

common disparity, common surface or depth-defined regions).  Note that we use the 

term ‘segmentation’ to refer to dividing a search display into relevant and irrelevant 

items according to a specified feature; in this case, their 3D location. This is distinct 

from the perceptual process of segmenting a visual scene into surfaces and objects. 

Similarly, ‘cues to target depth’, refers to the cues available to the participant to aid 

them in dividing the scene into relevant and irrelevant items (e.g., the possible range 

of target disparities). This is not the same as ‘cues’ available for depth perception, 

such as occlusion and motion parallax.  

 

Materials and Methods 

 

Participants 

 

Seventeen participants took part. Data from one participant had to be excluded due to 

excessive movement during the imaging session. The analyses are based on data from 

the remaining 16 participants (5 male, mean age 23 years (19 to 33 years), all reported 
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being right-handed). All participants gave written informed consent and received £20 

compensation. 

 

Stimuli and design 

 

The task was to search for a target letter (Z or N) among distractor letters (H, I, V, X), 

and indicate with a button-press response whether the target was a Z or an N. 

Participants responded using the index finger of their right hand for Z, and the middle 

finger of their right hand to for N. The search display contained either 8 or 16 letters, 

with equal numbers to the left and right of the display. Stimuli were presented 

stereoscopically as anaglyphs using PsychToolBox 3 (Brainard, 1997) in Matlab (The 

Mathworks: Natick, MA), and viewed through a pair of red / cyan glasses. Half of the 

displays were vertical (fronto-parallel), while the other half were tilted backwards 45 

degrees (Figure 1B). In the vertical displays, a fixation cross was at the centre of the 

fixation plane and target and distractor letters presented either 6 arcmin in front and 

behind fixation (co-planar) or within depth-defined volumes located between 4 and 8 

arcmin in front and behind fixation (jittered) (Figure 1C). Half the letters appeared in 

front of the fixation plane and half appeared behind the fixation plane. Each letter 

measured 10 mm
2
 (visual angle = 0.88°) and was arranged on a virtual grid of 7 

columns by 7 rows, with the central column empty. A frame around the letter display 

provided a reference to +/- 6 arcmin disparity; with either the corners or edges of the 

frame in front and the edges or corners behind (counterbalanced across participants). 

The frame measured 25.5 cm
2
 (visual angle = 22.20°). Stimuli were projected onto a 

screen at the back of the scanner and were viewed from a distance of approximately 

65 cm via a mirror placed on the head coil. Tilted displays were the same as vertical 
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displays, but tilted backwards 45° using OpenGL to create displays that were slanted 

in depth. See Figure 1 for example displays, in which light/dark grey is used to 

indicate the different depths. Anaglyphs are provided in Supplementary Figure 1 and 

can be viewed through red / cyan glasses. 

 

 

Procedure 

 

Prior to the imaging session participants were screened for adequate depth perception 

and practiced the task. To evaluate depth perception, participants viewed the 

experimental displays and indicated if the target was in front or behind fixation. Two 

participants were unable to reliably determine if the target letter was in front or behind 

fixation in the fronto-parallel displays and were excluded from the study. The 

remaining 17 participants correctly identified the target depth (front or back) on at 

least 7 out of 10 trials at each of four disparities (8, 6, 4, and 2 arcmin).  

 

During the imaging session participants completed three runs of the experimental 

task. Each run comprised 16 blocks of 10 trials, with each block preceded by a 3-

second instruction window that informed participants where the letters would appear 

(‘letters in front and behind’ or ‘letters on top and below’) and where the target would 

appear (‘target in front’, ‘target behind’, ‘target on top’, ‘target below’, or ‘target 

anywhere’) (Figure 1A). In each run there were two blocks for each condition 

(vertical / tilted displays x plane / jittered letter placement). In the target-known 

conditions, targets were in front or on top in one block and behind or below in the 

other block. In the target-unknown conditions targets were randomly in front or 

behind in both blocks. Trials randomly contained either 8 or 16 letters. On each trial, 
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participants viewed a 1000-ms fixation cross (plus the reference frame) followed by 

the search display and reference frame for 2000 ms. If a response was not made 

within the 2-second display time the trial was marked as incorrect. Each block 

therefore lasted 33 seconds. After every four blocks there was a 15-second baseline 

block in which only a fixation cross was visible. Each run lasted 588 seconds in total.  

