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and the findings are robust to alternative double bootstrap confidence interval methods. 
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1. INTRODUCTION 

Production analysis is of key interest to both managers and policy-makers alike. It is therefore only 

natural that considerable research effort has been invested in the development of frontier methods for 

evaluating the efficiency of a productive unit relative to its peers. Firms are typically evaluated in 

terms of their ability to maximise output production (minimise input usage) with given inputs (output 

levels) relative to other firms’ performance in some comparison set. Data Envelopment Analysis 

(DEA) offers a non-parametric alternative to the parametric frontier production function analysis and 

has become one of the most commonly used frontier methodologies (Berger and Humphrey, 1997).  

DEA relies upon linear programming methods for obtaining an estimate of the true production 

frontier, also known as the “best practice” frontier, relative to which the performance of a productive 

unit is measured (Charnes et al., 1978). A firm’s failure to produce the estimated optimal output levels 

using the minimum inputs required results in a less than optimal efficiency level.  Moreover, it is 

often the case that not all of the sampled firms are exposed to the same environmental or contextual 

factors. Thus efficiency measures also incorporate additional variation, which should not be attributed 

to management performance, as these exogenous factors are often beyond its control, at least in the 

short term. As a result, the efficiency estimates are typically subjected to a second stage regression 

analysis to determine the impact upon efficiency of these environmental factors. Knowledge about 

these relationships can help managers improve their firms’ performance, while policy makers can 

develop a more comprehensive understanding of the costs that new policies can impose on the 

markets.  

This approach, though, is not without problems. In particular, a serious concern, raised by 

Xue and Harker (1999), stems from the dependency of the efficiency measures generated by DEA.
1
 

They point out that the DEA efficiency estimate of a firm is a function not only of its own input-

output set but of the input-output sets of all sampled firms. This creates a problem of correlation 

                                                 
1
 Another problem relates to the bounded nature of the efficiency measure and the appropriate model to be used 

for estimating the second stage regression (e.g. Tobit or Truncated models). However, this issue is not of 

concern in this paper (see Simar and Wilson, 2007). 
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among the efficiency estimates.
2
 Simar and Wilson (2007) (henceforth SW) point out that maximum 

likelihood estimation of the second stage regression will still yield consistent coefficient estimates, 

since the correlation among the DEA efficiency estimates disappears asymptotically. Nevertheless, 

this occurs at a rate that might invalidate conventional inference procedures. This is especially true in 

those cases where the production technology, assumed in the first stage for estimating the efficiency 

levels, is defined in an input-output space with more than three dimensions.  

SW (2007) propose two algorithms for constructing confidence intervals for the parameters of 

the second stage regression. Both are based on a bootstrap resampling scheme applied to the second 

stage of an otherwise typical two-stage DEA approach. The main distinction between the two 

algorithms is that the second one incorporates an additional procedure for bias-correcting the 

efficiency estimates before being fitted to a truncated model. This however, could take its toll on the 

statistical efficiency of the second stage regression parameters. That is, unless the bias being corrected 

is large, the bias reduction procedure implemented in the second algorithm is likely to add noise to the 

estimation. Monte Carlo experiments have shown that there are cases where the second algorithm 

does not perform as well as the first one in terms of coverage error (Simar and Wilson, 2007).  

 In this paper, first we investigate the coverage accuracy of double bootstrap confidence 

intervals for the parameters of a truncated model within the context of the two-stage DEA approach. 

Simulating data from a process that justifies regression of efficiency estimates on some exogenous 

factors, we examine improvements in the coverage errors of confidence intervals generated with SW 

(2007) first algorithm after calibrating the procedure using a second level bootstrap (see Hall, 1986; 

Beran, 1987; Hall and Martin, 1988; Shi, 1993). The Monte Carlo evidence indicates that iterating the 

bootstrap principle results in confidence intervals with much improved coverage probabilities, 

especially as the dimensionality of the first stage problem increases.  

