Technica Report, October 2002

g LN
: o e
R e

-n.\_‘_:? ";'_"' . _L‘._ :_":-___-'f

UNIVERSITY OF ESSEX

Department of Computer Science

TECHNICAL REPORT
CSM-413

Forward and I nver se Kinematics M odels
for a 5-dof Pioneer 2 Robot Arm

Eric M. Rosales and Qiang Gan
emrosa@essex.ac.uk, jggan @essex.ac.uk




Technical Report, October 2002

Abgtract: Manipulator control is one of the main research areas in robotics,
requiring in the first instance the manipulator model. Using the Denavit-Hartenberg
methodol ogy this paper develops both forward and inverse kinematics models for a
5-dof Pioneer 2 robot arm. This paper aso indudes background information about
robot arms, especidly the Pioneer 2 robot arm, and discusses some impl ementation
iSsues.

. INTRODUCTION

In the development of manipulator controllers, the first step is to build manipulator modds: both
kinematics and dynamics modes. The kinematics mode relates the position of the arm end-effector to
the joint variables, whereas the dynamics model relates the motor torques with those joint variables.
There are forward and inverse kinematics models as well as forward and inverse dynamics models.
This report concentrates only on the devel opment of the kinematics modes for a 5-dof Pioneer 2 robot
arm.

The report is composed of the following sections: section 11 introduces some basic concepts in order to
understand section 111 which describes the development of the forward and inverse kinematics modes
using the Denavit-Hartenberg methodol ogy. Section IV discusses some implementati on issues.

1. BASIC CONCEPTS

There exist various definitions of a robot and a robot arm. The most accepted one was given by the
Robot Institute of America:

“ A programmable multi-function manipulator designed to move material, parts, or
specialized devices through variable programmable motions for the performance of a
variety of tasks.” [McKerrow; 1991:8]

There is, however, according to the French Normaization Association (AFNOR), a difference
between a robot arm and a robot. In fact, a robot may, or may not have, an arm but another kind of
end-effector. For the AFNOR, arobot armis defined in terms of manipulators as follows:

“A manipulator is a mechanism generally composed of a series of links, jointed
between them, which aims to grasp and move objects. It is multifunctional and it can
be governed directly by a human operator or through a logic device” [Barrientos et
al; 1997:10]

and arobot is defined as:

“An automatic servo controlled manipulator, reprogrammable and polyvalent
capable of positioning and orientating material, parts, or special devices through
variable reprogrammable motiong/trajectories for the performance of a variety of
tasks.” [Barrientos et al; 1997:10]

Informally, a robot can be regarded as any device capable of sensing and reacting to its environment
by automatic means; and a robot arm can be seen as a part of a robot or another kind of robot. Due to
the previous definitions, arobot arm can be conceptualised as:

“A mechanism generally composed of jointed links. It can be controlled directly by a human operator
or through an dectronic, electrical or logical device'.
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2.1 Robotic Manipulator Elements

To properly understand what needs to be controlled, the morphology of a robotic system should be
described. Although the mechanical, dectrical and computationa structure of robots can vary, most
have the following four major components in common: (1) a manipulator or arm (the mechanical unit),
(2) one or more sensors (the sensoria system), (3) a controller (the ‘brain’), and (4) a power supply.
Some configurations of robots may include in the mechanical unit end-effectors, which basically are
tools to perform specific tasks.

2.1.1 Mechanical unit

A robotic manipulator is composed of links connected by joints to form an open-loop kinematic chain
that permits a relative movement between two consecutive links. The movement of each joint can be a
displacement, a rotation, or a combination of both. From the six possible movements (spherical,
planar, screw, prismatic, rotational, and cylindrical) only three of them are normally used: prismatic,
rotational, and spherical. The independent movement of a joint with respect to another is called a
degree of freedom (dof), thus the number of joints gives the degrees of freedom of a robot. The use of
different combination of joints in a robot gives different configurations. Figure 2.1 shows the most
common configurations [Barrientos et a; 1997:18].

The manipulator defined by the joint-link structure generally contains three main structural € ements:
the arm, the wrist, and the hand that is sometimes called end-effector. These devices are referred to as
actuators and may be pneumatic, hydraulic or eectric in nature. They are invariable coupled to the
various mechanical links or joints (axes) of the arm either directly or indirectly. In order to position
and orientate an object in any place inside a workspace six parameters need to be defined: three for the
position and three for the orientation. Therefore, 6-dof are required in general. However, many
industrial robots have only 4-dof or 5-dof because these dof are enough to perform the tasks they were
designed for.

ey

Cartesian Robot

Cylindric Robot Polar or spheric Robot

e
@

SCARA Robot Angular or anthropomophic Robot

Figure 2.1 Common robot arm configurations
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2.1.2 Sensorial unit

For a robot to perform its task precisaly, quickly and intelligently, knowledge of its internal and
externa state is required. This information is obtained from sensors; interna sensors give information
about the position, velocity of the joints while externd sensors gather information from the
environment. Position sensors, such as encoders, and velocity sensors, tachometers, are the most
common used sensors, whereas ultrasound, infrared sensors, and laser scanners give information about
the position of objects in the environment nearby the robot.

2.1.3 Control unit

This unit orchestrates the other mechanisms to perform the specified task. Robot controllers generally
peform three functions. a) Initiate and terminate the motion of individual components of the
manipulator in a desired sequence and at specified points; b) Store position and sequence data in their
memory; and ¢) Permit the robot to be interfaced to the ‘outside world via sensors mounted in the
area where work is being performed. In order to carry out these tasks, controllers must perform the
necessary arithmetic computations for determining the correct manipulator path, speed, and position.
They must also send signals to the joint-actuating devices and utilize the information provided by the
sensors. Finally, they must permit communi cation between peripheral devices and the manipulator.

2.1.4 Power supply

The purpose of this component of the robot is to provide the necessary energy to the manipulator’'s
actuators. It can take the form of a power amplifier in the case of servomotor-actuated systems.

2.2 Spatial Localisation

Manipulation is the skilful handling and treating of objects: picking them up, moving them, fixing
them to one ancther, and working on them with tools [McKerrow; 1991:132]. The manipulation of
objects carried out by a robot arm implies the spatial movement of its extreme element. In order to
move the end-effector so that it gets near the object, it is necessary to know the position and
orientation of the object with respect to the robot’s base. This will alow programming a method of
specifying where the object is rdative to the robot’s gripper and a way of controlling the motion of the

gripper.

Controlling the motion of an end-effector is complicated due to the fact that there may be several arm
configurations that will place it on the object. On the other hand, ajoint in a robot arm usually has one
degree of freedom, but it can move over a much greater range than human joints can. An end-effector
location can be achieved with several configurations, thus a method for choosing the optimal one is
needed. Orientations from which a hand can approach an object depend not only on the object but aso
on the environment, eg. the presence of obstacles. The number of available paths or tracks is limited
by restrictions imposed in the environment. Moreover, if the object is moving, not only its location but
also a possible future position has to be computed so that the manipulator would be directed to that
estimated position.

