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Abstract: Manipulator control is one of the main research areas in robotics, demanding for 
models with fast convergence and reliable stabili ty for modelling and control. In this paper, 
the mechanisms of CMAC and ANFIS models for input space partitioning are analysed and 
their performance is compared to each other in terms of their abilities to model complex 
non-linear processes, with performance indexes such as accuracy, convergence speed, and 
computational cost. Meanwhile, some guides on how to choose model parameters are 
presented. Also, an analysis of the CMAC with linear functional weights is presented as an 
improvement to the CMAC model. 

 
 
1. Introduction 

 
When modelling a function or controlling a manipulator, some critical issues that should be taken into account 
include (a) good approximation ability, (b) low computational cost, and (c) good fitness with existing methods in 
the subsequent applications. Various models for modelling and control have been proposed, such as local models 
CMAC (Cerebellar Model Articulation Control) by Albus [1-5], ANFIS (Adaptive-Network-based Fuzzy 
Inference System) by Jang [6], and ASMOD (Adaptive Spline Modelling) by Kavli [7]. Among the above three 
local models, ANFIS has the advantage of good applicability as it can be interpreted as local linearisation 
modelling and conventional linear techniques for state estimation and control are directly applicable, CMAC is 
reputed for its fast training speed, and ASMOD is good at achieving parsimonious structure for specific 
applications due to its algorithm for automatic input space partitioning. Miller et al. [8-10] and Pak-Cheung [11] 
have investigated on CMAC and made some useful improvements. Nelles [12] has proposed an algorithm called 
LOLIMOT (Local Linear Model Tree) for automatic input space partitioning in ANFIS type models. Gan and 
Harris [13-14] have extended the ASMOD algorithm to local linear modell ing using B-splines, which has been 
successfully applied to nonlinear state estimation.  
 
This paper analyses the mechanisms of CMAC and ANFIS in input space partitioning, compares them in terms 
of approximation accuracy, training speed, and memory requirement, aiming at combining the advantages of 
CMAC and ANFIS, and then proposes a CMAC model with linear functional (LF) weights. The CMAC and 
ANFIS models are briefly described and analysed in section 2. Experimental results are given and compared in 
section 3, with remarks on the guidelines to choose the CMAC parameters and the possible improvement. 
Section 4 shows some results of using the CMAC with LF weights for nonlinear modelling, and the local 
approximation property of the CMAC with LF weights is discussed in section 5.  
 
 
2. Model Description and Analysis 
 
An ANFIS model can be described by the following equation: 
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where y is the output, xi, i=1,…,n, are the inputs, )( 1 nA xx
j �µ  the membership functions, wji the adjustable 

weights, and R is the number of fuzzy rules. It can be described as a multilayered feedforward network as shown 
in Fig. 1, where layer L1 executes a fuzzification process, layer L2 executes the fuzzy AND of the antecedent 
part of the fuzzy rules, layer L3 normalises the membership functions, layer L4 executes the consequent part of 
the fuzzy rules, and the final layer computes the output by summing up the outputs of layer L4. Gaussian or bell-
shaped functions are used as membership functions in ANFIS, whose parameters are usually determined by the 
gradient-descent algorithm. The parameters in the consequent part are determined by the least mean square 
(LMS) or Kalman filtering algorithm. 
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Figure 1 ANFIS architecture with two inputs, two membership functions per input, and one output  

 
The equation for describing a CMAC model is as follows: 
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where )),,(( 1 nj xxf �δ  represents receptive field (RF) functions that play a similar role as the membership 

functions in ANFIS, ),,( 1 nj xx �δ  maps the input vector x into a RF field address in the jth layer of RFs, 

jAw  are the adjustable weights, Aj represents the address of an adjustable weight associated with the RF in the 

jth RF layer that is determined by a mapping process and a hashing function, and C is the number of RF layers, 
corresponding to the number of fuzzy rules in ANFIS. In the CMAC model, only one receptive field in each RF 
layer will be activated by the input, and only those weights associated with the activated RFs will  be updated 
using the LMS-type algorithm. Usually for the same task the number of RF layers in CMAC is much smaller 
than the number of fuzzy rules in ANFIS. That is the main reason why the CMAC training converges very fast. 
Similarly, a CMAC model can also be depicted as a multilayered feedforward network. Details about how the 
ANFIS and CMAC models partition the input space and the inherent curse of dimensionality problem wil l be 
analysed in the following subsections. 

