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Highlights

• Comparison of insolvency risk predictors between Italy and the UK .

• Application of GEV model to account for low proportions of insolvent companies.

• Application of BGEVA to account for non-linearity between response and predictors.

• Comparison of two methods for treating the missing values.

• BGEVA on WoE method for missing data showed the best predictive accuracy.
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Abstract

This paper presents a cross-country comparison of significant predictors of small

business failure between Italy and the UK. Financial measures of profitability, leverage,

coverage, liquidity, scale and non-financial information are explored, some commonalities

and differences are highlighted. Several models are considered, starting with the logis-

tic regression which is a standard approach in credit risk modelling. Some important

improvements are investigated. Generalised Extreme Value (GEV) regression is applied

in contrast to the logistic regression in order to produce more conservative estimates of

default probability. The assumption of non-linearity is relaxed through application of

BGEVA, non-parametric additive model based on the GEV link function. Two methods

of handling missing values are compared: multiple imputation and Weights of Evidence

(WoE) transformation. The results suggest that the best predictive performance is ob-

tained by BGEVA, thus implying the necessity of taking into account the low volume of

defaults and non-linear patterns when modelling SME performance. WoE for the ma-

jority of models considered show better prediction as compared to multiple imputation,

suggesting that missing values could be informative.

Keywords: Decision support systems, Risk analysis, Credit Scoring, Small and Medium

Sized Enterprises, Default prediction.

1 Introduction

Small and Medium Enterprises (SMEs) play a central role in the European Union (EU)

economy, as recognised by the Small Business Act of the European Commission in 2008

(http://ec.europa.eu/enterprise/entrepreneurship/docs/sba/SBA IA). In 2011 SMEs repre-

sented 99% of enterprises in Europe, employing more than two thirds of the workforce and

contributing 58% of total EU added value. The importance of SMEs varies across the EU.

In some countries, e.g. Italy, Spain and Portugal, SMEs have larger shares in employment
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and added value and higher presence than the EU average. On the contrary, these figures are

lower than the EU average in other countries, e.g. the UK, Germany and France.

In this work we compare Italy and the UK since the economies of these countries are

different, and it is of interest to explore the differences in predictors of SMEs failures, especially

in the aftermath of the ”credit crunch”. The literature on SME default prediction is limited,

in particular in cross-country comparisons, and the main objective of this paper is to fill in this

gap. This paper contributes to the existing cross-country research by an initial exploratory

investigation of risk predictors using accounting and some non-financial information that are

available from public sources.

Several models are considered, starting with the logistic regression which is a standard

modelling approach in credit risk research (Thomas et al., 2002). Yet in situations with low

numbers of events (defaults), alternative approaches producing more conservative estimates

of default probabilities might be of importance. In this paper we concentrate on asymmetric

link function and non-linearity between the response and predictors. In real applications

the number of defaults is small, therefore, suggesting the asymmetric link function might be

beneficial. At the same time the assumption of linearity is not always supported by patterns in

the real data. An additional contribution of this paper consists in extending the application of

Generalised Extreme Value (GEV) regression that has been proposed for low default portfolios

by Calabrese & Osmetti (2013) to two countries. Furthermore, the problem of non-linearity

is explored through the application of non-parametric additive model (BGEVA).

The public sources often have incomplete data and this problem is particularly relevant

for SMEs. Another objective and contribution of this paper consists in the exploration of

two approaches to handling the missing values: multiple imputation and Weights of Evidence

transformation which is credit industry’s preferred approach.

The rest of the paper is structured as follows: Section 2 provides some background in-

formation on the importance of SMEs to the economy and some differences across the two

countries. It also summarises previous research on SMEs failure prediction. Section 3 explains
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the methodology, and Section 4 presents the empirical results, including data description, com-

parison of predictive accuracy and comparison of statistically significant risk predictors. The

final section concludes.

2 Background and literature review

There are some notable differences in characteristics of SMEs in the UK and Italy. In Italy,

SMEs form 99.9% of the firms. In 2011 they employed around 81% of the workforce and

contributed 68.3% of the Italian added value (EC, 2012a). In terms of the number of SMEs,

Italy has the largest SME sector in the EU. With 3.813 million SMEs Italy has almost twice as

many as UK (1.649 million). However, the vast majority of Italian SMEs are micro-firms with

less than 10 employees. In fact, Italy’s share of micro-firms, at 94.6%, exceeds the EU-average

(92.2%). Hence, the micro-firms’ contribution to employment (46.6% against the EU-average

of 29.6%) and added value (29.4% against the EU-average of 21.2%) is high.

On the contrary, the UK economy is characterised by larger companies. In 2011 more than

half of the UK added value was produced by large companies that employed less than half

(45.7%) of the workforce and constituted only 0.4% of the UK companies. The percentage of

micro-firms in the UK (89.5%) is lower than the EU-average (92.2%), and those employ only

20.3% of the workforce and create only 18.5% of the UK added value (EC, 2012b).

Financial crisis has substantially affected SMEs sectors in both countries and recovery has

been weaker than in the EU on the whole. The Italian SME sector has reversed to the levels

of 2005 (i.e. before the crisis) in terms of the number of firms, employment and value-added

creation. In the UK, SMEs have been hit mostly in terms of employment and value-added

creation, but the numbers of SMEs are higher than in 2005 and stable. In both countries

larger firms suffered less as compared to the smaller ones.

Despite an important role that SMEs play in any economy, academic research into SMEs

failure prediction is not very extensive. There are some (albeit not numerous) papers inves-

tigating success factors or default risk of SMEs in a specific country, e.g. Altman & Sabato
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(2007) for the US, Fantazzini & Figini (2009) for Germany, Sohn & Kim (2013) for South Ko-

rea, Martens et al. (2011) for Flanders - to give some examples, yet literature on international

comparisons of failure prediction is exceptionally limited.

The survey by Altman & Narayanan (1997) summarised previous research on the per-

formance of companies (not only SMEs) in 22 countries that included both developed and

developing economies. Most studies surveyed found measures of profitability, leverage, liq-

uidity, cash flow management, growth, efficiency to be important for bankruptcy prediction,

although specific measures used would vary from country to country. A more recent study

by Lussier & Halabi (2010) compared performance of SMEs in the USA, Croatia and Chile.

Among the variables that were found important for business performance were characteristics

of managers (education, experience) and the quality of business functions (record keeping,

financial control, planning, staffing).

The most comprehensive study of European SMEs to date is by Michala et al. (2013)

where a simple hazard model (Shumway, 2001) has been applied to small businesses from

eight European countries, namely Czech Republic, France, Germany, Italy, Poland, Portugal,

Spain and the United Kingdom for the period of 2000-2009. The paper has confirmed the

significance of indicators of profitability, coverage, leverage and cash flow for bankruptcy

prediction in cross-country setting. In addition, some non-financial company characteristics

have been investigated and the effect of macroeconomic variables. Pederzoli et al. (2013)

modelled credit risk of EU innovative SMEs, but the authors did not make cross-country

comparisons.

There were some comparisons between two countries. Ihua (2009) compared the key factors

influencing SMEs failure between the UK and Nigeria, and found that economic conditions

and infrastructure were more significant in Nigeria, whilst in the UK the key factors were due

to internal company characteristics, including management efficiency.