Commonly, a robot computes the position and orientation of the end-effector using the kinematics
model of its arm. Thus, mathematical tools are needed to compute the position and orientation of not
only the objects to manipulate but also of the end-effector. Besides, these tools should be powerful
enough to alow obtaining easily spatial relationship among distinct objects and especially between
obj ects and the manipul ator.

A description of various coordinates is given in this section. Also, a description of some methods to
transform the position and orientation is presented. The aim is to answer the question: how to locate
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the end effector of a robot arm?. The following sub-sections come from [Barrientos et al; 1997] and
[McKerrow; 1991].

2.2.1 Spatial representation

The spatial representation of an end-effector or a joint consists of two eements: its position and
orientation. The first one tells the position of an object in an n-dimensional space and the orientation
gives the rotation of the object with respect to a reference system.

a) Position

The representation of an object’s position depends on the dimension of the space. The common
systems to represent the position of an object in a two-dimensional space are the Cartesian and polar
coordinates; and for a three-dimensional space are Cartesian, cylindrical and spherical coordinates,
which are described as follows:

+ Cartesian coordinates. In 0 the position of an object p is expressed as p(x, y), where x is the
displacement from the origin on the X-axis, and y is the displacement from the origin on the Y-
axis. In 0° the position of an object p is expressed as p(x, Y, 2), where similar to 0% x and y are
displacements from the origin on the X- and Y-axis, and z is the displacement from the origin on
the Z-axis. Both representations are depicted in Figure 2.2.

Z

O . >

Representation in a 2-Dimensional space Representation in a 3-Dimensional space

Figure 2.2 Vector representationsin Cartesian coordinatesin 0% and O°

Polar coordinates. In 0 the position of an object p is expressed as p(r, ), wherer is the distance
from the origin to the point p, and & is the angle that the vector p forms with the X-axis, as
depicted in the following figure.
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YA

p(r,9)

0 }X

Figure 2.3 Representation of polar coor dinates

+ Cylindricd coordinates. In 0° the position of an object p is expressed as p(r, 6, z), wherer and 8
are the distance from the origin to the point p and the angle that the vector forms with the X-axis,
respectively; and zis the projection of the vector p over the Z-axis, as shownin Figure 2.4.

Figure 2.4 Representation of cylindrical coordinates

e Spherical coordinates. As shown in Figure 2.5, the position of an object p is expressed as p(r, 6,
@ wherer is the distance from the origin to the point p, &is the angle of the projection of p over
the plane OXY, and gis the angle that the vector p forms with the Z-axis.
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-

Figure 2.5 Representation of spherical coordinates

b) Orientation

A solid object is located in a space not only through its position but also through its orientation with
respect to a reference system. In 07 a rotation with respect to the X-axis can be made whereas in 0° a
rotation with respect to X-axis, arotation with respect to Y-axis and a rotation with respect to Z-axis
can be performed. The common methods to represent orientation include rotational matrices, Euler’s
angles, rotational pair, and quaternion, which are described as fol lows.

* Rotational matrices. Rotational matrices are the most extended method for describing orientation
due to the utility of the algebra of matrices. Consider two reference systems, a fixed reference
system OXY and the object’s system OUV with the same origin. Vectors ix and jy are unitary
vectors of the fixed reference system, whereas i, and j, are the respective unitary vectors of the
object’s reference system, as shown in Figure 2.6. A vector p can be represented as

Py =[PP, = p O, +p,0j

: | 2.1)
P =[P B] = RFi,+ R %,

x ¥

Figure 2.6 Orientation of an OUV system with respect to an OXY system
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By applying linear transformation, the following eguival ence can be found:

a0
Px =R[p”] whee R=| " ,XJ,V (2.2)
py pv Jylu JyJu

which is the rotational matrix defining the orientation of the OUV system with respect to the
fixed OXY reference system, and is used to transform the coordinates of a vector in the object’s
reference system to the coordinates of another system, such as the fixed reference system OXY.
The orientation in O is given by a unique parameter, a, the angle of rotation over OXY. The
rotational matrix is given by

cosa -sna
R [ , } 23)
sna cosa

In O°, similarly to O, the orientation of an object p can be expressed as

Powe = [ Pur Pos Pu] = P *1u + 0%y + P * K,

t | | (2.4)
Poe =[PPy P, | =R * 1+ D%, + P, %K,
P, P,
Py [=R| R, (2.5)
P, Pu

When the rotation of an object’s system OUVW is over the OXYZ system with the U-axis
coinciding with the X-axis, the rotational matrix will be

1 0 0
R(X,a)=|0 cosa -sina (2.6)
0 sina cosa

If the V-axis coincides with the Y -axis after the rotation, the rotational metrix will be

cosy 0 sny
RY,»)=| 0 1 0 (2.7)
-siny 0 cosy

If the W-axis coincides with the Z-axis after the rotation, the rotational matrix will be

cosp -sing O
R(Z,¢)=|sing cosp O (2.8)
0 0 1

The above matrices are called basic rotational matrices for athree-dimensiond spatial system.
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e Euler’'s angles. The rotation of the OUVW reference system with respect to the fixed OXYZ
reference system can be defined through three rotational angles a, vy, @ which are caled Euler's
angles. It is necessary to know not only the values of the angles but aso the rotational axes. There
are 24 defined possibilities for rotating a coordinate system, among which the following are the
most common:

» Euler's angles ZYX: It is the result of applying the consecutive
rotations about z-axis, y-axis, and x-axis, respectively.

» Rall, pitch and yaw. It is the application of the consecutive rotations
about x-axis, the yaw; y-axis, the pitch; and z-axis, therall.

* Rotationa pair. Another representation for the orientation of an OUVW coordinate system with
respect to a reference OXYZ is the rotational pair, which is defined by a vector K=(k, ky, k;) and
an angle 6. The application of arotationa pair that will rotate a vector p, an angle Gover K is
expressed by:

Rot(K,8)p =pcosd - (K xp)sind +K (K * p)(1-cosb) 2.9)

¢ Quaternion. Quaternion is a versatile mathematical tool to work with rotations and orientations. A
quaternion is formed by four dements (to, Q1, G, 0s), Which represent the coordinates of a base
quaternion {e, i, j, K}. The dement e is ascda value and (i, j, K) is a vector. The eguivalence
between therotationa pair and the quaternioniis:

Q=[0,,6.0,,0] =[s,V]