2.1. Input Space Partitioning 

 
In order to model complex nonlinear systems, both CMAC and ANFIS models carry out input space partitioning 
that splits the input space into many local regions on which simple local models (linear functions or even 
adjustable coefficients) are employed. ANFIS uses fuzzy membership functions for splitting each input 
dimension, as shown in Fig. 2, the input space is covered by overlapping membership functions that means 
several local regions can be activated simultaneously by a single input. For multidimensional space, the 
partitioning is defined by the fuzzy AND, such as tensor product, of univariate membership functions. 
 
In CMAC the input space is split by receptive fields that are organised into multiple layers. The RFs in each 
layer do not overlap, but the RF layers are placed with offsets, as shown in Fig. 3 with 4 layers of triangle-
shaped functions as RFs. Corresponding to an input, there wil l be only one RF in each layer activated. However, 
the activated RFs in all the layers have a similar overlapping effect in covering local regions of the input space, 
as in ANFIS.    
 
As simple local models are adopted in both ANFIS and CMAC models, their approximation ability will  depend 
on the resolution of the input space partitioning, which is determined by the number of membership functions in 
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ANFIS and the number of layers, i.e., the generalisation parameter C, and the size of offsets that depend on 
quantisation parameters qi in CMAC. 
 

 x          x 

           Figure 2 Input space partitioning in ANFIS                       Figure 3 Input space partitioning in CMAC 

 
2.2. The Curse of Dimensionality 
 
In both ANFIS and CMAC models, the number of adjustable weights increases exponentially with the dimension 
of the input space. This is called the curse of dimensionality problem. The base of the exponent depends on the 
number of membership functions in ANFIS or the size of the offsets in CMAC. To overcome the curse of 
dimensionality problem, the ASMOD algorithm [7] and its modified version [13] automatically search the 
minimum number of required membership functions.  The LOLIMOT [12] algorithm can do the similar search 
for ANFIS. The CMAC model uses a hashing function to combat this problem, in which the number of 
adjustable weights may be huge, but only limited number of weights will  be activated and updated in 
correspondence to an input.  
 
By comparing the different approaches used in ANFIS and CMAC for partitioning the input space and 
combating the curse of dimensionality problem, this paper aims at combining the advantages from both models. 
This will be discussed further after presenting some interesting experimental results. 
 
 
3. Nonlinear Function Modelling 

How good is the CMAC for modelling nonlinear systems? To answer this question, an experiment was set up to 
measure the performance of ANFIS and CMAC in modelling nonlinear functions. The training and testing data 
were generated using the following nonlinear function: 
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A series of training data sets of 50x50 data points were generated with (x1, x2) randomly distributed and some 
noise added, each set was used in a different training epoch, which means that in each epoch some new training 
data were firstly presented and some training data used in the previous epochs were repeated. The testing data 
were generated with (x1, x2) uniformly distributed. A typical training data set is shown in Fig. 4, and the testing 
data is shown in Fig. 5, where  -10<x1, x2<10.  
 
Various CMAC parameter settings were tested, with generalisation parameter C=16, 32, or 64, and quantisation 
parameter qi=0.05, 0.075, or 0.1. The choice of these parameter values are similar to those used in [8]. With 2-
dimensional inputs, there are 27 combinations of quantisation and generalisation parameter choices. In the 
experiment various learning rates have also been examined. In total, 108 CMAC runs were carried out. In the 
experiment with ANFIS, the number of univariate membership functions varies from 5, 8, to 10. The training 
processes for both CMAC and ANFIS stop when either the preset maximum number of epochs or root mean 
square error (rmse) of test-set validation is satisfied. In the experiment, the maximum number of epochs was set 
to 80 and rmse threshold set to 0.003. 
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                    Figure 4 A typical training data set                                      Figure 5 Testing data set 
 
3.1 Approximation Ability 
 
How good is the CMAC’s approximation abili ty in comparison with ANFIS? Both ANFIS and CMAC, with 
appropriate parameter settings, have good approximation ability. Fig. 6 shows an approximation result of the 
CMAC on the testing data. Its approximation error is shown in Fig. 7. In a similar way, an approximation result 
of the ANFIS is shown in Fig. 8 and Fig. 9. With both CMAC and ANFIS models, the errors are not visually 
noticeable from the network output. The error figures show that both models have achieved very good 
approximation accuracy; CMAC performs a bit better than ANFIS though. This can be noticed by looking 
carefully at the error range of each model. 