Dietsch & Petey (2004) analysed default probabilities and asset correlations for French

and German SMEs. Yet the focus of their analysis was more on comparison of correlations
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of SMEs as opposed to large corporations, the paper did not look at financial ratios or other

predictors of default.

As for SME research in the UK, Lin et al. (2012) compared different definitions of financial

distress on a sample from 2001 to 2004 and concluded that although each definition changed

the model composition substantially, the most useful variables in distinguishing between dis-

tressed and healthy companies, were profit related measures, growth and efficiency ratios.

Altman et al. (2010) developed a default prediction model using financial indicators of lever-

age, profitability, working capital and non-financial information (e.g. age, default events in

the past) using the data from 2000 to 2007. They found the non-financial variables provided a

notable improvement in predictive performance. Orton et al. (2011) explored the behaviour of

the UK SMEs from 2007 to 2010 - through the ”credit crunch”. They demonstrated that there

was a significant degree of stability and accuracy of credit risk models, despite increases in the

numbers of SMEs defaults. Similar to Altman et al. (2010) they found company demographics,

derogatory events and information about directors to be of significant value.

Regarding the modelling approaches, the overwhelming majority of studies reviewed above

used logistic regression. Other models included proportional odds or simple hazard model

(Michala et al., 2013; Fantazzini et al., 2009), Bayesian and classic panel models (Fantazzini

et al., 2009), random survival forests (Fantazzini & Figini, 2009), Support Vector Machines

(Martens et al., 2011).

In Italy Vallini et al. (2009) attempted to model SME defaults on a sample of small

firms from 2001- 2005 using profitability, liquidity and leverage ratios. Multiple discriminant

analysis was compared to logistic regression, and the latter was found to produce better

predictions. Later study by Ciampi & Gordini (2013) applied neural networks to the same

dataset and reported their superior performance as compared to algorithms used in the earlier

work. Both studies noted that credit scoring models could be built on accounting information,

yet predicting default for SMEs was much more difficult as compared to large enterprises, with

predictive accuracy decreasing in smaller firms segments.
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Calabrese & Osmetti (2013) and Calabrese et al. (2013) applied GEV and BGEVA models

to the sample of Italian SMEs from 2006 to 2011 and found superior performance of both

models as compared to logistic regression. Variables found significant in predicting default

were again measures of profitability, leverage and liquidity.

The current paper extends the existing literature by looking at two countries in comparison

(Italy and the UK), by exploring SMEs failure in a more recent time period and by using more

comprehensive list of financial measures.

3 Methodology

When constructing a credit scoring model, three common problems are often mentioned: first,

low numbers of defaults, second, non-linear relationship between the response and predictors,

and third, missing values in predictor variables.

Logistic regression is the most commonly used model for credit scoring applications (e.g.,

Altman & Sabato, 2007; Becchetti & Sierra, 2002; Lin et al., 2012; Zavgren, 1998). As noted

above, the number of defaults in a sample is often very small (e.g., Kiefer, 2010; Lin et al.,

2012). King & Zeng (2001) commented on difficulties of obtaining unbiased probability es-

timates of event occurring in rare events situations. This is due to the fact that the char-

acteristics of defaults (events) are more informative than those of non-defaults. When there

is a small number of defaults, there might be insufficient information to produce appropriate

estimates of the default probability for values close to 1 (Calabrese & Osmetti, 2013). Wang

& Dey (2010) showed that using an asymmetric link function improved the model fit.

In cases of low default portfolios, the conservative (higher) estimates of default probabilities

might be preferred, and a flexible asymmetric link function can achieve such higher estimates

for defaulters in comparison with logistic regression, as shown in Calabrese & Osmetti (2015).

In order to choose the link function, we consider that defaulters’ features are represented

by the tail of the response curve for values close to one. Furthermore, the Generalised Extreme

Value (GEV) distribution is used in literature (Kotz & Nadarajah, 2000; Falk et al., 2010) to
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model the tail of a distribution. Therefore, to focus the attention on defaulters’ characteristics,

Calabrese & Osmetti (2013) propose the quantile function of a GEV random variable as a

new link function

[− ln(PDi)]
−τ − 1

τ
= ηi = α +

p∑

j=1

βjxji, (1)

where τ ∈ < is the tail parameter. As discussed, for instance, in Calabrese & Osmetti (2013),

depending on the value of τ , several special cases can be recovered; e.g., when τ → 0 the

GEV random variable follows a Gumbel distribution and its cumulative distribution is the

log-log function (Agresti, 2002). In this way, Calabrese & Osmetti (2013) propose the GEV

regression model.

Second, the logistic and the GEV (1) models assume a linear relationship between the

explanatory variables and the response ηi. These models can mask possibly interesting non-

linear patterns which can help improve our understanding of the underlying covariate-response

relationships and perhaps improve the prediction accuracy of the scoring model as well (Berg,

2007; Calabrese et al., 2013; Chuang & Lin, 2009; Gestel et al., 2005; Huang et al., 2006; Lee

& Chen, 2005; Lin et al., 2012; Ong et al., 2005). Therefore Calabrese et al. (2013) propose

the BGEVA model, an extension of the GEV model based on penalized regression splines to

flexibly determine covariate effects from the data.

In the GEV model, the right part of equation (1) is changed to obtain an additive model

given by

[− ln(PDi)]
−τ − 1

τ
= α +

p∑

j=1

βjs(xji), (2)

where the sj(xij) are unknown one-dimensional smooth functions of the continuous covariates

xji.

The smooth functions s(xij) in the model are approximated by a linear combination of

Kj known (e.g., cubic or thin plate regression) spline bases bk(xji) and unknown regression
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parameters, γjk (Wood, 2006; Calabrese et al., 2013):

sj(xji) =

Kj∑

k=1

γjkbk(xji).

Calculating bk(xji) for k and each observation point gives Kj curves with different degrees

of complexity which multiplied by some real valued parameters γjk and then summed to give an

estimated curve for the smooth component (Ruppert et al., 2003). Replacing in model (2) the

smooth terms with their regression spline expressions yields essentially a classic parametric

model. Estimating the βj parameters and the smooth functions s(xij) we can predict the

default probabilities by using the inverse of the equation (2). The smooth functions show the

existence of possible non-linear relationships between the response variable and the predictors

and allow us to improve on the prediction results obtained using classic alternatives. The

model is implemented in the R package bgeva (Marra et al., 2013) available for download from

CRAN.

Third, SMEs may not provide full details of their financial statements (Sohn & Kim,

2013; Ciampi & Gordini, 2013), for this reason missing values could be a problem for scoring

models for SMEs (Lin et al., 2012; Ciampi & Gordini, 2013). In the literature, missing

values are classified into three types: Missing Completely At Random (MCAR), Missing At

Random (MAR) and Not Missing At Random (NMAR). The missing values are MCAR if the

probability that any variable is missing cannot depend on any other variable in the model of

interest or on the potentially missing values themselves. If we have a single variable Z with

missing data and a set of variables which is always observed X, the MCAR assumption can

then be expressed by P (Iz = 1|X,Z) = P (Iz = 1) where I is a dummy variable having a

value of 1 if Z is missing and 0 if Z is observed. Therefore, the probability that Z is missing

depends neither on the observed variables X nor on the possibly missing values of Z itself.