The paper also examines the convergence properties of the coverage rates of both the basic 

bootstrap intervals and its simpler percentile counterpart, following the terminology of Davison and 

Hinkley (1997). The Monte Carlo evidence suggests that the dimensionality of the input-output space, 

                                                 
2
 In an attempt to remedy this dependency problem Xue and Harker (1999) suggest a non-parametric bootstrap 

approach. This is based on re-sampling from the inputs and outputs of the originally sampled firms and then 

fitting an OLS model to the efficiency estimates after reapplying DEA to each of the bootstrap samples. 
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within which the production process is defined, has an adverse effect on the convergence rate of both 

the basic and the percentile bootstrap intervals. Moreover, the simulation results indicate a non-

monotonic convergence to their nominal significance levels for both bootstrap interval methods 

investigated in this study when the more realistic 3-input 3-output production process is considered.   

 In recent years sophisticated efficiency and productivity models are often applied to the 

banking sector. In particular, DEA studies often rely on bootstrapping techniques to obtain confidence 

intervals for the estimated efficiency scores as well as in the second stage analysis of the determinants 

of estimated efficiencies (see for a survey e.g., Fethi and Pasiouras, 2010). In this paper we provide an 

empirical application of the double bootstrap methodology to a sample of European banks and 

investigate whether greater diversification can lead to improved efficiency. Our evidence suggests that 

larger and more diversified banks are also more efficient, a finding which is robust to different 

confidence intervals.  

 This paper is organised as follows. In section 2 we describe the concept of the bootstrap 

procedure, how it is currently applied to the two-stage DEA approach and an algorithm to calibrate 

the bootstrap confidence intervals. Section 3 describes the Monte Carlo experiments, presents an 

algorithm for reducing the computational burden induced from iterating the bootstrap and discusses 

the empirical results. An application of the methodology to a sample of European banks is described 

in section 4. Finally, the last section concludes. 

  

2. DEA AND THE BOOTSTRAP 

2.1 Second Stage Regression and the Bootstrap Conjecture  

Let ˆ( )T X   be an estimator of θ, the parameter of interest, and X be a random sample drawn from 

the population with c.d.f. F . Now, let 
*X  denote the bootstrap samples and 

** ˆ)( XT . If F  is 

unknown, one can use the empirical distribution function to construct the bootstrap samples. 

Otherwise, if F  is well defined apart from the parameter  , instead of drawing with replacement 
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from the original sample, one can draw from the distribution 
̂

F , where ̂   is the estimated value of 

  obtained from the original sample. The latter version is known as the parametric bootstrap. 

Suppose we wish to construct a two-sided confidence interval for θ. The 100(1– α)% basic 

bootstrap confidence interval with nominal coverage of a21  is   

1
ˆ ˆ ˆ ˆ( ) , ( )BET aI      

     
 

      [1] 

where  )ˆ(   is the α-quantile of  ˆ .  

Alternatively, the two-sided percentile confidence interval of nominal coverage a21  is 

1
ˆ ˆ,PCTLI    

 
 

        [2] 

where ̂  is the α-quantile of ̂ .  

Consequently, knowledge of the sampling distributions of  ˆ  and ̂  is required for constructing 

[1] and [2], respectively. However, such information is not available in practice.  

Bootstrap procedures, in this situation, can be a valuable tool. The bootstrap principle implies 

that information on the relationship between the true parameter θ and its estimator ̂  can be obtained 

by treating ( )T X  as the true parameter value in question and looking at the relationship between 

( )T X  and *( )T X , its bootstrap estimates. Based on this conjecture, in the case of the basic 

confidence interval method, for instance, the distribution of *( ) ( )T X T X  could be used to 

approximate the sampling distribution of ̂  , provided that the bootstrap is consistent for ̂ .  

In practice, the theoretical confidence intervals defined in [1] and [2] can be approximated by 

drawing B  independent bootstrap samples *
bX  and estimating the ˆ , 1,...,b b B  . Thus the Monte 

Carlo approximations to BETI  and PCTLI  are defined to be  

* *
((1 )( 1)) ( ( 1))

ˆ ˆ ˆ ˆ ˆ ˆˆ ( ) , ( )BET a B BI        
     
 

    [3] 

and 

* *
( ( 1)) ((1 )( 1))
ˆ ˆˆ ,PCTL B BI     

 
 

       [4] 
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where subscripts in parentheses denote ordered values and ( 1)a B   is an integer.  