 
Figure 6 Approximation by CMAC 

 
Figure 7 CMAC’s error

 

Figure 8 Approximation by ANFIS (10 
membership functions) 

   

 

Figure 9 ANFIS’s error
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How does the CMAC’s quantisation affect its approximation abil ity? An analysis of three different runs, where 
the generalisation level and one of the two quantisation values were fixed (C=16, q1=0.075), shows that greater 
quantisation values lead to faster convergence, as shown in Fig 10. However, it is noted that medium 
quantisation values (0.075-0.075) produce a better approximation. The relationship between the approximation 
abili ty and the quantisation values is complicated. Smaller quantisation values correspond to finer input space 
partitioning. However, experimental results show that too small or too large quantisation values do not produce 
the best result. 

 
Figure 10 RMSE behaviour of training processes with various quantisation values 

 
How does the CMAC’s generalisation level affect its approximation abili ty? It is observed that an increase in the 
generalisation level wil l usually lead to a decrease in the training error, but the trend is not obvious some times, 
as shown in Fig. 11 where three runs for a fixed quantisation combination=(0.075, 0.05) and three generalisation 
levels are depicted. However, high generalisation level will  lead to slow convergence and a possible overfitting 
problem due to the excessive freedom of parameters. 
 
In general, CMAC has two types of structural parameters, i.e., generalisation and quantisation. They determine 
the size of the CMAC model and the partitioning of the input space. For a given task, a general practice is to 
choose a small model that has enough capacity to fit the training data. 
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Figure 11 RMSE behaviour of training processes with various generalisation levels 

 
3.2 Training Time 
 
Comparing the training time of the CMAC model against that of the ANFIS model, it is very clear that the 
former has a much faster convergence. This can be seen in Table 1 where three ANFIS runs are depicted 
together with three CMAC runs (with the longest running times). The main reason is that the number of 
parameters updated at one time in CMAC is much less than in ANFIS. 

Table 1 Training machine time of ANFIS and CMAC 

RUN-ID Parameter settings Time (s) Parameters updated 
at one time 

CMAC-45 Quantisation=0.075-0.10, Generalisation=64 34.12 64 

CMAC-33 Quantisation=0.05-0.10, Generalisation=64 170.34 64 

CMAC-81 Quantisation=0.10-0.05, Generalisation=64 171.65 64 

ANFIS-1 No. of  membership functions=5 1061.09 105 

ANFIS-2 No. of membership functions=8 9331.55 240 

ANFIS-3 No. of membership functions=10 28399.37 360 

 
Now let us examine the influence of the CMAC structural parameter settings on its training time. Training times 
with fixed generalisation level and varying quantisation values are shown in Fig 12. Training times with fixed 
quantisation values and varying generalisation levels are also shown in this figure. It is clear that with a higher 
generalisation level longer training time is required. However, it is not so clear about the relationship between 
the quantisation values and the training time. With smaller quantisation values, more receptive fields and 
associated memory (weights) wil l be generated, however, fewer epochs wil l be needed to reach the preset rmse 
value. These two effects will  cancel each other someway in terms of the training time. 
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Figure 12 Training time of CMACs with various parameter settings 

 
3.3 Memory Usage 
 
It is quite interesting to notice the difference between the memory usages of the two neural networks. As 
discussed in section 2 about input space partitioning, both ANFIS and CMAC suffer from the curse of 
dimensionality problem. In general for the same task the number of required adjustable parameters in CMAC is 
larger than in ANFIS. However, there is only one RF in each layer activated by the input and only those weights 
associated with the activated RFs need to be updated. Therefore the active memory in CMAC is much less than 
in ANFIS. 
 