If the probability that Z is missing may depend on X, but it does depend on Z itself

P (Iz = 1|X,Z) = P (Iz = 1|X), the MAR assumption is satisfied. This means that MCAR
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is a special case of MAR. If the data are MAR, it is possible to get optimal estimates of

parameters without directly modeling the missing data mechanism since the missing-data

mechanism is ignorable. Unfortunately the MAR assumption is not testable. Finally, if the

MAR assumption is violated, missing data are said to be NMAR.

There are several methods for handling missing values. The first is to delete cases with

any missing data on the variables of interest. This method often deletes a large fraction of

the sample and it is particularly suitable if the data are MCAR. When the data are MAR,

this procedure may introduce bias into parameter estimates, so the use of a different method

is preferable. The second method is to impute values for the missing covariates and carry

out the analysis as if the imputed values were observed data. A wide variety of methods falls

under the general heading of imputation, for example imputations based on the mean, on the

linear regression or on the maximum likelihood and EM algorithm (see Rubin (1976, 1977,

1987)).

One of the widely used approach in the latter method is multiple imputation, which was

proposed by Rubin (1987) and described in detail by Graham (2012). Multiple imputation

can be described as a three-step process. First, in order to capture the uncertainty in the

estimates of the missing values, more sets of plausible values for missing observations are

created. Each of these sets of plausible values can be used to ’fill-in’ the missing values and

create a ’completed’ dataset. Second, each of these datasets can be analysed using complete-

data methods. Finally, the results are combined, which allows the uncertainty regarding the

imputation to be taken into account. The multiple imputation requires that the missing values

are MAR. The advantage of these methods is that it can be applied to any type of data and

it is implemented in the conventional software. Moreover, it has optimal statistical properties

(see Rubin (1987); Graham (2012)).

In this paper we apply a multiple imputation based on an MCMC algorithm known as fully

conditional specification (Graham, 2012). The basic idea is to impute incomplete variables

one at time by linear regression, using the filled-in variable from one step as a predictor in all
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subsequent steps. We have chosen this particular method since Florez-Lopez (2010) showed

in application to credit scoring that it is superior to other methods of handling missing values.

Another approach to cope with missing values is based on so-called coarse-classification

(Thomas et al., 2002). This procedure consists in dividing the values of a numeric predictor

into categories or classes. Normally there are 10-20 fine classes initially produced for the

range of ordered values from minimum to maximum. In this paper we divide the numeric

predictors into 10 classes of approximately the same size (maintaining exactly the same size

is not possible because of the varying numbers of missing values for different variables).

For each fine class a proportion of defaults (or bad accounts or simply Bads) is calculated,

and adjacent categories can be further grouped together into coarse classes, if the default rates

are sufficiently close. Missing values are entered as a separate category. Categories can be

entered into the model as binary dummies or alternatively are transformed into Weights of

Evidence (WoE):

WoEi = ln

[
bi/gi
B/G

]
= ln

(
bi G

gi B

)
, (3)

where bi is the number of bads (defaults) in category i of a variable, gi is the number of goods

(non-defaults) in category i, B is the total number of Bads, G is the total number of Goods

in the sample.

The term (WoE) goes back to early days of computer science and information theory and

is defined by Good (1950) as the weight of evidence (or degree of corroboration) in favour of

a hypothesis H given by evidence (or information or an experiment outcome) E:

WoE = ln

[
P (H|E)/(1− P (H|E))

P (H)/(1− P (H))

]
. (4)

Equation (3) above is a generalisation of Equation (4). It has extensively been used in

early classification algorithms and specifically in Naive Bayes classifier, please see Good (1985);

Greiff (1999); Hand & Adams (2000); Hand et al. (2001). WoE approach can be criticized on

the grounds of imposing the ordering of categories observed for each predictor taken separately
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and not allowing for interactions between predictors (Thomas, 2009). There may also be a

concern about using the dependent variable in transforming a predictor. Despite its limitations

this transformation is widely used in practice (Anderson, 2007; Baesens, 2014; Siddiqi, 2006;

Thomas, 2000, 2009). An alternative to WoE approach consists in partitioning the variables

and then turning k partitions into k-1 dummy (0/1) variables. This approach does not impose

any ordering or dependency, but has a disadvantage of producing a lot of variables (Thomas,

2000, 2009). Banasik et al. (2003) compared WoE and dummy variable approaches and found

them similar. Following the latter paper and also Banasik & Crook (2007); Bijak & Thomas

(2012); Lin et al. (2012); Malik & Thomas (2010); Orton et al. (2015), and the wide-spread

industry practice, we use WoE in this paper.

Given the fact that logistic regression is the most commonly used approach in credit scoring

(Thomas et al., 2002), WoE is appealing since this transformation produces log odds measures

(same scale as logistic regression). Furthermore, log-odds of each category are compared to

that of the whole sample: positive values would indicate riskier classes and negative values -

more creditworthy customers.

We use this approach as the benchmark to compare the performance of alternative methods

to cope with missing values (multiple imputation) and non-linearity (BGEVA model).

4 Empirical Analysis

4.1 Data description

The empirical analysis is based on explanatory variables from 2010 to predict the default in

2011 for 39, 785 UK SMEs and 154, 934 Italian SMEs. The data are from AMADEUS-Bureau

van Dijk (BvD), a database of comparable financial and business information on Europe’s

public and private companies. The time horizon considered here is of extreme interest as it

includes the European sovereign debt crisis of 2011. In summer 2011 interest rates on Italian

national debt went out of control.
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The definition of SME by the European Commission is adopted. That is, a business must

have an annual turnover of less than 50 million of Euro, a balance sheet total less than 43 mil-

lion of Euro and the number of employees should not exceed 250 (http://ec.europa.eu/enterprise/

policies/sme/facts-figures-analysis/sme-definition/index.htm). Furthermore, the number of

subsisdiaries is capped at 6, in accordance with Lu & Beamish (2001), and the number of

directors is 10 maximum, consistent with Gabrielsson (2007); Michala et al. (2013).

In this work, we consider a default to have occurred when a specific SME enters a

bankruptcy or a liquidation procedure. Moreover, a SME is classified as default also if it

is active and it has not paid a debt (classified as default of payment by BvD) or it is in admin-

istration or receivership or under a scheme of arrangement (defined as insolvency proceedings

by BvD). On the contrary, non-defaulters include active and dormant SMEs (only 29 for both

samples). A dormant company is still registered, but has no significant activity (and no signifi-

cant accounting transactions during the accounting period). Consistent with previous studies

(Altman & Sabato, 2007; Altman et al., 2010; Pederzoli et al., 2013) we exclude dissolved

firms that no longer exist as a legal entity, but the reason for dissolution is not specified. This

is in line with the objective of this paper that models the probability of going bankrupt using

publicly available information. Dissolved category comprises SMEs that may not necessarily

experience financial difficulties, they may stop trading because the owner retires or for similar

reasons. The descriptive statistcs for dissolved category is shown in Table 8 and Table 9 in

the Appendix. Future research can investigate dissolved as a separate category.