SW (2007) laid the foundation for the use of a consistent bootstrap in the two-stage DEA 

approach context. Accordingly, confidence intervals for the parameters of the second stage regression 

appropriate for inference can be constructed with the following algorithm: 

1) Solve the output oriented DEA problem to obtain the efficiency estimate ˆ
i  for each 

firm 1,...,i n . 

2) Regress ˆ
i  on the environmental variables iz  using the truncated regression model to 

obtain estimates ̂  and ˆ  of the parameters   and   respectively. 

3) Repeat the following three steps B  times to obtain a set of bootstrap estimates 

 * * *

1

ˆ ˆ( , )
B

b
b

B  


   

a) For each 1,...,i n , draw *
  from the 2ˆ(0, )N   distribution with left 

truncation at ˆ(1 )iz  . 

b) For each 1,...,i n , compute * *ˆ
i i iz    . 

c) Estimate *ˆ
b  and *

,ˆ b , by regressing *
i  on iz , again using the truncated 

regression model. 

4) Construct the confidence intervals [3] or [4] as described above.   

The actual coverage probabilities of these bootstrap confidence interval methods however, may not 

coincide with their nominal coverage probabilities. The difference between the actual coverage rate of 

a confidence interval and the claimed value 1 2a  is defined as the coverage error. The primary 

source of this error, provided that the number of bootstrap replications is sufficiently large to render 

Monte Carlo error negligible, is the use of an approximation of ̂   in BETI   or similarly the 

substitution of ˆ
  with 

*
( ( 1))
ˆ

B  , its bootstrap approximation, in PCTLI .  

 The double bootstrap is designed to estimate this coverage error and adjust, based on this 

estimate, the procedure in such a way that the coverage probability improves.  
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2.2 Iterating the Bootstrap Principle 

There are various ways of calibrating the bootstrap confidence intervals through iteration of the 

bootstrap principle (see Efron and Tibshirani, 1993). Here we use the double bootstrap with no pivot 

as described in Shi (1993).  

First, we consider the basic double bootstrap confidence interval for the parameter      

* *
(1 ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) , ( )BET q a qI      
      
 

     [5] 

In practice, this theoretical interval can be approximated by means of a Monte Carlo simulation. 

Therefore, its empirical estimate is defined as 

* *
ˆ ˆ(1 ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) , ( )BET q a qI      
     
 

.     [6] 

BETI  can be constructed by drawing a set of M second level bootstrap samples for each of the B ones 

obtained from the first level bootstrap and calculating the estimates *ˆ
b  and **ˆ

bm  based on the first and 

second level bootstrap samples respectively, 1,...,b B  and 1,...,m M . Subsequently, estimates of 

ˆ( )q   and ˆ(1 )q   can be obtained by *
( ( 1))a Bu   and *

((1 )( 1))a Bu    respectively with *
bu  given by  

** *
* 1

ˆ ˆ ˆ( )
M

bm bm
b

I
u

  


 





       [7] 

(see Davison and Hinkley, 1997; p225). Here ( )I   denotes the indicator function, equal to one if the 

argument is true and zero otherwise. 

Similarly, the percentile double bootstrap confidence interval is 

* *
( ) (1 )

ˆ ˆ,PCTL q a qI   
  
 

       [8] 

with its empirical estimate given by 

* *
ˆ ˆ( ) (1 )

ˆ ˆ,PCTL q a qI   
 
 

.       [9] 

Again, values for ˆ( )q  and ˆ(1 )q   can be obtained using the algorithm described above. However, 

in the percentile double bootstrap confidence interval method *
bu  is defined differently than for the 

basic double bootstrap (Davison and Hinkley, 1997; p250). In this case we have  
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**
* 1

ˆ ˆ( )
M

bmm
b

I
u

 








.        [10]  

The idea of calibrating the confidence intervals for the parameters of the DEA second stage regression 

can be implemented, by introducing an additional bootstrap level after step (3) as follows: 

1) Solve the output oriented DEA problem to obtain ˆ
i  for each firm 1,...,i n . 

2) Regress ˆ
i  on the environmental variables iz  using the truncated regression model to 

obtain estimates ̂  and ˆ  of the parameters   and   respectively. 