Which model has better memory usage? As explained in section 2.2, both models are sensitive to the curse of 
dimensionality. In the ANFIS model, the number of free parameters is given by: 
 

 1 2 2( 1) ( )ndof m m n n m= ⋅ ⋅ + + ⋅  (4) 
 
where m1 is the number of free parameters in each fuzzy membership function (m1=3 for a bell-shaped 
membership function), and m2 is the number of membership functions for each input, and n is the input 
dimension. In the CMAC model, the number of receptive fields depends on the input dimension, and 
quantisation and generalisation values, which can be described by 
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where NRF is the number of receptive fields in total, ( ) /i i i iNI MaxValue MinValue q≈ −  is the number of 

intervals generated by the quantisation (qi) on the ith input, with MaxValuei and MinValuei  giving the range of 
the i th input, C is the generalisation, and n is the input dimension. For each receptive field, there is an associated 
weight. If each receptive field associates a unique weight, then the number of weights (free parameters) will  be 
equal to the number of receptive fields. From (4) and (5), the number of receptive fields in CMAC is usually 
larger than the number of free parameters in ANFIS. However, a hashing function is used in CMAC to associate 
a receptive field to one of the smaller number of weights. Another measure used to combat the curse of 
dimensionality problem in CMAC is that only the weights associated with activated receptive fields wil l be 
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updated. As a result, the actual number of weights (memory used) is much smaller than the number of receptive 
fields and the number of weights updated at one time is fixed to C, which is usually much smaller than the 
number of free parameters in ANFIS. Some typical memory usages by CMAC and ANFIS models with various 
parameter setting are given in Table 2, which support the above analysis.  
 

Table 2 Memory usages by CMAC and ANFIS models 

RUN-ID Parameter settings NRF or dof Memory used 
Parameters updated 

at one time 
CMAC-45 Quantisation=0.075-0.10, Generalisation=64 37584 2389 64 

CMAC-33 Quantisation=0.05-0.10, Generalisation=64  55043 1912 64 

CMAC-81 Quantisation=0.10-0.05, Generalisation=64 55043 1912 64 

ANFIS-1 No. of membership functions=5 105 105 105 

ANFIS-2 No. of membership functions=8  240 240 240 

ANFIS-3 No. of membership functions=10 360 360 360 

 
How do the structural parameters affect the CMAC’s memory usage? To answer this question, Fig. 13 depicts 
the memory usages for a set of CMAC runs. It is observed that as the generalisation level increases the memory 
usage decreases. This can be explained as follows: firstly, although the number of receptive fields is very large 
with a high generalisation level, the number of active receptive fields at one time is determined by the 
generalisation level; Secondly, the number of overlapping receptive fields is greater when the generalisation 
level is higher, this means that for a smaller generalisation level more receptive fields are needed to well 
approximate a nonlinear function. It is also observed that as the quantisation increases, the memory usage 
decreases in general. This is due to the granularity produced by the quantisation. A smaller quantisation will  
produce a fine granular partition, resulting in more blocks in the intermediate mapping of the CMAC, therefore 
more receptive fields will  be activated at the end of the training process. 

 
Figure 13 Memory usage by CMAC models 

 
3.4 Discussion 
 
An analysis of all experimental runs shows that, in general, smaller quantisation parameters (RF layer offsets) 
result in a finer input space partitioning, a larger number of receptive fields, more memory requirement, but not 
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necessarily longer training time. The influence of the generalisation parameter on approximation accuracy is not 
so explicit, but our experimental results show that larger generalisation parameters result in longer running time, 
but less memory requirement.  
 
Fast training speed is an absolute advantage of the CMAC model, and it has comparable or even better 
approximation abili ty in comparison with ANFIS. A big advantage of the ANFIS model is that it can be directly 
applicable by well-developed l inear techniques for state estimation and control as it can be treated as a local 
linear model. The idea of using hashing functions in CMAC could be useful for improving the training speed of 
ANFIS. Another idea of combining the advantages of CMAC and ANFIS models is to replace the constant 
weights in CMAC by linear functions of inputs. In this way, the CMAC model can also be interpreted as a local 
linear model, becoming therefore more applicable. It will be shown next how this addition influences the global 
approximation abili ty of the CMAC model. 
 
 
4. CMAC with Linear Functional Weights 
 
It was mentioned in the previous section that a possible modification to the CMAC model would be substituting 
constant weights by l inear functions of the inputs. The output of the CMAC with linear functional (LF) weights 
will then be computed as: 
 

 1
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where )),,(( 1 nj xxf �δ  represent receptive field functions, ),,( 1 nj xx �δ  maps the input vector x into a 

RF field address in the jth layer of RFs, , ji Aw  are the adjustable weights, Aj represents the address of a set of 

adjustable weights, and C is the number of RF layers. The number of parameters to be updated will be now 
(n+1)*C, due to the addition of the excessive parameters. The learning rule for the modified CMAC can still  be 
based on the LMS algorithm, some modifications should be derived though. 
 