 

Following the experimental task we acquired a high-resolution anatomical scan and 

participants completed four functional localiser tasks, to identify the lateral occipital 

cortex (LO), kinetic occipital area (KO), human motion complex (MT / MT+), and 

depth-sensitive regions along the intraparietal sulcus (IPS), namely the ventral IPS 

(VIPS), parieto-occipital IPS (POIPS), and dorsal IPS (DIPS). The object-processing 

region LO was identified by comparing the blood oxygen-level dependent (BOLD) 

response to intact objects relative to scrambled objects (Kourtzi & Kanwisher, 2001; 

Kourtzi et al., 2005). For this task participants performed a 1-back task (press a button 

when an image is repeated). KO was identified as the region showing a significantly 

greater response to kinetic boundaries than transparent motion of a field of black and 

white dots (Dupont et al., 1997; cf. Larsson & Heeger, 2006). The motion-processing 

region MT/MT+ was identified as the region showing an increased response to a 

coherently moving array of dots than to a static array of dots (Zeki et al., 1991). A 

further localiser was included to identify areas along the IPS that showed an increased 

response to three-dimensional shape defined by disparity and structure-from-motion 

cues (Orban et al., 1999; Chandrasekaran et al., 2007), but activation from this task 

proved too unreliable to create function ROIs for individual participants. For the KO, 
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MT/MT+ and IPS localiser tasks participants made a button-press response to indicate 

when the fixation dot or cross changed colour
1
. 

 

MRI data acquisition 

 

Imaging data were acquired using a Phillips 3T Achieva scanner at Birmingham 

University Imaging Centre. A T1-weighted 1 x 1 x 1 mm anatomical image was 

acquired for each participant. T2*-weighted functional echoplanar imaging data were 

obtained using an eight-channel SENSE head coil with a sense factor of 2. For the 

experimental task data were acquired for 54 slices (2.5 mm
3
 resolution, TR = 3 

seconds, TE = 35 ms, flip angle = 85°). For the localiser tasks, data were acquired for 

28 slices with 1.5 x 1.5 x 2 mm resolution, TR = 2 seconds. Slices were aligned 

coronally and covered the occipital cortex (LO, KO, MT/MT+) or parietal lobe (IPS).  

 

Data analysis 

 

Imaging data were analysed using SPM8 (Wellcome Department of Imaging 

Neuroscience, London; www.fil.ion.ucl.ac.uk/spm). Data were spatially realigned and 

unwarped to correct for motion artefact and distortions in the magnetic field, then 

transformed into MNI space and spatially smoothed using a Gaussian kernel of 8 mm 

full-width-at-half-maximum.  

 

Random effects and region of interest (ROI) analyses 

                                                 
1
 We are grateful to Andrew Welchman and Zoe Kourtzi for allowing us to use their localiser tasks. 
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Data were analysed using a block design. Data were modelled at the individual level 

with regressors for each condition (vertical-plane known; vertical-plane unknown; 

vertical-jitter known; vertical-jitter unknown; tilted-plane known; tilted-plane 

unknown; tilted-jitter known; tilted-jitter unknown) convolved with the canonical 

haemodynamic response function (HRF). Additional regressors were included to 

account for movement artifacts and the different runs of the task. A 1/512 Hz high-

pass filter was applied to remove low-frequency noise. Data for each experimental 

condition, for each participant, were then entered into second-level whole brain and 

ROI analyses. The ROI analysis was conducted using MarsBaR (Brett et al., 2002). 

We created 5-mm spheres centred on the peak coordinates identified by the ROI 

localiser tasks. This was successful for the KO, LO, and MT/MT+ localiser tasks. 

Where data were missing, due to technical difficulties or scanning-time limitations, 

the peak from a second-level group analysis was used instead. This was necessary for 

one participant for LO and four participants for MT/MT+. The peak coordinates for 

the group analysis were: left KO: -33, -80, 10; right KO: 42, -78, 13; left LO: -46, -74, 

-5; right LO: 48, -72, -5; left MT/MT+: -44, -74, 2; right MT/MT+: 56, -70, -4. 