The use of the common database has ensured the availability of the common set of variables

measured in the same way for both countries. We used financial ratios that have been found

important in previous research on SMEs (Altman & Sabato, 2007; Lin et al., 2012; Michala

et al., 2013). Adopting the classification of variables suggested in Altman & Sabato (2007)

the variables in this research covered all five major groups usually used:

• Leverage (e.g. Gearing, Solvency ratio);

• Liquidity (e.g. Current ratio, Liquidity ratio, Shareholder liquidity ratio);
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• Profitability (e.g. EBITDA margin, Profit margin, ROCE, ROE);

• Coverage (e.g. Interest cover);

• Activity /Scale/Size (e.g. Total assets, Shareholder funds, No of employees, No of

directors, No of subsidiaries).

Following Michala et al. (2013) who found cash flow management significant in predicting

default, we also include cash flow based measures (e.g. Cash flow, Cash flow / Operating

revenue). The variables have been checked for linear dependence, and highly collinear ones

have not been used in the analysis. Table 1 presents short and full names of the variables

initially considered and some descriptive statistics on the training sample.

Table 1 around here.

The SMEs in the UK sample are larger as compared to Italian SMEs in terms of Total

assets, Operating revenue, No of employees, No of directors. This is consistent with the EU

statistics reported in Sections 1-2. The summary statistics for Age and No of subsidiaries are

similar for the two countries. The UK businesses have higher liabilities, but profitability is

also higher. The Italian companies show better Cash flow and lower debt. Despite using the

common source of the data, the percentages of missing values are different across the countries.

For Italy, the variable with the highest number of missing is Cash flow / Operating revenue,

with 19.5% missing. For the UK, the problem is much more acute, the highest percentage

of missing is 59.2% for ROCE. This has an effect on the results, depending on how missing

values have been treated, as can be seen from Tables 2 and Table 3 that show the variables

that are significant at 10% level or lower across the models.

Table 2 around here
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Table 3 around here

4.2 Predictive accuracy

To avoid sample dependency, the predictive accuracy for the models was tested on control

samples, i.e. we used out-of-sample tests. For each country the whole dataset was split into

training (70%) and control (30%) samples using a stratified random sampling with stratifica-

tion on default indicator. Measures of predictive accuracy used include mean absolute error

(MAE), mean square error (MSE) and Area under the ROC curve (AUC). MAE and MSE are

standard measures of predictive accuracy in forecasting studies. Obviously, scoring models

with lower MSE and MAE should forecast defaults and non-defaults more accurately. For a

bank it is much more costly to classify an SME as a non-defaulter when it is a defaulter than

the opposite. If a defaulter is classified as a non-defaulter, then it will be accepted for credit,

which will subsequently be lost (in part or as a whole). Yet when a non-defaulter is classified

as a defaulter, it is only a lost opportunity. Therefore, in this study MSE and MAE are re-

ported for defaults only and they are denoted by MSE+ and MAE+. AUC is the most popular

measure of model performance in credit scoring (Thomas et al., 2002) that summarises the

ability of the model to rank-order the risk correctly over the whole range of predicted PDs.

Higher value indicate better performance.

Table 4 around here

Table 5 around here

Tables 4 and 5 summarise the results1 for the UK and Italian models for imputed and Weights

of Evidence (WoE) data.

Considering WoE approach on the UK data, the GEV model shows better performance on

1To obtain these results we use SPSS for imputed missing values and the package ”bgeva” of R-program.
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MAE and AUC than the logistic model, although the latter has lower MSE (Table 4). More-

over, by applying the non-parametric model (BGEVA) the performance and MAE+ improves

further, and on MSE+ it becomes the same as for additive logistic. This fact justifies the use

of a non-parametric credit scoring model that can capture non-linear relationships between

the accounting characteristics of SMEs and response.

As for imputed values on the UK data, the best MAE+ and MSE+ are for BGEVA, whilst

the best AUC is shared between BGEVA and additive logistic model. It can be argued that

the improvement provided by additive models over GEV and logistic on WoE is modest. This

is not surprising, since one of the objectives of WoE and coarse-classification is to cope with

non-linearities (see, e.g. Thomas (2009)). Still it appears there is some benefit from applying

the semi-parametric approach, albeit it is less pronounced as compared to improvement of

BGEVA over GEV on imputed data. This further emphasises the advantage of BGEVA in

forecasting defaults in low default portfolios that performs well on both methods of treating

the missing values.

Considering WoE approach on Italian data (Table 5), we observe results similar to the UK

models. BGEVA has the best MAE+ and MSE+, whilst additive logistic produces slightly

higher AUC, but the difference is negligible. For Italian imputed values the results are mixed.

The additive logistic model shows the lowest values of the MAE+ and MSE+, whilst the GEV

and logistic models show higher values of the AUC.

The comparison of the predictive accuracy between the countries should be interpreted

with caution due to the different sample sizes, different proportions of missing values and

different number of significant variables (as discussed in the next section). Since the UK

sample size is smaller than the Italian one and the percentage of UK missing values is higher

than for Italy (see Table 1), one can expect a decrease in the predictive accuracy. However,

for completeness it could be stated that all models for Italy have better performance than the

UK models. Moreover, the Italian best model (BGEVA) has also a lowest MAE+.

It should also be noted that WoE coding provides better performance as compared to
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Imputation with the only exception of MAE+ of BGEVA for the UK.

In conclusion, the empirical results confirm that the BGEVA model performs well for SMEs

default forecasting for both countries. This can be attributed to the fact that the linearity

assumption is not supported by the data of both countries, as will be discussed in the next

section.

4.3 Comparison of risk predictors between Italian and UK SMEs

There are differences between the countries in terms of significant variables and their number

depending on the model/approach used. Whilst logistic regression for both countries and GEV

model for Italy show the same number of variables irrespective of imputation or WoE, there

are differences in model composition even in these cases. For example, in logistic regression for

the UK - Cash flow, Interest cover and Operating revenue are significant with WoE coding, but

not with Imputation; yet with Imputation the following variables become significant: Profit

margin, Shareholder funds and Total assets. For the rest of models the numbers of significant

variables differ with the extreme cases of GEV and BGEVA for the UK, where WoE coding

increases the number of significant variables from 11 to 20. This may be interpreted as

suggesting that at least for some variables values cannot be assumed to be missing at random,

therefore WoE increase the number of significant variables.

Only two variables consistently appear across all 16 models for the two countries: No of

directors and Solvency ratio (Tables 2 and 3). No of subsidiaries appear in all models, but

one. Profit margin and Shareholder funds enter 14 models. Other frequent variables that are

significant at 10 per cent level or lower across all 16 models for the two countries are Liquidity

ratio (13), Age (12), EBITDA margin (12), No of employees (12), Operating revenue (12),

Cash flow / Operating revenue (10), Total assets (10), ROE (10). When looking at most

frequent significant variables for each country separately (e.g. common variables that are in

more than half of the models for each country) these include No of directors, Solvency ratio,

No of subsidiaries, Profit margin, Shareholder funds and Liquidity ratio. This confirms the
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results from previous research that suggests measures of profitability, leverage and liquidity

are important (Altman & Narayanan, 1997; Altman et al., 2010; Michala et al., 2013). Share-

holder funds can be interpreted as the interest the shareholders have in the company, and

also the ability of the company to raise funds for growth/expansion. Solvency ratio emphasis

the importance of the proportion of Shareholder funds in the assets of the company. No of

directors and No of subsidiaries may be interpreted as proxies for company size and the scale

of the activity, with No of directors also acting as a crude proxy for quality of management

(assuming more directors would mean better management).