In order to analyse the effect of this modification, a similar function approximation experiment was conducted 
with the same training and testing data as used in the previous section for the CMAC with constant weights. The 
running conditions were as follows: a set of quantisation combinations (0.05, 0.075, 0.10) and three levels of 
generalisation (C=16, 32, 64) were considered; and the training process stopped when either the preset maximum 
number of epochs or root mean square error (rmse) of test-set validation is satisfied. In the experiment, the 
maximum number of epochs was set to 80 and rmse threshold set to 0.003. The learning rates have to be chosen 

carefully for the CMAC with LF weights, because the change in 
jAw ,0  has different influence on the model 

output from the change in , ji Aw . In our experiment, different learning rates were used for updating 
jAw ,0 and 

, ji Aw  respectively. To guarantee the convergence, small learning rates or normalised learning algorithms should 

be applied. In the following subsections the CMAC with constant weights and the CMAC with LF weights are 
compared in terms of their approximation ability, training time, and memory usage. The results for the CMAC 
with constant weights and for the CMAC with LF weights are labelled as CMACa-n and ECMAC-n for easy 
understanding, respectively. 
 
4.1 Approximation Ability 
 
Will the CMAC with LF weights have powerful approximation ability, in comparison with the CMAC with 
constant weights? Typical approximation results by both the original and modified CMAC models are shown in 
Figs. 14 to 17. It can be concluded that both models have comparable approximation abili ty, but it is not clear 
which one is more powerful. An analysis of the RMSE behaviour of the learning processes shows that both 
models can reach a very small preset rmse value, but the CMAC with LF weights takes a longer time, as shown 
in Fig. 18. 
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As the training data here is from a non-smooth function and l inear local models are generally good at modelling 
smooth functions, another experiment on modelling smooth nonlinear functions will be conducted in the next 
section to further investigate the approximation abil ity of the modified CMAC model. 
 

 
Figure 14 Approximation by CMAC with constant 

weights 

    

 
Figure 15 Error by CMAC with constant weights 

 

 
Figure 16 Approximation by CMAC with LF 

weights 

 
Figure 17 Error by CMAC with LF weights

 
4.2 Training Time 
 
It is not expected to improve the training time by using linear functional weights in CMAC, intuitively the 
modification will  increase training time as the number of free parameters is increased. However, the increase in 
the training time is reasonably small. In Table 3, the training times of both models with same structural 
parameter settings are depicted, which shows that the addition of l inear functional weights does not produce a 
big impact on the training time. Fig. 18 has also shown the similar results about the training time. 
 

Table 3 Training time of CMAC with constant and LF weights 

RUN-ID Parameter settings Time (s) No. of epochs 

ECMAC-2 Quantisation=0.05-0.05, Generalisation=32 84.41 42 
ECMAC-25 Quantisation=0.1-0.1, Generalization=16 68.81 45 
ECMAC-16 Quantisation=0.075-0.10, Generalisation=16 74.37 51 
CMACa-2 Quantisation=0.05-0.05, Generalisation=32 30.71 31 
CMACa-25 Quantisation=0.1-0.1, Generalization=16 25.38 27 
CMACa-16 Quantisation=0.075-0.10, Generalisation=16 31.12 25 
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Figure 18 RMSE behaviour of CMAC training processes 

 
4.3 Weight Distribution Analysis 
 

The distributions of the 3 classes of weights, 
jAw ,0 , 

jAw ,1 , and 
jAw ,2 , are shown in Figs. 19-21, respectively. 

An analysis of the distribution of weight values shows that weights , jo Aw  have a distribution with most values in 

the range [–29.3665, 29.4507], much larger than 
jAw ,1  and 

jAw ,2 , and play a dominant role in the 

approximation. This is reasonable as the function modelled is highly non-smooth. In the next section, a smooth 
function is to be modelled and the role of the linear function part wil l be examined again. 
 
4.4 Memory Usage 
 
The memory usage of the CMAC with LF weights is proportional to the input dimension. Similar to the 
influence on the training time, the addition of linear functional weights increases the memory usage. However, 
compared to ANFIS, the number of parameters to be updated at one time in the CMAC with LF weights is still  
advantageous. The memory usages by the ANFIS, the CMAC with constant weights, and the CMAC with LF 
weights are given in Table 4 for comparison.  
 