2.10
Q = Rot(K,8) = (cosg,K sing) (210

2.2.2 Transformation

The position and orientation of an arm’'s end-effector with respect to a fixed reference system are
needed in a unique representation, and the above methods are not sufficient for this end. In order to get
a conjunct representation of position and orientation, homogeneous coordinates (HC) can be used. The
representation through homogeneous coordinates for the localisation of solid objects in an n-
dimensional space can be expressed through the coordinates of a (n+1)-dimensiona space. This means
that an n-dimensiona space can be represented with HC by (n+1) dimensions, for example a vector
p(x vy, 2) will be expressed by p(wy, W, W, W) where w has an arbitrary value and represents a scale
value. Generally, a vector p=ai +bj +ck, wherei, j, k are unitary vectors of X, Y, and Z axes, is

represented in homogeneous coordinates by

p= (if w=1) (2.12)

R o T o

X
y
z
w| |w

From the definition of homogeneous coordinates, the concept of homogeneous matrix arises. The
homogeneous transformation matrix, T, is a 4x4 matrix that represents the transformation of a vector
of homogeneous coordinates from one system to another reference system. Mathematicaly, this is
expressed as.
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= : (2.12)
f W. Perspective Scale

1x3 1x1

T_|:R3X3 PM} [Rotation Translation}

In robotics only the rotational matrix R, and the translation vector p are rdevant to the control and
manipulation, and the vectors of perspective and scale are set as f=0, W=1.

Ancther expressionfor T is:

nX OX a’X pX
n, o, a
T=|" % & B (2.13)
nZ OZ a'Z pZ
00 0 1

where (n, 0, @) is an orthonormal triplet representing the orientation and p is the vector reflecting the
position.

A complex homogeneous matrix of transformation can be formed by consecutive applications of
simple transformations:

T=TT, T (2.14)

2.2.3 Comparison among methods

All the above spatial representation methods are useful. Depending on the application one method
would be more suitable than others. The criterions of selection are based on @) the capacity of joint
representation of position and orientation, b) the representation of position and orientation of a rotated
and translated system OUVW with respect to a fixed reference system OXYZ, ¢) transformation of a
vector expressed in coordinates with respect to a system OUVW to a vector expressed in coordinates
with respect to a reference system OXYZ, and d) the rotation and translation of a vector with respect
to afixed reference system OXY Z.

The homogeneous matrix of transformation meets all the mentioned criterions. Besides, it is easy to
manipulate the matrix, though its redundancy. It will be used in the robot arm kinematics.

2.3 Kinematics of a Robot Arm

Kinematics is the study of motion with respect to a reference system without regard to forces or other
factors that influence the motion. The analytical description of the robot arm’'s spatial motion as a
function of time is the main concern of the kinematics, particularly the relation between the position
and orientation of the arm’s extreme with the values of the joints' coordinates. The kinematics is aso
concerned with the reation between the velocities of the motion of the joints and those from the arm'’s
extreme. There are two fundamental problems to solve by kinematics: direct and inverse kinematics.

2.3.1 Direct kinematics problem

A robot arm, as mentioned before, consists of a group of “rigid bodies” called links connected together
by joints. The links and joints of the manipulator form a kinematics chain which is open at one end
and connected to ground of the other. The end-effector, or hand, or gripper, is connected to the free
end, the arm’ s extreme, and the control objective of the robot system is to position the end-effector at a
desired location.
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The direct kinematics problem (DKP) is to determine the position and orientation of the arm's
extreme, with respect to a fixed reference coordinate system, given its joints' angles. That isto find a
transformation matrix T that relates the position and orientation of the arm’s extreme with joints
coordinates, which can be obtained by applying homogeneous matrices of transformations and the
conventional numerical agorithm devel oped by Denavit and Hartenberg (D-H). According to the D-H
representation, when choosing appropriately a coordinates system associated to each link, it will be
possible to transform from one link to the next through the gpplication of four basic transformations.
The transformations are rotations and trand ations, which relate the coordinates system of the k-th link
with the coordinates system of the (k-1)-th link.

2.3.2 Inverse kinematics problem

The inverse kinematics problem (IKP) can be stated as: Given a required location of the arm's
extreme, find the values of the joints' variables that will achieve the required position and orientation.
It can be mathematically expressed as follows:

gk = fk(xl y, Zlalyl¢)l
k=1..-,N
where arejoint anglesand (x, y, z, a, y; @ represents the position and orientation.

(2.15)

There are numerous techniques and approaches for finding the inverse solution. A common atribute is
that the difficulty increases with the complexity of the kinematics chain. An optimal situation is when
a closed arm solution is founded. However, there exist various problems in the IKP, which will be
discussed in the derivation of the IKP for the Pioneer 2 robot arm.

[1l. THE PIONEER 2 ROBOT ARM AND ITSKINEMATICS

In this section, the Pioneer 2 robot arm (P2Arm) is introduced and its kinematics modes will be
developed using the Denavit-Hartenberg methodol ogy mentioned above.

3.1 P2Arm Specification

The study object is a 5-dof robot arm, which in afirst stage will be used to formulate a control scheme
for trgjectory tracking under the assumption that the arm isin a fixed position. Then, in a second stage,
the mobility will be considered, thus the pioneer mobile robot will be used as well. Kinematics and
dynamics modd s of both platforms will be derived.

The specification of the Pioneer 2 Armis described in Table 3.1.

Table 3.1 Pioneer 2 Arm Specification

Pioneer 2 Arm

10
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Description: The Pioneer 2 Arm is a relatively low-cost arm for use in research and teaching.
It's a5 degree-of-freedom robotic arm that holds a gripper with foam-lined fingers
for firm grasp. Driven by six, reversible 5v DC open-loop servomotors, the arm
can reach up to 50 cm from the centre of its rotating base to the tip of its closed
fingers. This alows P2-DXE's and P2-AT's to pick up objects from the floor.

Key Features | Nose mounted 5-axis arm allows grippers to handl e objects 1 to 8 cm wide

6 degrees of freedom, including gripper

Reach of 50cm

RS-232 compatible

Compatible with Pioneer P2-DXE, DX or P2-AT. (P2-AT requires additional
BatPak and 3 additional batteries.)

Arm CONSTRUCTION: anodized, CNC fabricated, and painted auminium, and
Spedifications | plastic, with foam-covered gripper fingers

MOTION: 5 dof arm and 1 dof gripper

POWER: +5 and +12 VDC supplied by Pioneer robot

ARM RANGE: 50 cm fully extended

GRIPPER RANGE: Gripperspartto5cm

PAYLOAD: 150gm (5 oz.) lift capability

SPEED: 1 second from fully extended to fully relaxed position

The messures of the P2Arm links are shown in Figure 3.1, which aso shows the status of the arm
when it is fully extended.

11




Technica Report No CSM-413

18.896 [472.71F

14,429 [366,50F

628 [220.75

006 [228.75

f—e.707 [68.73 299 160,00 622 [92.00—={ 1801 [43.73] 457 [13.21

i

I

Product EduBota
Drauing No. oL

Draving Thie | Full Assenbly
20082002
Seale e A2

NOTE: DIMENSIONS IN INCHES [mm] TS
DRAWING UNITS ARE mm b T EE
DIMENSIONED BY SCD OF ACTIVMEDIA ROBOTICS, LLC regpotica Lid.