Unfortunately the IPS localiser task did not produce robust regions of activation 

within individuals, and so we instead used the coordinates provided in Georgieva et 

al. (2009) for anterior DIPS (DIPSA: -36, -52, 64; 36, -50, 56), medial DIPS (DIPSM: 

-22, -64, 60; 26, -60, 60), putative human anterior intraparietal area (phAIP: -42, -42, 

50; 42, -42, 52), parieto-occipital IPS (POIPS: -20, -78, 48; 28, -82, 44) and ventral 

IPS (VIPS/V7: -28, -78, 34; 28, -80, 36). For each of the spherical ROIs, we extracted 

the mean contrast value across the ROI for each individual participant, averaged 

across the left and right hemispheres and then entered these values into analyses of 
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variance (ANOVAs). We created one additional ROI in the precuneus, centred on the 

coordinates from Dent et al. (2011) (10, -56, 30).  

 

Results 

 

Behavioural data 

 

Response times and accuracy were entered into repeated-measures analyses of 

variance (ANOVAs) contrasting display type (vertical or tilted), letter placement 

(plane or jitter), knowledge of target location (known or unknown), and set size (8 or 

16 letters). If a response was not made within the 2-second display time the trial was 

marked as incorrect. This occurred on 6.6% of trials. Accuracy approached ceiling 

and so the data were arcsine transformed prior to analysis. Median response times 

(RTs; correct trials only) tended to be faster and more accurate with the smaller set 

size (RTs: F[1,15] = 110.9, p < 0.001. Accuracy: F[1,15] = 141.0, p < 0.001) and 

when the target location was known (RTs: F[1,15] = 14.2, p = 0.002. Accuracy: 

F[1,15] = 4.2, p = 0.06). Although search was faster and more accurate in the target-

known condition, there was no two-way interaction between set size and target 

knowledge that would indicate improved search efficiency (RTs: F[1,15] = 2.8, p = 

0.11. Accuracy: F[1,15] = 0.88, p = 0.36). There was a three-way interaction between 

display type (vertical or tilted), set size and target-location knowledge (RTs: F[1,15] = 

9.1, p = 0.009. Accuracy: F[1,15] = 3.6, p = 0.076). This was due to unusually good 

performance with larger set sizes in vertical displays when target location was 

unknown (see Figure 2). There were no effects of whether the letters formed a plane 
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or were jittered within depth-defined volumes. See Figure 2 for RT and (raw) 

accuracy data, collapsed across the letter placement conditions.  

 

-- insert Figure 2 about here -- 

 

Neuroimaging data 

 

Region of interest analysis 

 

We conducted region of interest (ROI) analyses to determine whether specific cortical 

regions known to be sensitive to depth information were activated by segmenting 

items in depth. We extracted mean activation within 5-mm spherical ROIs located 

within left and right KO, LO, MT/MT+, VIPS/V7, POIPS, DIPSM, DIPSA, and 

phAIP, plus the precuneus (following Dent et al. (2011)). We then conducted 

ANOVAs contrasting display type (vertical, tilted), letter placement (plane, jittered), 

and knowledge of target location (target location known, unknown) for each ROI, 

averaged across left and right, using a Bonferroni correction for multiple comparisons 

(critical p = 0.0056). The results of the main effects analyses can be seen in Table 1. 

A number of ROIs showed increased activation when the target location was known 

versus unknown (Figure 3). There were no significant interactions involving any of 

the factors. None of the higher-order visual areas (KO, LO, MT/MT+ and VIPS/V7) 

showed a significant response to segmenting the items in depth (known vs unknown). 

There was a bigger response to knowledge of target location in parietal areas (DIPSA, 

DIPSM, POIPS and phAIP), with all regions showing increased activation when 

target location was known. This increase was statistically significant in DIPSA (p = 
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0.001) and phAIP (p = 0.004), but not in DIPSM (p = 0.036) or POIPS (p = 0.068). 

Knowledge of target location did not influence activity in the precuneus ROI. None of 

the ROIs showed a significant response to display type (vertical or tilted) or letter 

placement (planes or jittered), and there were no significant interactions between any 

of the factors.  

 

-- insert Table 1 about here -- 

-- insert Figure 3 about here -- 

 

Links between ROI activation and RT benefits from knowing target location  

 

There were no significant correlations between the reaction-time benefit from 

knowing target location and the corresponding increase in activation in any of the 

ROIs.  