3) Repeat the following three steps B  times to obtain a set of bootstrap estimates 

 * * *

1

ˆ ˆ( , )
B

b
b

A  


   

a) For each 1,..,i n , draw *
i  from the 2ˆ(0, )N   distribution with left truncation 

at ˆ(1 )iz  . 

b) For each 1,..,i n , compute * *ˆ ˆ
i i iz    . 

c) Estimate *ˆ
b  and *

,ˆ b , by regressing *̂  on z  using again the truncated 

regression model. 

4) For each set of bootstrapped estimates *
bA , 1,...,b B  do the following: 

a. For each 1,...,i n , draw **
i  from the *

2

ˆ(0, )N   distribution with left 

truncation at *ˆ(1 )iz  . 

b. For each 1,...,i n , compute ** * **ˆ ˆ
i i iz    . 

c. Estimate **ˆ
bm  and **

,ˆ bm , by regressing **̂  on z  using again the truncated 

regression model. 

5) Repeat steps (4a) – (4c) M  times to obtain a set of double bootstrap estimates 

 ** ** **
1

1

ˆ ˆ{( , ) }
B

M
m m

b
A   


  . 
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6) Obtain the *
bu , 1,...,b B  using either [7] or [10] together with the set of double 

bootstrap estimates **A .   

 

3. SIMULATIONS 

3.1 Design of the Experiment 

Let i  denote the true efficiency level of firm i  and ipx  and iqy  be respectively the vectors of inputs 

used and outputs produced by the same firm, with 1,...,i n , 1,...,p P  and 1,...,q Q . Finally, let 

iz  be a vector of environmental variables faced by the thi  firm. 

The data generating process used for the simulations follow assumptions A1 to A8 of SW 

(2007). These concern the distribution of the observations, the production technology and some 

regularity conditions necessary for the consistency of the DEA estimators. The first three assumptions 

referring to the distribution of inputs, outputs and environmental variables faced by the firms are 

briefly: 

A1.  That all the n observed input output and environmental factor bundles ( , , )x y z  with a 

joint distribution function ( , , )f x y z are identically and independently distributed on 

the production possibility set defined by  ( , ) : can be produced byT x y y x   

A2.  The efficiency levels are conditioned on the environmental factors faced by the firms 

as described by the model: 

( , ) 1i iz      .        [11] 

A3.  The error term i  of the model is independently and identically distributed, normal 

with zero mean and left truncated at 1 ( , )iz  .  

By A1 above the environmental variable is generated randomly as 2 ~ ( , )i z zz N   , where 

1 1iz  . More specific than A2, the mechanism through which firm efficiency is affected by 

environmental factors is explained by the linear model:  

i i iz             [12] 
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where, as in A3, the innovations i  are drawn from a ( , )N     left truncated at 1 iz  . The inputs 

are assumed uniformly distributed over the interval [6,16] , i.e. ~ uniform(6,16)ipx . In the single 

output case, the quantity produced by the thi  firm is determined by the production function showing 

the maximum output quantity producible from ipx  after adjusting it to reflect the firm’s level of 

efficiency, 1 3/4

1

P
i i ipp

y x 


  . In the multiple output case, the output level for each “product-line” is 

obtained by disaggregating the total production of the firm, 1 3/4

1

P
i i ipp

x  


   into its constituent 

components. If 2Q   we draw 1 ~ [0,1]uniform , whereas if 3Q  , 1  is generated as before and we 

additionally draw 
1

1
~ (0,1 )KK

uniform 



 , for each 2,..., 1Q  . Finally, the disaggregation 

is performed in the following manner: for 1,..., 1q Q   we set iq q iy   , whereas the output level 

of the final “product-line” is given by 
1

1
(1 )

Q
iQ k ik

y  



  . 

 Each experiment consists of 1000 trials. Following SW (2007), we consider three distinct 

cases of technology, where the number of inputs and outputs are {1, 2, 3}p q  . Moreover, for 

comparison purposes we also set the values of the parameters as 0  , 1  , 2z  , 2z  , 

1 2 0.5   . For each trial in a Monte Carlo experiment we keep track of whether or not the 

constructed confidence intervals cover the true values of  1 , 2  and  .    