Figure 3.1 Measures for the Pioneer 2 Arm

3.2 P2Arm Kinematics Models
3.2.1 Forward kinematics modd

To derive the forward kinematics, according to the Denavit-Hartenberg (DH) convention, the
following steps should be done;

a) Obtaining the DH parameters:

There is a theory behind the DH parameters. These parameters need to be obtained by positioning the
armin its zero position that is when the joints vaues are zero; then, for each joint a reference frame is
assigned according to its link type and joint type.

There are two types of joints: revolute and prismatic. Figure 3.2 shows both types of joints with some

variants. The rotational angle about the joint axis is denoted as ¢ corresponding to the joint variable 6
in the Denavit-Hartenberg notation.

12
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Figure 3.2 Typesof joints

There are severd types of links. Shown in Figures. 3.3-3.7 are some types rel ated to the Pioneer 2 arm.

Type |: Thisis the simplest link. It has two paralld revolute joints with no twist between the joint
axes, which are paralld and separated by a distance a,, known as the length of the link. The joint
variable is the rotational angle G..1. The z,.1;-axis is assigned to be coincident with the axis of the

joint, and the xn.1-axis to be coincident with the centre line of the link; the y,.1-axis is found by the
right-hand rule.

13
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Xu
a, =
Link n By

y;. -1 Z"

Jointn + 1

Jointn
Zn =1

Figure3.3 Link typell

Type |I: This type results from type | by twisting the link about its centre line (axis X»-1), by an
angle an.

Figure3.4 Link typell

Type lIl: This link is shown in Figure 3.5. In this configuration, joint axes intersect, making the
length of the link be zero since the distance between the joint axes (z..1 and z,) is zero. However,
there is a trandation of distance d, between the two joints, measured between the common
normals to thejoints axes (usudly the .1 and x, axes).

14
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\u,, = —90°
Jointn + 1 _

erH- |
N '
| Link n
I a,~0
4| &
] A Zy - |
Joint, 1
Xp -1t x L) ear

Figure3.5 Link type 11

Type IV: This link is similar to type 1, but it has the joints the other way around, resulting in
different values for the link parameters. First of al, the origins of the axes for the two joints
coincide making the length of the link and the distance between the links zero. The physicd
distance between the joints is included in the next link.

Jointn + |

/]
Part of d=0
dn + |
Joint n _ Yu
£ v, - Or'igi_ns
" ‘ coincide

Figure3.6 Link type IV

Type V: Thislink consists of a revolute joint whose axis is orthogonal to the link. In thislink joint
axes (z,.1 and z,) intersect. This type has the angle &1 thejoint variable

15
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Figure3.7 Link type V

The reference frame to each joint is applied by using the following guidelines:

i)

i)
i)

vi)
vii)

After positioning the arm in its zero position, starting at the base, number the joints from 0
toN.

The base coordinate frame is assigned with its axes paralld to the world coordinate frame.

The origin of the frame is located at the intersection of the common normal (to the joints
axes), and the axis of the dista joint. If the axes of the joints are parallel, then the position of
the origin is chosen to make the distance between the links (d, or a,) zero. If the joint axes
intersect, the origin is placed in the intersection of the axes.

The z-axis is coincident with the joint axis. For a revolute joint, the direction of the z-axis is
determined from the positive direction of rotation around the z-axis.

The x-axis is paralld to the common normal between the joint axes of the link. In the case of
paralld axes, the x-axis is coincident with the centre line of the link. If the axes intersect,
there is no unique common normal, and the axis is parald, or anti-paralld, to the vector
cross product of the z-axes for the preceding link and this link (z.1 and z,). In many cases
this results in the x-axis being in the same direction as the x-axis for the previous link. At
this point, it is necessary to check that the selected zero position is consistent with the
allocation of the x-axis.

The direction of they-axis can be found by using the right-hand rule

A coordinate frame is attached to the end of the final link (N), usualy within the end
effector or tool. If the robot has an articulated hand, or changes end effector regularly, it
may be necessary to locate this coordinate frame at the tool plate, and have a separate hand
transformation.

The frame assignation process |eads to the frames shown in Figure 3.8.

16
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Robot Amrmn 5 dof. Built by Robotica. Adapted by ActiveMedia. P2Am

Figure 3.8 Frame assignment

After the coordinate frame assignation, the DH parameters are defined as follows::

i) &1 Angle of rotation about the z-axis.

ii) Ohe1: Distance from X, t0 Xa+1 (Or Yn tO Yhe1), dlOng the Z-axis.
iii) an+1: Distance from z,t0z,.1, along the X,-axis (or yn-axis).
iv) an+1: Angle of rotation about the xq.1-axis.

V) W1 Angle of rotation about the yn.i-axis.

The following table summarizes the values of the DH parameters for the P2Arm.

Table 3.2 Denavit-Hartenberg parametersfor the Pioneer 2 Arm

Link | Joint | Type | @ d a a y
1 0-1 I 6, |0 8=6.875 ° 0°
2 1-2 I 6, |0 =16 0 0°
3 2-3 IV 16 |0 0 0 °
4 34 I 0, | d=13.775 |0 0 | -90°
5 4-5 Vv 6 |0 &=11.321 0 °

b) Obtaining link transformation matrices "An.1 (A matrices)

Based on the DH convention, the matrix of transformation from joint n to joint n+1 can be calculated
by:

17
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cosg,,, cosy,,, —sné,,,sna,,, siny,,, -sing,, cosa,,, cos6,,,sny,,,+sné,, sSna,,, Cosy,,, a,,C0s6,,,

n _ Singml Cosyml + Cosgmls. namlSinyml Cosgml Cosan+l Singmls.nyml - COSHmlSinanﬂ Cosyn+l an+lSin0n+l
+1 T i i
- Cosaml sn yn+l sn an+l Cosaml Cosyml dn+l
0 0 0 1

Thelink transformation matrices (A matrices) of the P2ZArm aregiven in Table 3.3.