Table 4 Memory usages by various models 

RUN-ID Parameter settings NRF or dof Memory used Parameters updated 
at one time 

ECMAC-2 Quantisation=0.05-0.05, Generalisation=32 161133 17487 96 

ECMAC-25 Quantisation=0.1-0.1, Generalisation=16 21045 8745 48 

ECMAC-16 Quantisation=0.075-0.10, Generalisation=16 28080 11457 48 

CMACa-5 Quantisation=0.05-0.05, Generalisation=32 53711 5815 32 

CMACa-98 Quantisation=0.1-0.1, Generalisation=16 7015 2914 16 
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CMACa-62 Quantisation=0.075-0.10, Generalisation=16 9360 3805 16 

ANFIS-3 No. of membership functions=10 360 360 360 
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Figure 21 Distribution of weights 2, jAw  

 
4.5 Discussion 
 
The experimental results in this section show that the CMAC with LF weights works very well, but the addition 
of linear local models can be pointless when modelling a non-smooth function in terms of its approximation 
abili ty, training time and memory usage. However, the CMAC with LF weights has an approximation abil ity that 
can match the ANFIS model, and at the mean time it has the advantage of fast training convergence. Next 
section will examine the properties of the CMAC with LF weights while modell ing smooth nonlinear functions, 
giving more favourable results. 
 
 
5. Investigation on Local Linearisation Approximation by the CMAC with Linear Functional Weights  

5.1 Advantages of Linear Local Models 

 
The main advantages of the Takagi-Sugeno fuzzy model, such as ANFIS, as Johansen noticed, stem from the 
fact that its consequence part is an affine dynamic model (or linear model) rather than a fuzzy set or constant 
value [16]. These advantages are: 

• Using local linear models brings together fuzzy and conventional control theories. 
• The relatively complex consequence part allows the number of fuzzy rules to be quite small in many 

applications. 
• The model structure and local model properties can, in some applications, be easily related to the 

physics of the system, simplifying the model development and validation. 
 
For many applications, it is very useful for a local linear model to be able to approximate the local linearisations 
of the nonlinear system to be modelled, i.e., in a local region nearby a given input point x0, the local linear model 

should fit with in the l inearisation of the nonlinear system: ))((')( 000 xxxfxfy ionlinearisat −+= . The 

abili ty of the CMAC with LF weights to model local l inearisations of smooth nonlinear systems will be 
investigated in this section. 

5.2 Approximation of Smooth Nonlinear Functions 
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In order to examine the local linearisation approximation ability of the CMAC with LF weights, another 
experiment was set up to approximate the following function: 
 

 31        ,12 <<−+= XXY  (7) 
 
For the purpose of visualisation of experimental results, a one-dimensional function is considered here. 40 
training data points were generated with randomly chosen inputs with some noise added and 50 testing data 
points were generated with equal spacing, as shown in Figs. 22 and 23, respectively. 
 

 

Figure 22 Training data                                                              Figure 23 Testing data

 

The structural parameter settings were set as follows: the quantisation (q) equals 0.5, 0.75, 1.0, or 1.25, and the 
generalisation (C) equals 2, 4, 8, or 16. The maximum number of epochs was set to 80, and the maximum rmse 
allowed was set to 0.07. The experimental results of the CMAC with constant weights and the CMAC with LF 
weights will  be compared in the following subsections.  

5.2.1 Global Approximation 

 
In this experiment of modell ing smooth nonlinear functions, it was observed that the CMAC with LF weights 
outperforms the CMAC with constant weights in terms of their global approximation abil ity. The approximation 
errors of typical runs of the CMAC with constant weights and the CMAC with LF weights (with the same 
structural parameter settings) are shown in Table 5 and Table 6, respectively. As shown in Table 5, the CMAC 
with constant weights cannot achieve the preset RMSE of 0.07, while the CMAC with LF weights can. 
 

Table 5 Approximation error by the CMAC with constant weights 

RUN ID q C RMSE Minimum value Maximum value Size of error range 
     1b   0.5    2 0.089193 -0.2845 0.0406 0.3251 
     3b   0.5    8 0.088091 -0.2146 0.0986 0.3132 
 

Table 6 Approximation error by the CMAC with LF weights 

RUN ID q C No of epochs RMSE Minimum value Maximum value Size of error range 
      1 0.5 2 72 0.060880 -0.1533 0.0686 0.2219 
      3 0.5 8 72 0.062266 -0.0955 0.1257 0.2212 
 

 
Fig. 24 shows a comparison of the errors given by the two CMAC models with the same configuration (q=0.5, 
C=2), with the CMAC with constant weights depicted by a solid line and the CMAC with LF weights by a 
dashed line. It can be observed that the CMAC with constant weights produces larger errors.  