Table 6 around here

Table 7 around here

Despite the commonality reported above, there are some interesting differences between the

countries. The most notable one is the fact that Gearing is significant in all UK models, whilst

not being significant in Italy at all. This suggests the importance of the firm’s ability to pay

both long-term debt and short-term one in the UK. For Italy measures of profitability are

relatively more prominent: EBITDA margin and ROE appear in almost all Italian models, in

addition to Profit margin which is common to both countries. Age and No of employees are

twice more frequent in the UK models. Age has been previously found important in Altman &

Sabato (2007). No of employees indicates the size of the company or its scale. Financial scale

for Italy is most frequently represented by Operating revenue, which appears in all Italian

models, but only in half of the UK ones. Cash flow/ Operating revenue is also present in all

Italian models.

As an example of more detailed cross-country differences, consider the estimates of BGEVA

model on imputed values presented in Tables 6. The interpretation of WoE is less straightfor-

ward since it requires the information on category boundaries and WoE values. This informa-
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tion and details of other models are available on request. Financial measures common to both

countries include ratios of profitability (Profit margin), leverage (Solvency ratio), liquidity

(Liquidity ratio) and scale (Shareholder funds, Total assets). In addition, there are common

non-financial variables across the two countries: Age, No of directors, No of employees, No of

subsidiaries. This fact emphasises the value of non-financial information in modelling SMEs

and confirms some previous research (Altman et al., 2010).

Tables 6 and 7 report the estimation results of the parametric and non-parametric com-

ponents of the BGEVA model for the two countries and for multiple imputation. Some of the

covariate effects are reported in the parametric part of the BGEVA model since their smooth

function estimates were linear. Explanatory variables significant deviations from the linearity

assumption are reported in the smooth terms part. The variables show different degrees of

non-linearity (Edf). The parameter Edf (degrees of freedom) in Tables 6 and 7 controls the

smoothness of the curve. The variables with Edfs equal to 1 show linear smooth function

so they are reported in the parametric part. The estimated smooth parameters that exhibit

Edfs considerably greater than 1 are reported in smooth terms part. Larger Edf allows a very

flexible curve, e.g., a curve that can have multiple local maxima and minima. The values of

degrees of freedom are estimated from the data. The most interesting smooth terms are dis-

played in the Figures 1 and 2. In line with the interpretation for the parametric components,

if the estimated smooth function of a covariate is decreasing then the estimated PD decreases

when the explanatory variable increases, and vice versa.

Figure 1 around here

Figure 2 around here

There is some commonality between the countries with Liquidity ratio and Age being non-

linear for both countries. No of directors and Total assets exhibit non-linear relationship with
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the response for the UK, but not for Italy, on the contrary, Cash Flow and No of employees

show non-linear patterns for Italy only.

Consider Liquidity ratio that shows a non-linear relationship for both countries (Figures

1 and 2). For Italy when this variables increases, the PD decreases (although in a non-linear

way), in accordance with the expectations and prior research by Pederzoli et al. (2013). Yet

for the UK the relationship is more complex. Up to 30 and from 75 the relationship of this

covariate to PD is negative (as expected). However, in the middle section it is the opposite:

increasing values of Liquidity ratio signal increasing chances of default. This may be related

to difficulties in getting credit for SMEs, if Current Liabilities in denominator are decreasing.

Previous research summarised in Section 2 did not use exactly the same ratio, yet Altman

et al. (2010) report a negative relationship between a similar variable (Current ratio) and the

PD. It should be noted though, that the authors did not comment on potential non-linearity.

For German SMEs Fantazzini et al. (2009) and Figini & Giudici (2011) observed a counter-

intuitive sign for Liabilities ratio and explained it by the fact that many small business owners

cover their debts from external sources.

Examples of variables that show non-linear relationships and are not common for the two

countries are Total Assets for the UK and No of Employees for Italy, both can be interpreted

as proxies for SME size. From Figure 2 looking at Total assets we can deduce that the UK

small and micro enterprises show higher default risk, in line with Fantazzini et al. (2009) for

German SMEs. Then for companies with Total assets higher than 20 million euros, when this

variable increases the PD decreases. Altman et al. (2010) also noted the non-linear nature

of Total assets. Finally, from the plot for Number of Employees (Figure 1) Italian small

and micro enterprises have higher PD when the number of employees increases. For medium

enterprises this relationship becomes negative, although the confidence intervals are wide.

These results highlight some interesting patterns observed from the data, yet further research

would be beneficial in order to fully understand the implied relations.
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5 Conclusions and extensions

This paper has compared predictors of SMEs insolvencies across the UK and Italy, using

publicly available information from 2010 to model the company status in 2011. The choice

of the time period after the credit crisis makes this comparison particularly relevant, due to

different economic situations in the two countries. Whilst Italy was experiencing high interest

rates for its national debt, that was not the case in the UK despite the latter showing low

economic growth. There are also differences across the two countries in the relative importance

that SMEs play in the two economies, as discussed in Section 2. Despite these differences, there

were some financial measures significant in predicting insolvency. These included measures of

profitability, leverage, liquidity and scale. In addition, there was some commonality in non-

financial measures, thus highlighting the importance of soft information for analysis of SME

performance. As for the differences, profitability measures are significant more frequently for

Italy, whilst for the UK Gearing is a significant predictor, not featuring in Italian models.

A number of different modelling approaches have been explored in order to improve pre-

dictive accuracy. Generalised Extreme Value (GEV) regression with asymmetric link function

was applied in comparison to the logistic regression, which is a standard approach in credit

risk modelling. The assumption of non-linearity was relaxed through application of BGEVA,

non-parametric additive model based on the GEV link function. In addition, two methods

of handling missing values were compared: multiple imputation and Weights of Evidence

(WoE) transformation. The results suggest that the best predictive performance is obtained

by BGEVA, thus implying the necessity of taking into account the volume of defaults and non-

linear patterns when modelling SME insolvencies. WoE generally showed better prediction as

compared to imputation, suggesting that missing values could be informative.

This study presents an initial attempt to understand the cross-country drivers of SMEs

insolvencies, and is exploratory in the general approach adopted. Further extensions could

include exploration of additional countries and additional variables, in particular, of non-

financial nature, but this depends on the data availability. Causal relations through structural
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equation models can be investigated. On the practical side, it would be of interest to consider

predictors significant to both countries and construct a generic model with the objective of

comparing it to a country-specific model. Finally, different groups of SMEs that go out of

business can be explored, e.g. dissolved.

In this paper we perform a cross-sectional analysis. As a possible direction for future

research, we are planning to extend the BGEVA model to a panel data setting, and compare

the performance of SMEs for the two countries across time.