Table 3.3 Link transformation matrices

cos¢, 0 snf acosf cosfd, -sng, 0 a,cosé,

on _| SNE 0 -cosf, asng L. _|Sng, cosd, 0 a,snég,
| o 1 o0 0 1o 0o 1 0
0 O 0 1 0 0 1

0 -sinf, cosg, O
0 cosg, sng, O an
-1 0 0 0 A=
0 0 0 1

0 -sinf, cosf, a;coso,
0 cosg, sSing, a;sSng,
-1 0 0 0
0 0 0 1

¢) Obtaining the manipulator transformation matrix OTN (T matrix)

This is obtained by multiplying al the transformation matrices as follows:

T, = A XA XA XA XA =T,
By using the following trigonometric identities: sing cosg, +cosg sind, =sin(g +6;) =s;,
cosg cosg; —sing sing; = cos(g + ;) = c; thefollowing matrix is obtained:

[ CrCs +36SS,S, — .S +]
SSC TGS, COAS +SSGmCSGG COAGFSSSGSCS hnr S TRARGS
i (dCys +asc, +2y) (3 1)
| co - s —cse Cese - BSC1C; ~ BCS;S; ~ BeSSxC,S; + '
To=| =S558  ~SCxS ~GSC TSSACC  SCals ~CSS ~SSGS S(d.c, +a,c,+a)
C2354 _SZSSC: + C23C4C5 +SZSC5 + CZSCASC: aSSZSCS + aSCZSCASS + dASZS + a'ZSZ
| 0 0 0 1 |

d) Calculating the position and orientation of the end-effector

Representing the orientation by [n 0 a]ss and the position by vector p and using Euler’s angles ZY X
convention, we have:

18



Technica Report No CSM-413

n, o, a p, COS@COSy cos@gsinysing —singcosa  cosgsinycosa +sngsina  p,

n o, a p,|_ singcosy sSngsnysing +cosgcosa  singsinycosa —cosgsna  p, —or (3.2
n, o a, p, -sny cosysina Cosycosa p, °

0 0 0 1 0 0 0 1

The position and orientation of the end-effector can be calcul ated as foll ows:
Py = 8CCxG + 8:SS,S; ~ 8CS,C,S; + 6 (d,Cp + 8,0, +8))
Py = 8SCC5 ~ LSS ~ 8685,:C,Ss +5,(d,C5 + 8,C, +8y)
P, = 858,,C5 + 80,10, S; + 0,8, + &S,

N, =736 ~ CS;5,

Ny =GC ~S555

N, = CxS,

Oy = 7CCsS + 55,C ~ CS30,G
0y = 78CxS ~ CSG ~ 58506
0, = =S58 + CxGGs

Q, = SyuG + Cl,Ss

a =aan2(o,,0,)
if(n, =00n, =0) =y =90

=0

a =aan2(o,,a,)
if(n, #00n, #0) = < g=atan2(n,,n,)

y =atan2(-n,,/n; +n2) 33

where py, py, P, ae the coordinates indicating the spatial position, and a, y, and @representation the
orientation in terms of roll, pitch and yaw respectively; i.e., a is the rotation about the x-axis, yis the
rotation about the y-axis, and @is the rotation about the z-axis.

Note: Ancther way for finding the manipul ator transformation matrix is to consider virtua joints. That
is, besides the normal D-H transformation matrices, joints 2, 3 and 4 will have an extra transformation
- the rotation about the y-axis. The parameters are as follows:

Table 3.4 DH parameters when having virtual joints

Link |Joint | @ D a a A

1 01 6, |0 2,=6.875 90° 0°
2 1-2 e, |0 =16 0 0°
3 2-3 6; |0 2=9.2 0 0°
3 3-3 NA | NA NA NA 90°
4 34 0, |d=4.575 0 0 0°
4 4-4 NA | NA NA NA -90°
5 4-5 B |0 a=11.321 0 0°
5 5-5 NA | NA NA NA 90°
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In Table 3.4, the pairs of joints 3'-3, 4'-4 and 5'-5 are used to get the real transformation matrix for
joints 2-3, 3-4 and 4-5; and they are calculated just by multiplying transformations *As® As, *As* A,
and *As° As, respectively. Thelink transformation matrices for thereal links are as follows:

cos¢, 0 snf acosf cosd, -sing, 0 a,cosé,
on _| SNE 0 -cosf, asng .. _|Sng, cosf, 0 a,sng,
| o 1 o0 0 A 0o 1 0
0O O 0 1 0 0 0 1
0 -sin@, cosH, a,cosE, 0 -snf, -cosg, O
,~ | 0 cosd, sng, a,snd, s, |0 cosf, sng, O
ATla o 0 0 Al o 0 d,
0 0 0 1 0 0 0 1
0 -sing, cosé, a,cosé,
4 | O cosf sing, agsing,
A%l o 0 0
0 0 0 1

It is noticed that the orientation matrix [n 0 a] in the manipulator transformation matrices from the two
methods are the same, while the position vector p has different terms. The terms in the vector p
calculated by the second method are as follows:

Py = 8sC.CxC + 8555, S — 85C,S,C, S5 + €, (d,Cpp +85C5 T AC, +3,)
P, = 855CxC — &GS, § — a:SS,5C,S + s1(d4(323 a0y A0, + al)
P, = 855,505 +85CC, S5 + (d, +85)S,, +3,5,

(3.4)

By noticing that d4 in (3.3) is equivalent to ds+az in (3.4), we find that the position vectorsin (3.3) and
(3.4) are equivalent. In the following sections, the notation in (3.3) will be used.

3.2.2 Inverse kinematics
The steps used to derive the inverse kinematics model are as foll ows:

a) Givenaposition and orientation (p, py, P» @, ¥ @, compute the general transformation matrix as:

> 5 5
<

o

o]

o
<

o

N

o

p P

Q

N

o

Px

Py|_

P,
1

COS@COSy COosS@SinysSing —SiN@gCcosa Cosysinycosa +singsing
singcosy sin@sinysing +Ccos@eosa  SIN@Sin ycosa — cos@gsinga

-siny
0

cosysing
0

cosy cosa
0

(3.5)

b) Apply the following dgorithm, called the inverse kinematics heuristic, which uses the Denavit-
Hartenberg representation (DH-parameters).
i) Equate the genera transformation matrix to the manipulator’ s transformation matrix:

nx Ox ax px
ny Oy ay py
rlz Oz a z pz
0O 0 0 1

(3.6)
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ii) Look at both matrices for

1) Elementsthat contain only onejoint variable.

2) Pairs of dements, which will produce an expression in function of only one joint
variable In particular, look for divisions that result in the tangent function.
Elements, or combinations of eements, which can be simplified using
trigonometric identities.

iii) After sdecting an element, equate it to the corresponding € ement in the other matrix to
produce an eguation. Solve this equation to find a description of one joint variable in
terms of the elements of the genera transformation matrix.

iv) Repesat stepiii) until all theidentified dementsin step i) have been used.

v) If any of these solutions suffer from inaccuracy problem, set them aside and look for
better solutions.

vi) If there are more joint angles to be found, more equations with one or a couple of joint
variables can be obtained by multiplying both sides of (3.6) by the inverse of the A
matrix for a certain link.

vii) Repeat stepsii) through vi) until solutionsto all the joint variabl es have been found.

viii) If a suitable solution cannot be found for a joint variable, choose one of those

discarded solutions found in step V), taking note of regions where problems may

occur.