 

We divided the group into good and bad segmenters based on a median split of the RT 

benefit when target location was known versus unknown. The results are shown in 

Figure 4. Good segmenters had a greater increase in activation in all ROIs when target 

depth was known compared with unknown. This only reached (uncorrected) 

significance in DIPSA (t[14] = 2.3, p = 0.038), reflecting high variability across the 

small number of participants (see standard error bars in Figure 4).  

 

-- insert Figure 4 about here -- 

 

Whole brain analysis 
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A whole brain analysis was conducted to ensure that the ROI analysis had not missed 

any key areas of interest. No regions survived correction for multiple comparisons 

(FWE p < 0.05), but for descriptive purposes only, uncorrected results (p < 0.001 

uncorrected, extent > 10 voxels) are shown in Table 2. We were primarily interested 

in regions that showed increased activation when target location was known versus 

unknown. This analysis revealed activation in the bilateral inferior parietal lobe 

centred around coordinates -43, -54, 55 and 47, -50, 52 (Figure 5). These regions were 

close to the ROIs in DIPSA (-36, -52, 64; 36, -50, 56) and phAIP (-42, -42, 50; 42, -

42, 52). In addition, regions of the posterior cingulate cortex and right cerebellum 

showed increased activation in the location-known condition (see Table 1). 

 

A small region of visual cortex was more engaged by vertical displays than tilted 

displays. This might be expected as the tilted displays subtended a smaller visual 

angle than the vertical displays (Figure 1). A larger, more posterior region was more 

engaged by tilted displays than vertical displays (Figure 5), perhaps due to the 

increased difficulty of processing the tilted letters. No regions were more engaged 

when the letters were in planes rather than jittered, but small regions of bilateral 

supramarginal gyrus were more engaged when the letters were jittered than when they 

were in planes.  

 

-- insert Table 2 about here -- 

-- insert Figure 5 about here -- 
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We then looked within regions that showed increased activation when target location 

was known (p < 0.05 uncorrected) to see if that increase in activation was influenced 

by display type (vertical, tilted) or letter placement (plane, jittered). The right 

supramarginal gyrus (37 voxels, peak at 60, -44, 38; peak z score = 4.06) showed a 

stronger response to knowing target location when the displays were vertical than 

when they were tilted. No regions showed a similar increase for tilted displays 

compared with vertical. A region of the precuneus (12 voxels, peak at 7, -72, 38, peak 

z score = 3.61) showed increased location-known activation when the items were in 

planes rather than jittered, as did the cerebellum (16 voxels, peak at 14, -74, -38, peak 

z score = 3.77). There were no regions showing a similar response to jittered letters 

compared with letters in planes.  

 

Discussion 

 

Participants responded more quickly and accurately when the 3D location of the target 

was known compared with when they viewed identical displays but the target location 

was unknown. This indicates that they were able to benefit from attending to the 

relevant 3D region.  

 

Results of the region of interest (ROI) analyses indicate that segmenting items 

according to their 3D location is associated with an increase in activation in depth-

sensitive regions along the intraparietal sulcus (POIPS, DIPSM, DIPSA, phAIP; 

Georgieva et al., 2009), particularly in the left hemisphere. These regions were more 

active in ‘good’ segmenters who showed a larger RT benefit from knowing target 

depth. Of the higher-order visual areas that are sensitive to depth (KO, LO, MT/MT+, 
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VIPS/V7; Preston et al., 2008), none were modulated by attention to a 3D region. This 

pattern of activation, where knowledge of target depth affects activity in depth-

sensitive parietal regions but not in depth-sensitive visual regions, suggests that 

segmenting items in depth is achieved through attentional selectivity in higher-order 

areas rather than filtering in perceptual regions.  

 

Although the stimuli themselves were identical on target-known and target-unknown 

trials, there may have been differences in participants’ search behaviour. When target 

location was known, participants may have been able to search a smaller region of 

space with fewer vergence eye movements, smaller shifts of attention, and faster RTs. 

Note that all of these factors would have led to a decrease in activation in fronto-

parietal regions responsible for attention and eye movements, not an increase (Alkan 

et al., 2011; Corbetta & Shulman, 2002). It is therefore striking that we found 

increased activation in parietal regions despite reduced demands on the fronto-parietal 

network. In addition, when the stimuli were tilted in depth, the attended stimuli 

spanned different disparities in both the known and unknown conditions, minimising 

any difference in the amount of space searched. Despite this, we found no interaction 

between display type (vertical, tilted) and knowledge of target location in any of the 

ROIs.  