 

3.2 A Fast Double Bootstrap Algorithm 

Monte Carlo experiments involving the bootstrap can become rather expensive since the number of 

estimations of the statistic of interest is R B , where R  is the number of the Monte Carlo replications 

and B  is the number (usually large) of the bootstrap replications. Evaluating the accuracy of double 

bootstrap confidence intervals by means of Monte Carlo simulation is even more computationally 

demanding as each Monte Carlo trial now involves a multiple M of the first layer bootstrap 

replications. 
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A plausible approach to ease the simulation’s computational burden would be to avoid 

calculations that would have no impact on the final results. Such an approach is adopted here by 

incorporating a set of deterministic stopping rules, in the spirit of Nankervis (2005), in the Monte 

Carlo experiments. These stopping rules are deterministic in the sense that the obtained results are the 

same as if all the double bootstrap computations had been performed. The stopping rules used in the 

Monte Carlo experiments conducted for this paper are presented below. 

 

Double bootstrap two sided equal-tailed basic (percentile) confidence intervals using stopping 

rules. 

1) Do all B single bootstrap calculations to obtain the set of bootstrap estimates 

 B

bbA
1

**

2

*

1

*

1
)ˆ,ˆ,ˆ(


   needed for obtaining double bootstrap samples 

**

bmX , 

Mm ,..,1 and double bootstrap statistics. 

2) Sort each of the 
*

1
ˆ

b , 
*

2
ˆ

b  and 
*ˆ
b  in an increasing order (decreasing in the percentile case) 

while preserving at the same time the information on their correspondence between each 

other. 

3) Let K be 
*

1
ˆ

b . 

4) Do an initial 2α(R+1) sets of double bootstrap replications using the smallest α(R+1) and 

largest α(R+1) values of K. Use [7] (or [10]) to obtain values of 
*

wbu , where 

**

2

*

1
ˆ,ˆ,ˆ

bbbw  . 

5) Order the values of 
*

wbu  in an increasing fashion. Define 

 *

))1((,max,

*

)1(, ,...,  Rwwww ULOWULOW  ,  *

))1(2(,

*

)1)1((,min, ,...,  RwRwww UUUPUP  . For 

each w , max,wLOW  and min,wUP  are correspondingly the upper and lower bounds for )(ˆ q  

and )1(ˆ q . 

6) If 0max, KLOW  and 1min, KUP  go to step 12. 
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7) If just 0max, KLOW  (or just 1min, KUP ) then do the remaining bootstrap calculations in 

an order corresponding to decreasing (increasing) values of K. 

8) If neither 0max, KLOW  nor 1min, KUP  then carry out the remaining sets of bootstrap 

replications in an order corresponding to alternating high and low values of K. 

9) In each set of double bootstrap replications stop further calculations if for all 

**

2

*

1
ˆ,ˆ,ˆ

bbbw  , 
*

wbu  is at least as large as max,wLOW  and cannot exceed min,wUP . Put 

differently, we would stop after 
*

bM double bootstrap replications if the following expressions  

 
maxˆ

1

***

, *

*

ˆˆ2ˆ


 LOWI
b

m

bmb 




 and  
minˆ

*

1

***

, *

*

ˆˆ2ˆ


 UPI b

m

ibmb

b






, hold true 

for every  ,, 21 . 

10) Add every newly estimated 
*

wu , to those already obtained at step 4 and perform step 5 once 

again. 

11) Check whether both 0max, KLOW  and 1min, KUP . If not go back to step 7. 

12) If no remaining sets of bootstrap replication are left to be done and the above condition holds: 

stop.  

13) Otherwise continue to the next step. 

14) Substitute 
*

2
ˆ

b  for K and repeat steps 7-12. Start estimations using the remaining 2α(R+1) 

largest and smallest values of K obtained at step 2, if any are still left, before using any other 

remaining values of K. This time apply the stopping rule described at step 9 only to 

**

2
ˆ,ˆ

bbw  . 

15) If the condition in step 11 holds and there are still sets of bootstrap replications left to be done 

continue to the next step, otherwise stop. 