If a solution cannot be found for a joint varigble in terms of the dements of the

manipulator’'s transformation matrix, it may be that the arm cannot achieve the

specified position and orientation: the postion is outside the manipulator’s
workspace.

3

iX)

The application of this heuristic implies the calcul ation the inverse of the A matrices, which are shown
inTable 3.5.

Table 3.5 Inverse of link transformation matrices

cosfd, sng 0 -a cosd, sn6, 0 -a,
op = 0 0 1 0 Ia- = -sing, cosd, 0 O
sng, -cosg, 0 O 0 0O 1 O
0 0 0 1 0 0O 0 1
0 0 -10 0 0 1 -d,
»r._|—SING, cosd;, 0 O sr. | —SNE, cosgd, O O
A= cosd, sng, 0 O A= -cosg, -sing, 0 O
0 0 0 1 0 0 0 1
0 0O -1 0
an _|—SING, cosg, O O
- cosd, snfg, 0 -a
0 0 0 1

The details for deriving the inverse kinematics of the P2Arm are given in the following. First, by

multiplying

equation

(36) by the invese of °A;

in  both  sides,

°An o a p]="A°A°A*A, thefollowing equation is obtained:

i.e,
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n [0) a

z z 4

| 0 0 0

-, 5,G S RS
e 0 0 1

From eguation (3.7) the following rd ationships can be found:

n,sing —n, cose, = —cose),
0,8Nn¢ -0, cosd, =sng, cosy,
a,sing —a, cosg, =sing,sing;
p,Sing, - p,cosf =a;sing,sing;

From (3.10) and (3.11), we have

ing =—% " P 4ng gng,

a, P, —a,py
00391=Msin€4sin05
a, P, —a,py
Mgngﬁmgs
a, Py —a,py

Mgngﬁmgs
a,p,—apy

tang, =

[n,cosg, +n sné, o,cosf, +o,snf, a cosf, +a,sing, p,cosh, +p,sng -a
n,sng, —n cosg, osing -0, cosy, a,sing —a, cosd p,sing, - p, cosé,

’—_52354 TCsS T Su0G  Cul T SGS  ACxG T aAS0S T d4C23 +a.,
CuSi ~SiuSs T ColiCs Syl +CuCiSs  AsSls + sCrCySs + Uy S + 3,8,

3.7)

(3.9)

(3.9)
(3.10)
(3.11)

(3.12)

in which the values of &, and & are unknown yet, but we can assumethat if sSing,sing, >0 then:

6, = atan2((aa, - p,) CBign(a, p, - a,p, ), (a3, - p,) Bgn(a, p, —a,p,)) (3.13)

andif sSing,sing, <0 then:

g =atan2((p, -a;a,) [&gn(a, p, —a,p,). (P, —asa,) Lsign(a, p, —a,p,)) (3.14)

From (3.9) and (3.10), we have

22



Technica Report No CSM-413

a,sing, —a, cose,

sng, =
sng,
0,Sing —o, cosé,
cosf, = ————L——
sné,
a,sing, —a, cose, (3.15)
tand. = sné,
°  0,8ng, -o,cosf,
sng,
tané, = (a,sing —a, cosf)sing,

- (o,siné, -0, cosd)sing,
inwhich &, is unknown but, in asimilar way, if sing, >0, then

g, = atan2(a, sing, - a, cosd,,0,sing, — 0, cosé,) (3.16)
Andif sSing, <0, then

g, = atan2(a, cosd, - a,sing,,0, cosf, —o,siné,) (3.17)

In case the above solutions suffer from inaccuracy problems (when both terms in the atan2 function
approach to zero), other solutions should be available as aternatives. For example, from (3.9) and

(3.11) we obtain an alternative solution to &:

p,sing, - p, cosé,

sng, = _
a;sing,
0,Sné, -0, cosé,
cosf, = ——1 ¥ 1
sné,
p,Sng, - p, cosé, (3.18)
_ a;sing,
tend, 0,sing, —o, cosé,
sng,
tan@, = (p,sing, - p,cosé,)sing,

(a0,8Sin6, —a,0, cosd)sing,
Since &, is unknown yet, if Sinég, >0, then

g, = atan2(p,sing, - p, cosé,,a;(0,sing, — o, cosd,)) (3.19)
Andif sing, <0, then:

6, = atan2(p, cosb, - p,siné,,a;(0, cosd, —o,sind,)) (3.20)

Now making use of (3.8) and (3.9) we have
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cosd, =n,cosg, —n,sing,
_0,8ng, -0, cosb,

sing, = 3.21
! Cosé, (3:21)
0,Sn¢, —o,cose,
tang, = cosé, -
n,cose, —n,sing,
which leads to a solution to &;
0, Sind, — 0, cosb,
g, = atan2(————— ——n, cosf, —n, sind,) (3.22)
cosg,
Another solution to &, can be obtained by combining (3.8) with (3.10), giving:
a,sing, —a, cosb, _
g, = atan2( _ ,N, cosf, —n, sind) (3.23)
sné;
And another solution for &, can be derived from (3.8) and (3.11), giving:
sng, - p, cosé, _
g, = atan2( P SN ~ b, €O, N, cos@, —n,sing) (3.24)

a;sng,

Due to the lack of more hepful rdationships in (3.7), its both sides are then multiplied by the inverse
of 'Azie, '"A°An o a p]=>2A°A"*A, produdng thefollowing equation:

[ c(ne+ns)+ns  c(0,0+0,8)+0s c(actas)+as G(pC*+PS-a)rps -8
-5(n,CtNs) +nc, —$(0,C+0,5)+0,C, —S,(aCtas)+ac, —S(PCtP,S—a)+ e -
ns=n,c 0,570, as-ac PSP, C (3.25)
| 0 0 0 1
(-85, —CS=SCC CG—SCS aGG—aSseSs +d,G
GS, S HGGG SGTCCS aSGtatestds
-G $Gs SS %SS
| O 0 0 1

From (3.25), the following re ationships can be found:

c(nG+Nns)+ns =-s;s, (3.26)

-5,(n,G, +N,8) + NG, = G5, (3.27)

(0,6, +0,8) +0,8, = —C;S, ~ SC,G (3.28)
-5(0,c,+0,8) +0,C, =-S5 +CC,G (3.29)
(8¢ +2,8) + a8, =G ~SCS, (3.30)
-5(a,6 +28,8) +a,C, =86 +CCS (3.31)

=S,(P, G+ P, S=&) + P.C, = aSG +ACCS +d,S, (3:32)
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From (3.26), we obtain:

53 = CZ(nxCl + nsysl) + nzsz (333)
T
and from (3.27), we have:
A

Substituting (3.33) for siné; and (3.34) for cosé; in (3.32), we obtain a solution to & when sing, >0
as:

02 = atan 2((a5C5 + d4)(nxcl + nysl) + pzs4 - aSnZC4s5’