Technical Report No CSM-412 

 15

 

 

Figure 24 A comparison of errors by CMAC models with and without LF weights 

 
Although some parameter settings achieve similar approximation results, different structural parameter settings 
lead to different training process. Fig. 25 shows the RMSE behaviours in training the CMAC with LF weights, 
with parameter setting {q=1.25 and C=2}  giving better performance than the other settings. The network output 
with the best parameter setting is shown in Fig. 26, in comparison with the real function.  

 

Figure 25 RMSE behaviours in training the CMAC with FL weights  
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Figure 26 Output of the CMAC with LF weights in comparison with the real function 
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Figure 28 Distribution of weights 1, jAw  

 
5.2.2 Weight Distribution Analysis 
 

In the experiment of modelling non-smooth functions, it was observed that the values of 
jAw ,0  are much larger 

than those of 
jAiw , , that is, weights 

jAw ,0  play a dominant role in the approximation. In a similar way, the 

distributions of the 2 classes of weights, 
jAw ,0  and 

jAw ,1 , for modelling the smooth nonlinear function are 

shown in Figs. 27 and 28, respectively. REMARKS 
 
5.2.3 Local Linearisation Approximation 
 
At a given input x0, the local linearisation of the function Y=X2+1 is given by 

)1()2( 2
00 xXxY ionlinearisat −+=                                                        (8) 

and the linear local model of the CMAC is: 

 baXYCMAC +=  (9) 

where 

jA

C
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                                              (11) 

If the CMAC model produces good local linearisation approximation, YCMAC should match Ylineari sation very well. 
Now consider the CMAC with LF weights and the parameter setting of { q=1.25, C=2} . Assuming x0=2.5, then 
the values of weights and receptive functions can be calculated as shown in Table 7. From (8)-(11), the real local 
linearisation at this point is Yli near isati on=5X-5.25, and the local l inear model given by the CMAC is 
YCMAC=2.373X+1.354. Other input points have also been examined in a similar way. The real local linearisations 
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(dashed l ines) and local linear models (dash-dot l ines) at three different points are shown in Fig. 29. It is clear 
that although the CMAC model does produce good global approximation, but not good local linearisation 
approximation.  
 

Table 7 Values of weights and RF functions at x0=2.5 

j (j=1,…,C) ))(( 0xf jδ  
jAw ,0  

jAw ,1  

1 1 2.65442012 3.17490254 
2 128 1.34338778 2.36652879 

 

 
Figure 29 Local l inearisations of the real function (dashed lines) and the CMAC model (dash-dot lines) 

5.2.4 Discussion 

 
In modelling smooth nonlinear functions, the CMAC with LF weights outperforms the CMAC with constant 
weights in terms of their approximation ability. However, the CMAC models do not satisfy Johansen’s second 
requirement for model approximation: It is sometimes required and often desirable that the local linear models 
are accurate approximations to the local l inearisations of the real function [16]. A possible solution to this could 
be the regularisation technique that penalises the difference between the first derivatives of the model and the 
real function. This will be further investigated in our future research. 
 
 
6. Conclusions 
 
A comparison between ANFIS and CMAC models was conducted in this paper, in terms of input-space 
partitioning, curse of dimensionality, approximation ability, training time, and memory requirement. Both 
ANFIS and CMAC models have very good approximation ability, but CMAC models have an obvious 
advantage of fast training speed over ANFIS models. The main advantage of ANFIS is the good interpretabili ty 
and applicability due to the use of linear local models. A CMAC modification has been proposed by introducing 
linear functional weights such that the modified CMAC model is a local linear model. It has been shown that in 
modelling non-smooth nonlinear functions the modification may be useless, but in modelling smooth nonlinear 
functions the CMAC with LF weights outperforms the CMAC with constant weights. It is expected that the 
modified CMAC, with the advantage of fast training speed and the potential to approximate local linearisations 
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of nonlinear functions, would find wide applications in nonlinear modelling, state estimation and control (e.g., 
robot arm modelling and control). As far as the applications are concerned, it is highly desired that the local 
linearisation approximation abil ity of the CMAC with LF weights would be improved by using regularisation 
techniques.  
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