 

Our results suggest that segmenting items in depth is dependent on the 3D location of 

the attended items rather than a specific disparity or surface. The behavioural and 

neuroimaging analyses showed very similar results for segmenting items in vertical 

and tilted displays, and for segmenting items that formed planes or were jittered in 

depth. Segmenting the items was therefore not achieved by attending to a specific 
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disparity, which would only be beneficial for vertical displays with letters in planes, 

or by attending to surfaces, which would only be beneficial when letters were in 

planes. It may have been the case that there were insufficient items at each depth for 

them to form a convincing percept of a surface. Participants may have gained a 

stronger benefit from knowing the target depth if surfaces had been more clearly 

defined. However, it is clear that participants were able to attend to items in a 

particular 3D region of space, without those items needing to form a plane or surface. 

This is in keeping with real world examples where knowing the likely 3D location of 

a target is beneficial, for example, when searching for people, cars, luggage, or books, 

which would not normally form planes or surfaces. 

 

Recent behavioural research (Finlayson et al., 2013) showed that knowing target 

depth did benefit visual search, but the authors concluded that there was no evidence 

for preattentive segmentation of the display in the way that has been found for other 

visual features, such as colour or motion (Anderson et al., 2010; Egeth et al., 1984; 

McLeod et al., 1991). Finlayson et al. (2013) suggested that, in the absence of 

preattentive segmentation, segmenting items according to their depth might be 

achieved using the same attentional resources required to serially attend to items in a 

display. If this is the case, the same cortical regions could be recruited in both the 

target-known and target-unknown conditions, masking their involvement in 

segmenting the items according to depth.  

 

In terms of top-down activation, driving attentional selectivity to part of the 

segmented display, we found that the posterior cingulate was engaged when target 

location was known (p<0.001), as has been found previously (Dent et al., 2011). We 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

21 

 

also used an ROI analysis to look for segmentation-related activation in the precuneus 

region which is commonly activated by temporal (preview) and motion segmentation 

(Dent et al., 2011). However, we found that this specific region was not sensitive to 

knowledge of target location. The role of the precuneus may be sensitive to the 

specific task being performed. Dent et al. (2011) compared activation when displays 

were segmented by motion (moving / stationary items) or time (preview / search 

displays), with activation when displays were unsegmented (stationary items that 

appeared simultaneously). In contrast, here we presented segmented displays (items in 

front and behind fixation) and manipulated knowledge of target location. Both studies 

found a similar behavioural advantage from being able to attend to a subset of items, 

but the precuneus may have been specifically involved in segmenting the display 

rather than guiding attention within an already-segmented display. 

 

We may have found a different pattern of results if the attended depth changed from 

trial to trial, rather than being consistent within a block of trials. It is likely that trial-

to-trial changes would have led to increased activation in the fronto-parietal attention 

network (Corbetta & Shulman, 2002). It is less clear how this would have affected 

activation in visual regions: directing attention to one location would have increased 

activation in regions responsive to that location (Kanwisher & Wojciulik, 2000), but 

this may have been partially offset by adaptation to repeated stimuli at that location 

(Grill-Spector et al., 1999).  

 

Conclusion 
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Our findings demonstrate that dividing a 3D search display into relevant and 

irrelevant items is predominantly achieved through activation in depth-sensitive 

regions along the intraparietal sulcus, rather than filtering in depth-sensitive visual 

regions. The results also indicate that segmenting the items in depth, in this task at 

least, is cue invariant: behavioural and neuroimaging findings showed little difference 

when depths were defined by disparities or surfaces, or when items fell within depth-

defined 3D regions.  
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Table 1: Results of the individual analyses of variance (ANOVAs) for each of the 

depth-selective regions of interest (ROIs). Values indicate F values with 1 and 15 

degrees of freedom. *p<0.05, **p<0.0056. ANOVAs probed display type x letter 

placement x target-knowledge condition, but only the main effects are shown as there 

were no significant interactions. KO: kinetic occipital area. LO: lateral occipital 

cortex. MT/MT+: motion area. VIPS: ventral intraparietal sulcus (IPS). POIPS: 

posterior-occipital IPS. DIPSM: dorsal medial IPS. DIPSA: dorsal anterior IPS. 

phAIP: putative human anterior IPS.  