(3.35)
s4( pxcl + pysl - al) - nz(aSCS + d4) - aSC4ss(nxC1 + nysl))
And when sing, <0, thevalueof & is:
02 = atan 2(a5n20455 - (a‘SCS + d4)(nxcl + nysl) - pzs4’ (336)

nz(aSCS + d4) + a‘SC4SS(nxC1 + nysl) - s4( pxcl + pysl - al))

To avoid inaccuracy problems, other solutions to & can aso be derived as follows. Substituting (3.33)
for sing; and (3.34) for cosé; in (3.28), we obtain the value of &when sing, > 0:

6, =atan2(s,(0,C, +0,8) + N8, ~ €& (NG +N,8),

(3.37)
SS(nx Cl+ ny Sl) + nzC4C5 - OZS4)

And when sing, <0 the value of & can be obtained multiplying the arguments of (3.37) by -1.
Ancther solution is derived by substituting (3.33) for sing; and (3.34) for cosé; in (3.29), we have the
vaue of &when sing, >0 as.

g, =aan2(s;(n,c,+n,s) +0,8, — NG,

(3.38)
S4(Oxcl + Oysl) - C4C5(nxcl + nysl) - nzss)

And the vaue of & when Sing, <0 can be obtained by multiplying the arguments of (3.38) by -1.
Another solution can be achieved by substituting (3.33) for sin6 and (3.34) for cosé; in (3.30), which
when sing, >0 leads to:

g, =aan2(s,(a,c,+a,s) -¢,s(n ¢+ ns)-ns,

(3.39)
nzC4SS - Cs(nxcl + nysl) - azs4)

The value of & when sing, >0 is obtained by multiplying the arguments of (3.39) by -1. Another
solution for & when sing, >0 is obtained by substituting (3.33) for sing; and (3.34) for cosé in
(3.31), whichresultsin:

92 = atan Z(Cs(nxcl + nyS_L) +a,5, —NngGs;, (3.40)
S4(ax C1+ ay Sl) - C4ss(nx Cl+ ny Sl) - nzss)
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And when sing, <0 thevaue of & is computed by multiplying the arguments of (3.40) by -1.

Now let’ s look for the solution to & From (3.33) and (3.34), we have

c(ng +n,sg)+ns
_54
-s,(nc +tn +n,C
Sy
(_Cz(nxcl + nysl) - nzsz)s4
(_sz(nxcl + nysl) + nzcz)s4

tand, =

tand, =

Therefore,

6, = atan2((-n,c,c, - n,sC, - n,s,) Lsign(s,),(-n,c;s, - nss, + n,c,) [8ign(s,)) (3.42)

Various inverse kinematics equations have been derived under different assumptions. How to choose
the correct equations is a problem. There are 4 possible situations, which are:

a When sin(&,)sin(&)>0 and sin(&,)>0.
b) When sin(&;)sin(&)>0 and sin(&,)<0.
¢) When sin(&)sin(&)<0 and sin(&,)>0.
d) When sin(é,)sin(&)<0 and sin(&,)<0.

Given the position and orientation of the end-effector, there are 4 possible solutions, corresponding to
the 4 possible situations:

@) Assuming sin(8)sin(&)>0 and sin(6,)>0:

6, = atan2((aza, - p,) CHgN(a, p, - a,p, ), (a3, - P,) CHgn(a, p, - a,p,))
6, = atan2(a,s, —a,6,0,S ~0,C)
0,5 -0,¢
Cs
g, =atan2((a,c; +d,)(n,c +n,s) + p.s, — aNLC,S,
s(P.G+ PS5 —a) ~N, @G +d,) ~acs (G +n,s))
6, = atan2((-n,c,c, - n,sC, - n,s,) Lsign(s,),(-n,c;s, - nss, + n,c,) Lsign(s,))

g, =atan2( N,C —NS) (3.43)
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b) Assuming sin(&;)sin(&)>0 and sin(&;)<0:

6 =atan2((asa, - p,) Lsign(a, p, —a,p,). (asa, = p,) Lsign(a, p, —a,p,))
g =atan2(a,c, - a,s,0,C, ~0,S))
0,8 ~0,C,
CS
g, = atan2(agn,C,s; — (ac; +d,)(ng +nys) = p,s,,
n, (& +d,) + ac,s(nc +nys) —s,(PC + pyS —ay))
g, =atan2((-n,c,c, —n,SC, —Nn,s,) [HgN(s,), (-n,c;S, — NS, +n,C,) [Hgn(s,))

6, = atan2( ,n,c, —N,s) (3.44)

C) Assuming sin(&,)sin(6)<0 and sin(&,)>0:

6, = atan2((p, -asa,) Gign(a, p, - a,p,).(p, - a:a,) 3gn(a, p, —a,p,))
g; =atan2(a,s —a,C;,0,S ~0,C,)
0,5 ~ 0,6
CS
0, = atan2((a,c; +d,)(n,C +n,S) + P.S, ~aNCS;,
(PG * P,S ~&) ~N,(aG +d,) ~acs(ng +n,s))
6; = atan2((-n,c,c, - n,sC, - n,s,) Lsign(s,),(-n,c;s, - nss, + n,c,) Lsign(s,))

g, =atan2( N,C —NS) (3.45)

d) Assuming sin(&:)sin(6s)<0 and sin(&)<0:

6, = atan2((p, - aa,) Hgn(a, p, - a,p,), (P, - aa,) Han(a, p, ~a,p,))
g =atan2(a,c, -a,,0,C, ~0,8))
0,5 -0,C,
G
6, = aan2(a;n,C,s; — (&G +d,) (NG +ns) - s,
n,(acs +d,) +ac,s(ne +ns) - s(pc + p,s - )
6, =atan2((-n,c,C, - nysSec, - n,s,) [&ign(s,),(-n,c;s, - n,ss, + n,c,) [8gn(s,))

g, = atan2( N,C —NS) (3.46)

It should be noted that there is no analytical solution for the situations when siné=0 or sin@=0. Other
approaches, such as neural networks, should be explored. It should aso be noted that only the position
and orientation of the end-effector are given in the inverse kinematics problem, some of the above
assumptions about the sign of sin(é,) and sin(&) must be wrong. How to choose the correct solution
from the 4 possible sets of solusions? Our strategy is to accept a solution only if its joint angles are
within the constrained range and then to check its correctness using the forward kinematics. Based on
extensive experiments on a huge data set generated by the forword kinematics equations, we find that
only one sol ution among the 4 give reasonabl e joing angle values which produce the expected position
and orientation. Therefore, whether the solution gives reasonable joint angle values can be used as a
criterion for choosing the correct solution.