Acknowledgements

The Authors gratefully acknowledge the help of Armando Benincasa and Carlotta Prete at

Bureau Van Dijk in providing the data. They also acknowledge comments and suggestions by

the anonymous referees, that have helped improving the paper. Dr Andreeva is grateful to

The Royal Society of Edinburgh for financial support.

References

Agresti, A. (2002). Categorical Data Analysis. Wiley, New York.

Altman, E. & Narayanan, P. (1997). An international survey of business failure classification

models. Financial Markets, Institutions and Instruments, 6, 1–57.

Altman, E. & Sabato, G. (2007). Modeling credit risk for smes: Evidence from the us market.

ABACUS, 43(3), 332–357.

Altman, E., Sabato, G., & Wilson, N. (2010). The value of non-financial information in small

and medium-sized enterprise risk management. The Journal of Credit Risk, 6, 1–33.

Anderson, R. (2007). The Credit Scoring Toolkit. Oxford University Press: Oxford.

Baesens, B. (2014). Analytics in a Big Data World. Wiley, Wiley and SAS Business Series.

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Banasik, J. L. & Crook, J. N. (2007). Reject inference, augmentation, and sample selection.

European Journal of Operational Research, 183(3), 1582–1594.

Banasik, J. L., kin, J. N., & Thomas, L. C. (2003). Sample selection bias in credit scoring

models. Journal of Operational Research Society, 54(8), 822–832.

Becchetti, L. & Sierra, J. (2002). Bankruptcy risk and productive efficiency in manufacturing

firms. Journal of Banking and Finance, 27, 2099–2120.

Berg, D. (2007). Bankruptcy prediction by generalized additive models. Applied Stochastic

Models in Business and Industry, 23, 129–143.

Bijak, K. & Thomas, L. C. (2012). Does segmentation always improve model performance in

credit scoring? Expert Systems with Applications, 39(3), 2433–2442.

Calabrese, R., Marra, G., & Osmetti, S. A. (2013). Bankruptcy prediction of small and medium

enterprises using a flexible binary generalized extreme value model. ArXiv, 1307.6081, 1–28.

Calabrese, R. & Osmetti, S. (2015). Improving forecast of binary rare events data: A gam-

based approach. Journal of Forecasting, Forthcoming.

Calabrese, R. & Osmetti, S. A. (2013). Modelling sme loan defaults as rare events: the

generalized extreme value regression model. Journal of Applied Statistics, 40(6), 1172–1188.

Chuang, C. L. & Lin, R. H. (2009). Constructing a reassigning credit scoring model. Expert

Systems with Applications, 36, 1685–1694.

Ciampi, F. & Gordini, N. (2013). Small enterprise default prediction modeling through arti-

ficial neural networks: An empirical analysis of italian small enterprises. Journal of Small

Business Management, 51(1), 23–45.

Dietsch, M. & Petey, J. (2004). Should sme exposure be treated as retail or as corporate

exposures? a comparative analysis of default probabilities and asset correlation in french

and german smes. Journal of Banking and Finance, 28, 773–788.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

EC (2012a). Sba fact sheet 2012 for italy. Enterprise and Industry working paper.

EC (2012b). Sba fact sheet 2012 for uk. Enterprise and Industry working paper.

Falk, M., Haler, J., & Reiss, R. (2010). Laws of Small Numbers: Extremes and Rare Events.

Springer.

Fantazzini, D. & Figini, S. (2009). Random survival forests models for sme credit risk mea-

surement. Methodology and Computing in Applied Probability, 11, 29–45.

Fantazzini, D., Figini, S., Giuli, E. D., & Giudici, P. (2009). Enhanced credit default models

for heterogeneous sme segments. Journal of Financial Transformation, 25(1), 31–39.

Figini, S. & Giudici, P. (2011). Statistical merging of rating models. Journal of the Operational

Research Society, 62(6), 1067–1074.

Gabrielsson, J. (2007). Boards of directors and entrepreneurial posture in medium-size com-

panies. putting the board demography approach to a test. International Small Business

Journal, 25, 511–537.

Gestel, T. V., Baesens, B., Dijcke, P. V., Suykens, J. A. K., Garcia, J., & Alderweireld, T.

(2005). Linear and non-linear credit scoring by combining logistic regression and support

vector machines. Journal of Credit Risk, 1(4), 31–60.

Good, I. J. (1950). Probabllity and the Weighing of Evidence. London: Charles Griftin; New

York: Hafners.

Good, I. J. (1985). Weight of evidence: a brief survey. Bayesian Statistics, 27, 249–270.

Graham, J. W. (2012). Missing Data: Analysis and Design. Springer, New York.

Greiff, W. R. (1999). Maximum Entropy, Weight of Evidence and Information Retrieval. PhD

Thesis: University of Massachusetts Amherst.

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Hand, D. J. & Adams, N. M. (2000). Defining attributes for scorecard construction in credit

scoring. Journal of Applied Statistics, 27(5), 527–540.

Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of Data Mining. MIT Press.

Huang, J. J., Tzeng, J. H., & Ong, C. S. (2006). Two-stage genetic programming (2sgp) for

the credit scoring model. Applied Mathematics and Computation, 174, 1039–1053.

Ihua, U. B. (2009). Smes key failure-factors: a comparison between the united kingdom and

nigeria. Journal of Social Science, 18(3), 199–207.

Kiefer, N. M. (2010). Journal of business and economic statistics. Journal of Business Finance

& Accounting, 28(2), 320–328.

King, G. & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9,

321–354.

Kotz, S. & Nadarajah, S. (2000). Extreme Value Distributions. Theory and Applications.

Imperial College Press, London.

Lee, T. S. & Chen, I. F. (2005). A two-stage hybrid credit scoring model using artificial neural

networks and multivariate adaptive regression splines. Expert Systems with Applications,

28, 743–752.

Lin, S. M., Ansell, J., & Andreeva, G. (2012). Predicting default of a small business using

different definitions of financial distress. Journal of the Operational Research Society, 63,

539–548.

Lu, J. W. & Beamish, P. W. (2001). The internationalization and performance of smes.

Strategic Management Journal, 22, 565–586.

Lussier, R. & Halabi, C. (2010). A three-country comparison of the business success versus

failure prediction model. Journal of Small Business Management, 48(3), 360–377.

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Malik, M. & Thomas, L. C. (2010). Modelling credit risk of portfolios of consumer loans.

Journal of the Operational Research Society, 61(3), 411–420.

Marra, G., Calabrese, R., & Osmetti, S. A. (2013). bgeva: Binary Generalized Extreme Value

Additive Models. R package version 0.2.

Martens, D., Vanhoutte, C., Winne, S. D., Baesens, B., Sels, L., & Mues, C. (2011). Identifying

financially successful start-up profiles with data mining. Expert Systems with Applications,

38, 5794–5800.

Michala, D., Grammatikosa, T., & Filipea, S. F. (2013). Forecasting distress in european sme

portfolios. LSF Research Working Paper Series, (13-02).

Ong, C. S., Huanga, J. J., & Tzeng, G. H. (2005). Building credit scoring models using

genetic programming. expert systems with applications. Expert Systems with Applications,

29, 41–47.

Orton, P., Ansell, J., & Andreeva, G. (2011). Recent developments in commercial scoring.