 

ROI display type 

vertical vs tilted 

letter placement 

planes vs jittered 

target knowledge 

depth known vs unknown 

KO 2.46 0.69 0.24 

LO 6.21* 1.09 2.06 

MT/MT+ 2.87 0.00 0.00 

VIPS/V7 0.31 0.07 1.54 

POIPS 0.14 0.06 3.86 

DIPSM 0.01 1.93 5.28* 

DIPSA 0.85 0.76 15.31** 

phAIP 0.12 0.56 11.33** 

Precuneus 0.00 1.07 0.00 
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Table 2: Results of the whole-brain analysis. p < 0.001, cluster size > 10 voxels.  

 

Region MNI coordinates z score cluster size (voxels) 

Target location known > unknown 

Left inferior parietal lobe -43, -54, 55 3.96 51 

Right inferior parietal lobe 47, -50, 52 3.62 19 

Posterior cingulate -10, -20, 32 4.46 31 

Right cerebellum 22, -72, -35 3.70 38 

Target location unknown > known 

No significant regions    

Vertical displays > tilted displays 

Posterior visual cortex 7, -67, 2 3.76 12 

Tilted displays > vertical displays 

Posterior visual cortex -16, -84, -5 5.57 764 

Letters in planes > jittered 

No significant regions    

Letters jittered > in planes 

Left supramarginal gyrus -36, -52, 28 3.72 15 

Right supramarginal gyrus 27, -40, 38 3.44 10 
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Figure Captions 

 

Figure 1: Experimental design. The task was to indicate if the display contained an N 

or a Z. Displays contained 8 or 16 letters. Dark and light grey indicate different depths 

(in front and behind fixation). Panel A. Example of the first three displays in each 

block. An initial screen instructs participants where stimuli will appear in that block 

(‘in front and behind’ or ‘on top and below’) and where the target will appear (‘target 

in front’, ‘target behind’, ‘target on top’, ‘target below’, ‘target anywhere’). Each trial 

then comprises a fixation screen and letter display. Panel B. Example vertical and 

tilted displays. Panel C.  Side view to illustrate the plane and jitter letter placement 

conditions. The small lines indicate the placement in depth of letters and the fixation 

cross.  

 

Figure 2: Response times and accuracy when target location was known (dotted lines) 

and unknown (solid lines), for vertical (squares) and tilted (triangles) displays. Error 

bars show standard errors.  

 

Figure 3: Change in activation in specific regions of interest when the location of the 

target was known versus unknown. Error bars show standard errors. KO: kinetic 

occipital; LO: lateral occipital; MT: MT/MT+; VIPS: ventral intraparietal sulcus; 

POIPS: parieto-occipital intraparietal sulcus; DIPSM: medial dorsal intraparietal 

sulcus; DIPSA: anterior dorsal intraparietal sulcus; phAIP: putative human anterior 

intraparietal area. 
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Figure 4: Change in activation when target location was known versus unknown, in 

each of the regions of interest (ROIs), for good and bad segmenters (based on a 

median split of reaction-time benefit). Error bars show standard errors. KO: kinetic 

occipital; LO: lateral occipital; MT: MT/MT+; VIPS: ventral intraparietal sulcus; 

POIPS: parieto-occipital intraparietal sulcus; DIPSM: medial dorsal intraparietal 

sulcus; DIPSA: anterior dorsal intraparietal sulcus; phAIP: putative human anterior 

intraparietal area. 

 

Figure 5: A. Parietal activation associated with knowing target location, crosshairs at 

47, -50, 52. B. Activation associated with viewing vertical versus tilted displays, 

crosshairs at 8, -67, 0. p < 0.001 uncorrected, extent > 10 suprathreshold voxels.  

 

Supplementary Figure 1: Red / cyan anaglyphs of the experimental displays. The 

target Z or N was displayed amid distractors, with set sizes of 8 (shown) or 16 (not 

shown). The target could be in front or behind fixation in the vertical condition (A, 

B), and above or below fixation in the tilted condition (C, D). Letters at each depth 

were at the same disparity (A, C) or jittered within a depth-defined volume (B, D).  
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