16) Substitute 
*ˆ
b  for K and repeat steps 7-12. Start the estimations using the remaining 2α(R+1) 

largest and smallest values of K of step 2, if any are still left, before using any other 

remaining values of K. This time apply the stopping rule described at step 9 only to 
*ˆ
bw  . 
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3.3 Results 

Results are presented for the empirical coverage probabilities of the basic and percentile bootstrap 

confidence intervals and their double bootstrap versions as well as for the asymptotic intervals. Four 

confidence levels are considered; .80, .90, .95 and .99. Our discussion centres on the slope parameter, 

which is the parameter of interest in the typical two-stage type of analysis. Thus, for the sake of 

brevity, we present results only for the slope parameter. The bootstrap results are based on 1999 

replications, and in the case of the iterated bootstraps each second-level bootstrap is based on a 

maximum 250 replications.  

Table 1 reports Monte Carlo results on the accuracy of two types of bootstrap confidence 

intervals we have already discussed, the basic bootstrap and its percentile counterpart, as well as those 

constructed based on the inverse of the negative Hessian of the log-likelihood function. Average 

widths of all three methods are shown in Table 2.  

< Insert Table 1 about here > 

< Insert Table 2 about here > 

A clear pattern emerges when looking at Table 1. Given the sample size, the estimated 

coverage probabilities of the confidence intervals of both algorithms deteriorate as the dimensionality 

of the problem in the first stage increases. This is consistent with the “curse of dimensionality” that 

plagues the DEA efficiency estimator (Kneip et al., 1998). Looking at the coverage probabilities 

across the different confidence interval methods, the performance of the basic bootstrap interval is 

broadly comparable to that of the asymptotic one. Table 2, however, indicates that the basic bootstrap 

produces less precise intervals than the conventional method of inference. Nevertheless, the latter is 

consistent only in the simple case of 1p q  . As noted earlier, conventional inference methods are 

rendered inconsistent in those cases where 3p q   (see Simar and Wilson, 2007). Comparing the 

simpler percentile method discussed by Efron and Tibshirani (1993) with the basic bootstrap interval 

reveals that the former performs better in terms of coverage probability. Moreover, the percentile 

bootstrap unlike the basic one exhibits significantly better coverage rates than the asymptotic method. 
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That is true especially for sample sizes that are relatively small given the dimensions of the problem 

in the first stage. 

 Nevertheless, the accuracy of either the basic or the percentile bootstrap interval in both 

multi-input multi-output cases considered in this study is not ensured even with 10,000 observations; 

a sample size that is not easily within reach of applied researchers. What is more, there is evidence 

that the coverage rate of the basic confidence interval, in the case of 2p q  , and for all but the .99 

level of confidence are statistically different from the nominal rate even with 15,000 observations. 

Finally, the last panel of Table 1 presents the results for a more complex production process with 

3p q  . In this case, and contrary to expectations, the coverage errors of both bootstrap intervals 

appear to increase as the sample size increases with no sign of convergence even when the maximum 

number of observations considered in this study is used. These results are suggestive of the sample 

sizes that may be required in production processes more complicated than 3p q  .   

Turning to the double bootstrap methods, Table 3 shows, for three different sample sizes, 

{100, 200, 400}n  , the coverage probabilities of the estimated confidence intervals over 1000 Monte 

Carlo trials. Average widths of these methods are shown in Table 4.
3
   

< Insert Table 3 about here > 

< Insert Table 4 about here > 

We observe that both iterated bootstrap confidence interval methods significantly improve 

coverage accuracy over their single bootstrap counterparts. Careful inspection of the table reveals that 

this improvement is even more pronounced in the case of multi-input multi-output technologies, 

especially for the basic double bootstrap over its single bootstrap counterpart. In the special case of 

1p q  , the percentile double bootstrap method generates confidence intervals that achieve nominal 

coverage probabilities, even with a sample size of only 100 observations. The basic double bootstrap 

confidence intervals have a similar performance. The only exception is at .99 significance, for which 

                                                 
3
 Following Nankervis (2005) we also estimate the computational efficiencies achieved by the stopping rules. 

Monte Carlo results for the more realistic scenario of 3-input 3-output production process with a sample size of 

400 firms indicate that the mean computational efficiencies due to the stopping rules are 1.8 and 2.2, 

respectively, for the estimation of basic and percentile double bootstrap intervals. These efficiencies mean that 

with a maximum number of double bootstrap replications M=250 only the equivalent of 139 (113) double 

bootstrap computations are required for estimating the basic (percentile) interval. 
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there is evidence that the true coverage rate is statistically different from the nominal one in two 

occasions; at 100n   and 200n  . Nevertheless, the accuracy of both double bootstrap methods is 

still affected by the dimensionality of the production technology in a manner similar to that observed 

in Table 1.  