Credit Scoring & Credit Control XII Conference, Edinburgh, UK.

Orton, P., Ansell, J., & Andreeva, G. (2015). Exploring the performance of small- and

medium-sized enterprises through the credit crunch. Journal of the Operational Research

Society, 66, 657–663.

Pederzoli, C., Thoma, G., & Torriccelli, C. (2013). Modelling credit risk for innovative smes:

the role of innovation measures. Journal of Financial Services Research, 44, 111–129.

Rubin, D. (1976). Inference and missing data. Biometrika, (63), 581592.

Rubin, D. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.

Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in

sample surveys. Journal of the American Statistical Association, 72, 538543.

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric Regression. Cambridge

University Press, London.

Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Jour-

nal of Business, 74(1), 101124.

Siddiqi, N. (2006). Credit risk scorecards : developing and implementing intelligent credit

scoring. Wiley: New Jersey.

Sohn, S. Y. & Kim, Y. S. (2013). Behavioral credit scoring model for technology-based firms

that considers uncertain financial ratios obtained from relationship banking. Small Business

Economics, 41(4), 931–943.

Thomas, L., Edelman, D., & Crook, J. C. (2002). Credit Scoring and Its Applications. Society

for Industrial and Applied Mathematics, Philadelphia.

Thomas, L. C. (2000). A survey of credit and behavioural scoring: forecasting financial risk

of lending to consumers. International Journal of Forecasting, 16(2), 149–172.

Thomas, L. C. (2009). Consumer Credit Models. Oxford University Press: Oxford.

Vallini, C. F., Ciampi, F., Gordini, N., & Benvenuti, M. (2009). Are credit scoring modeld

able to predict small enterprise default? statistical evidence from italian small enterprises.

International Journal of Business & Economics, 8(1), 3–18.

Wang, X. & Dey, D. K. (2010). Generalized extreme value regression for binary response

data: An application to b2b electronic payments system adoption. The Annals of Applied

Statistics, 4(4), 2000–2023.

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall,

Boca Raton.

Zavgren, C. (1998). The prediction of corporate failure: the state of the art. Journal of

Accounting Literature, 2, 1–37.

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6 Appendix

Table 8 around here

Table 9 around here
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Variables Italy, n=106967 UK, n=27132
Short name Description % Missing Mean Std Dev % Missing Mean Std Dev
Age Age of the company, months 0.2 207.55 156.072 0.2 206.59 192.983
Capital Capital, th EUR 0.2 203.46 816.490 2.0 331.96 2689.960
Cash flow Cash flow, th EUR 2.4 109.23 617.864 21.4 47.69 40224.523
Cash flow oprev Cash flow / Operating revenue,% 19.5 7.00 8.250 39.4 11.98 14.668
Current liab Current liabilities, th EUR 0.2 1606.02 3045.892 1.6 2368.52 6464.733
Current ratio Current assets/Current liabilities,% 0.3 1.76 2.767 3.7 4.75 10.125
EBITDA Margin EBITDA/Operating revenue, % 3.5 6.79 14.564 23.2 8.64 20.992
Gearing (Long term liab. + Short term loans)/ 16.5 188.34 220.371 20.7 76.62 149.386

Shareholders funds, %
Interest cover P(L) before interest/ Interest paid, % 8.2 26.13 96.408 57.6 39.52 119.958
Liquidity ratio (Current assets - Stock)/Current liab. 0.3 1.36 2.392 5.0 4.53 10.119
Loans Loans, th EUR 0.2 437.09 1300.625 3.3 1025.80 4005.364
Net income Net income, th EUR 0.2 11.46 635.865 3.2 109.074 4357.018
No directors Number of current directors/managers 0.0 1.33 1.810 0.0 4.74 2.555
No employees Number of employees 0.2 13.52 22.239 2.2 37.19 47.120
No subsidiaries No of recorded subsidiaries 0.0 0.41 0.872 0.0 0.47 0.977
Noncurrent liab Non-current liabilities, th EUR 0.2 613.73 1602.776 1.7 1001.87 4763.591
Op rev Operating revenue (Turnover), th EUR 0.2 2998.49 5457.546 1.7 6152.03 8545.211
PL beforetax Profit (Loss) before tax, th EUR 0.2 56.38 606.305 3.0 179.731 4391.610
Profit employee Profit per employee, th EUR 2.1 10.35 60.350 7.0 28.41 182.253
Profit margin P(L) before tax/ Operating revenue, % 1.9 1.03 14.395 7.8 7.66 25.868
ROCE P(L) before tax/ (Total assets - Cur. liab.) 6.5 10.77 57.921 59.2 19.08 81.989
ROE P(L) before tax/ Shareholder funds, % 7.7 13.36 97.496 18.0 25.85 109.174
Shareh liquidity ratio Shareholders funds/ Long term liab., % 2.2 7.46 37.293 52.0 36.03 105.713
Sharehold funds Shareholders funds, th EUR 0.2 865.00 2381.846 1.6 1495.01 7183.142
Solvency ratio Shareholders funds/Total assets, % 1.1 23.35 24.527 6.3 45.43 38.256
Tot assets Total assets, th EUR 0.2 3084.70 5422.522 1.8 4860.58 6705’262

Table 1: Descriptive statistics for training samples
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Figure 1: Smooth component estimates of the 2 (out of 4) continuous variables that exhibit a non-linear
pattern. These were obtained from applying the BGEVA model on the Italian SME data. Results are on the
scale of the predictor. The plot show the 95% confidence intervals. The numbers in brackets in the y-axis
captions are the estimated degrees of freedom (Edf) of the smooth curves.
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Figure 2: Smooth component estimates of the 2 (out of 4) continuous variables that exhibit a non-linear
pattern. These were obtained from applying the BGEVA model on the UK SME data. Results are on the
scale of the predictor. The plot show the 95% confidence intervals. The numbers in brackets in the y-axis
captions are the estimated degrees of freedom (Edf) of the smooth curves.
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Italy UK Italy UK all 16 models

Short name Imp Woe Imp Woe Imp Woe Imp Woe
Age X 0 X X SX 0 SX X 12
Cash flow X 0 0 X SX 0 0 SX 8
Cash flow oprev X X 0 0 X X 0 0 10
Current ratio 0 0 0 0 X 0 0 0 2
EBITDA Margin X X 0 X X X 0 X 12
Gearing 0 0 X X 0 0 X X 8
Interest cover 0 X 0 X 0 SX 0 X 8
Liquidity ratio X X X X SX 0 SX X 13
Net income 0 X 0 0 0 SX 0 0 6
No directors X X X X X X SX X 16
No employees X 0 X X SX 0 X X 12
No subsidiaries X X X X X X X X 16
Op rev X X 0 X X X 0 SX 12
PL beforetax 0 X 0 0 0 SX 0 X 7
Profit margin X X X 0 X X X 0 14
ROCE 0 X 0 0 0 SX 0 0 6
ROE X X 0 0 X 0 0 SX 9
Sharehold funds X X X 0 X X X 0 14
Shareh liquidity ratio 0 0 0 0 0 0 X 0 5
Solvency ratio X X X X X X X X 16
Tot assets X 0 X 0 X 0 SX 0 10