It should also be noted that the alternative solutions to &, &, and & could be very useful when the

arguments of some atan2(.,.) function gpproach to zero. The following table summarizes the use of the
derived equations for the inverse kinematics problem.
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Table 3.6 Sdlection of equationsto solve the inver se kinematics problem

CASE Joint Angles| Equations and alter native equations to use
1 3.13

3.16/3.19

3.22/3.23/3.24
3.35/3.37/3.38/3.39/3.40
3.42

3.13

3.17/3.20

3.22/3.23/3.24

3.36/3.37 /3.38 /3.39 /3.40
3.42

3.14

3.16/3.19

3.22/3.23/3.24
3.35/3.37/3.38/3.39/3.40
3.42

3.14

3.17/3.20

3.22/3.23/3.24

3.36/3.37 /3.38 /3.39'/3.40
3.42

a)
sin(&8)sin(&)>0 and sin(&)>0

b)
Sin(@)sin(&)>0 and sin(8,)<0

c)
sin(&)sin(&)<0 and sin(&)>0

d)
Sin(@)sin(&)<0 and sin(8,)<0

WIN|PRIOOPRP| WINPOARIWIN|ROORP WDN RO

In real-world applications, the inverse kinematics model may bring about problems. For instance, the
calculated joint angles could be unreachable due to some physical constraints; and the calculated joint
angles could be incorrect due to the inaccuracy problem caused by both terms in the atan2 function
approaching to zero. Some implementation issues are discussed in the next section.

IV.IMPLEMENTATION ISSUES
4.1 About the P2Arm.

The P2Arm presents some inconsistencies when comparing the direction of rotation of some joints
with respect to the kinematics modd, and the real zero position is different from that assumed in the
development of the kinematics model. The inconsistencies and solutions are discussed in detail in the
following.

a) About 6
The red positive rotation of this joint, when observing the arm form the top, is from left to right,

giving the positive z-axis downwards. To overcome this problem, the sign of this joint angle should be
changed in programming. Figure 4.1 shows this change.

" Multiply the arguments in this equation by -1.
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Real Rotation

Theoretical Rotation

Joint 0: Real vs Theoretical Rotation
Figure 4.1 Change of sign for therotation of joint O

b) About 6

The real zero value of & is not corresponding to the situation when the arm is extended horizontally.
There is a deviation of -9° that is, when the theoretical value is 0° the corresponding real value is 9°.
Figure 4.2 shows this problem. Calibration should be done in the program.

Yl ZO Yl
X Xy .XO ' Xy
O¢ =-9° 0= 0°
er= '90

8r = 00
Joint 1: Angle Deviation for theoretical zero

Figure 4.2 Adjustment in the angle of joint 1

¢) About &

The real positive rotation is clockwise when it should be counter clockwise The solution is to change
the sign of the values. The same procedure applied to & should be used for 6.
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Theoretical
Joint 3: Real vs Theoretical Rotation
Figure 4.3 Change of sign for therotation of joint 3
d) About &

There is a deviation of 45° in &, corresponding to the fully extended arm position, as shown in Fig.
4.4. A similar calibration as conducted for & should be done for &

ZO Yl Yz Y3
: 9t=450
] Or=10°
1. SN TN -—dmm Real
Xo X3 Xs X3 X4
; ZO Y1 YZ Y3
- by -
Xo X4 X, X3

Joint4: Angle Deviation for the theoretical zero

Figure 4.4 Adjustment in the angle of joint 4

Also, care should be taken when positioning the arm to certain positions since the arm is mounted on a
mobile robot and some positions can damage the arm, though being allowed positions for the whole
joint space. Therefore, positions should be limited to those that are safe for the arm. Table 4.1 shows
the normal and safe ranges for each joint for both the real values and the adjusted ones.
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Table4.1 Operationa rangesfor the P2Arm

Normal Ranges Safe Ranges

Joint | Red Real Adjusted | Adjusted | Real | Real Adjusted | Adjusted
min max min max min | Max min max

0 -93 101 -93 101 -68 |80 -68 80

1 =77 142 -86 133 -29 | 142 -38 133

2 -102 |94 -102 94 77 | 94 =77 94

3 -96 111 -96 111 96 | 111 -96 111

4 -130 |69 -85 114 -130 | 69 -85 114

4.2 About the Program

4.2.1 The atan2(.,.) function

The inverse kinematics model shows that the value of any joint variable is computed in terms of the
function atan2(y,x), which gives the angle according not only to the arctang(y,x) but also to the signs
of y and x. Nowadays, there are libraries that computes this function without the need to implement it;
however for darity reasons the sketch of the function is depicted next.

atan2(y,x)
llreturns @ for -7 =g =77
if (x=0) or (y=0) then
if (x=0) and (y is positive) then
g=+ 712

else
@=-712
if (y=0) and (x is positive) then
¢=0
ese
@=-T
dse
sign :&
abs(x x y)
@=signxatan(abs(y/ X))
return @

4.2.2 Precision of position and joint angles

When a command, expressed in degrees, is sent to the arm, the built-in program for the arm control
converts the angle to ticks position so that the low-level control is to move each servomotor to a
specific tick position. A tick position is represented by an integer value, and thus the conversion from
the degrees to ticks gives only integer values; therefore there is a change from the float type to an
integer type. The same happens when converting the ticks position to degrees: joint values are rounded
to integer vaues, eg. if the value of any joint variable is 10.5 (or greater) the value is rounded to 11; if
the value of any joint variable is 10.4 (or less) the value is rounded to 10. Thus, when computing the
joint variables, they should be rounded accordingly.

In order to simplify computations, the position and orientation values will also be rounded considering
aprecision of 4 decimal digits.
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4.2.3 Selection of equations for inverse kinematics

The derived inverse kinematics equations are based on assumptions about the sign of sin(&) and

sin(&). The program will compute all possible solutions if necessary and only accept the result thet is
inside the constrained range, which is described as follows:

Compute Joint angles
Compute joint angles using equations for Case a) or alternative equations if necessary
If joint angles areinside range

Return
Else

Compute angles using equations for Case b) or alternative equations if necessary

If joint angles are inside range

Return

Else
Compute angles using equations for Case ¢) or alternative equations if necessary
If joint angles are inside range
Return
Else
Compute angles using equations for Case d) or alternative equations if necessary
If joint angles are inside range
Return
Else
Mark error
End_if
End_if
End_if
End_if

V. CONCLUSIONS

This technica report gives a detailed explanation of the theory for kinematics moddling, which forms
the basis for developing the forward and inverse kinematics for the P2Arm, a 5-dof robot arm mounted
on a Pioneer 2 mobile robot.

Forward and inverse kinematics models for the P2Arm have been derived with some guides for the
model implementation. As it was mentioned, inaccuracy problem may arise in the mode when
arguments of the atan2 function approach to zero, producing incorrect positions and possible joint
angles out of range. Care should be taken under these circumstances and other methods should be
sought to compute the joints variables.

As part of the research, a neural network called CMAC is being investigated to model the inverse
kinematics, aiming to produce a more reliable arm controller.
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