Table 2: Significant variables across the countries for logistic and additive logistic models. X - the variable is
significant at 10% s.l. or lower; SX - the smooth term of the variable is significant at 10% s.l. or lower
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Variables GEV model BGEVA model times in
Italy UK Italy UK all 16 models

Short name Imp Woe Imp Woe Imp Woe Imp Woe
Age X 0 X X SX 0 SX X 12
Cash flow X 0 0 X SX 0 0 SX 8
Cash flow oprev X X 0 X X X 0 X 10
Current ratio 0 0 0 0 X 0 0 0 2
EBITDA Margin X X 0 X X X 0 X 12
Gearing 0 0 X X 0 0 X X 8
Interest cover 0 X 0 X 0 SX 0 X 8
Liquidity ratio X X X X SX 0 SX X 13
Net income 0 X 0 X 0 SX 0 X 6
No directors X X X X X X SX X 16
No employees X 0 X X SX 0 X X 12
No subsidiaries X X X X X X X X 16
Op rev X X 0 X X X 0 SX 12
PL beforetax 0 X 0 X 0 SX 0 X 7
Profit margin X X X X X X X X 14
ROCE 0 X 0 X 0 SX 0 X 6
ROE X X 0 X X 0 0 SX 9
Sharehold funds X X X X X X X SX 14
Shareh liquidity ratio 0 0 X X 0 0 X SX 5
Solvency ratio X X X X X X X X 16
Tot assets X 0 X X X 0 SX X 10

Table 3: Significant variables across the countries for GEV and BGEVA models. X - the variable is significant
at 10% s.l. or lower; SX - the smooth term of the variable is significant at 10% s.l. or lower

Methods for missing values measure GEV model logistic BGEVA model additive logistic

Weight of Evidence MAE+ 0.784 0.798 0.782 0.797
MSE+ 0.722 0.705 0.702 0.702
AUC 0.741 0.731 0.722 0.717

Imputation MAE+ 0.862 0.909 0.761 0.969
MSE+ 0.807 0.838 0.713 0.941
AUC 0.632 0.632 0.677 0.677

Table 4: Forecasting accuracy measures for out-of-sample exercise obtained from applying the GEV and logistic
model and BGEVA and logistic additive models to UK data.
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Methods for missing values measure GEV model logistic BGEVA model additive logistic

Weight of Evidence MAE+ 0.803 0.804 0.781 0.782
MSE+ 0.679 0.684 0.651 0.662
AUC 0.813 0.812 0.824 0.825

Imputation MAE+ 0.835 0.814 0.891 0.803
MSE+ 0.730 0.711 0.835 0.701
AUC 0.806 0.806 0.799 0.801

Table 5: Forecasting accuracy measures for out-of-sample exercise obtained from applying the GEV and logistic
model and BGEVA and logistic additive models to Italian data.

Variables names Italy UK
of parametric model Estimate Std.Error p-value Estimate Std.Error p-value
Intercept -1.308e+00 1.526e-02 < 2e-16 3.888e+00 6.149e-02 < 2e-16
Cash flow oprev 4.011e-03 1.308e-03 0.002 - - -
Current ratio 1.274e-01 1.473e-03 < 2e-16 - - -
EBITDA Margin -4.701e-03 1.153e-03 4.56e-05 - - -
Gearing - - - 1.086e-02 2.316e-04 < 2e-16
No directors -2.935e-01 8.068e-03 <2e-16 - - -
No employees - - - 7.436e-02 1.512e-03 < 2e-16
No subsidiaries -1.145e-01 1.150e-02 < 2e-16 -9.365e-01 1.929e-02 < 2e-16
Op rev 1.563e-05 2.519e-06 5.39e-10 - - -
Profit margin -3.655e-03 8.980e-04 4.70e-05 -7.075e-02 1.436e-03 < 2e-16
ROE -2.986e-04 5.703e-05 1.64e-07 - - -
Shareh liquidity ratio - - - -1.416e-02 2.864e-04 < 2e-16
Sharehold funds -1.137e-04 8.391e-06 < 2e-16 8.769e-04 1.811e-05 < 2e-16
Solvency ratio -8.894e-03 3.854e-04 < 2e-16 -8.453e-02 1.724e-03 < 2e-16
Tot assets 4.043e-05 2.595e-06 < 2e-16 - - -
of Smooth terms Edf Est.rank p-value Edf Est.rank p-value
age 2.987 3 0.021 9.000 9 < 2e-16
Cash flow 8.950 9 <2e-16 - - -
Liquidity ratio 8.084 9 <2e-16 8.914 9 < 2e-16
No directors - - - 9.000 9 < 2e-16
No employees 3.898 4 <2e-16 - - -
Tot assets - - - 9.000 9 < 2e-16

Table 6: Parametric and smooth component summaries obtained from applying the semiparametric BGEVA
model to the samples of Italian and UK SMEs. The missing values are analysed by imputation method. The
values of τ parameters for Italian and UK models are −0.41 and −0.9, respectively.
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Variables names Italy UK
of parametric model Estimate Std.Error p-value Estimate Std.Error p-value
Intercept -1.334 0.011 < 2e-16 -1.572 0.028 -<2e-16
age w - - - 5.367 0.049 <2e-16
cash flow oprev w 0.128 0.018 3.77e-12 0.398 0.021 <2e-16
EBITDA Margin w 0.108 0.020 3.92e-08 1.506 0.017 <2e-16
Gearing w - - - -1.617 0.025 <2e-16
Interest cover w - - - 0.947 0.009 <2e-16
Liquidity ratio w - - - 0.879 0.013 <2e-16
Net income w - - - -0.536 0.040 <2e-16
No directors w 0.588 0.013 <2e-16 3.486 0.027 <2e-16
No employees w - - - 4.004 0.039 <2e-16
No subsidiaries w 0.216 0.031 1.83e-12 6.242 0.058 <2e-16
Op rev w -0.262 0.033 2.43e-15 - - -
PL beforetax w - - - 0.947 0.033 <2e-16
Profit margin w 0.106 0.022 2.08e-06 0.261 0.017 <2e-16
ROCE w - - - 0.439 0.010 <2e-16
Sharehold funds w -0.154 0.023 5.90e-11 - - -
Solvency ratio w 0.365 0.018 <2e-16 2.087 0.021 <2e-16
Tot assets w - - - 0.750 0.024 <2e-16
of smooth terms Edf Est.rank p-value Edf Est.rank p-value
Cash flow w - - - 8.808 9 < 2e-16
Interest cover w 8.488 9 <2e-16 - - -
Net income w 5.592 6 <2e-16 - - -
Op rev w - - - 8.602 9 < 2e-16
PL beforetax w 8.908 9 <2e-16 - - -
ROCE w 8.649 9 <2e-16 - - -
ROE w - - - 8.231 9 < 2e-16
Shareh liquidity ratio w - - - 7.303 8 < 2e-16
Sharehold funds w - - - 3.961 4 3.49e-12

Table 7: Parametric and smooth component summaries obtained from applying the semiparametric BGEVA
model to a sample of Italian and UK SMEs. The missing values are analysed by Weight of Evidence method.
The values of τ parameter for Italian and UK models are −0.41 and −0.42, respectively
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