 

4. EMPIRICAL APPLICATION 

We apply the SW (2007) method and the double bootstrap refinement suggested above to investigate 

the output efficiency for a sample of European financial conglomerates and specialised banks, after 

controlling for environmental factors that may influence their performance.
4
 

 

4.1 Measure of Diversification and Data 

Different views exist as to what constitutes a financial conglomerate (e.g. Verweire, 1999). EU 

legislation defines it as a group of entities comprised of at least an insurance undertaking and a 

banking or investment services company.
5
 Following Laeven and Levine (2007), we use the income 

diversity index to classify banks into specialised and diversified institutions. The index measures the 

diversity of a bank’s income sources and is defined as:  

 
1

NetInterest Income OtherOperating Income
DIVIN

TotalOperating Income


     [13] 

Net interest income is defined as interest income minus interest expenses and the other operating 

income is the sum of net fee income, net commission income and net trading income. The range value 

of the index is between 0 and 1, with higher values indicating greater income diversification. 

The analysis is based on a sample of 1557 commercial and savings banking institutions 

operating in seventeen European countries drawn from the Bankscope database.
6
 The data are 

extracted from consolidated balance sheets and income statements for the year 2004.
7
 This allows for 

                                                 
4
 The programming code is available from the authors upon request. 

5
 Directive 2002/87/CE. 

6
 The countries are the 15 EU member states before the fifth enlargement of 2004 – namely, Austria, Belgium, 

Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, 

Sweden, United Kingdom- as well as Norway and Switzerland. 
7
 All amounts are expressed in Euro. 
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capturing the diversification activity of banking groups that is undertaken through their subsidiaries. 

Table 5 presents the summary statistics for the sampled banks and their country composition. The 

table shows the variation in size and income sources both across the different types of institutions as 

well as countries. The average commercial bank appears significantly larger in size measured by total 

assets and more diversified than the corresponding savings bank. However, the size difference is 

moderate when looking at the median figures, whereas commercial banks still seem considerably 

more diversified than savings banks. A closer look at the cross-country differences also reveals that 

the average Swiss bank has less diverse income sources than the average bank in the sample. Despite 

Switzerland being considered as a traditional universal banking country, there are only a relatively 

small number of banks fully engaged in universal banking activities (Rime and Stiroh, 2003). Hence, 

this lends further support to our choice of a diversification measure based on financial data instead of 

classifying banks for example on the basis of whether they are headquartered in a country that 

prohibits universal banking or not.   

<Insert Table 5 about here> 

 

4.2 Inputs and Outputs Definition 

One of the most important steps in evaluating relative efficiency in banking is the selection of 

appropriate inputs and outputs. Following Berger and Humphrey (1997), we adopt the 

“intermediation” approach, which views banks as institutions that employ labour, physical capital and 

deposits to produce loans and other assets. Accordingly, we consider personnel expenses, total fixed 

assets and deposits as inputs and total customer loans and other earning assets as outputs. Since this 

study deals with banking institutions that have a wider scope of activities than the traditional bank, 

capturing the non-traditional aspect of banks’ production technology is essential. Hence, a measure of 

off-balance sheet business is included as one of the outputs to capture banks’ non-traditional activities 

(e.g. Clark and Siems, 2002). This corresponds to the aggregate nominal value of a bank’s contingent 

liabilities including, for example, acceptances, documentary credits and guarantees.   

However, choosing a parsimonious model to describe the production process is equally 

important with selecting the right inputs and outputs, as over-specification of the production model 
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may result in rendering some of the banks efficient by default (Leibenstein and Maital, 1992). 

Therefore, we investigate whether information embedded in the off-balance sheet activities is also 

incorporated into the other two output variables by means of the Efficiency Contribution Measure 

(ECM) test (Pastor, Ruiz and Sirvent 2002).
8
    

The data reject the null hypothesis that the off-balance sheet variable is superfluous at the 1% 

significance level.
9
 Thus, the variable should be included in the model as the marginal information on 

the banks’ operating efficiency contained within is significant.  

 

4.3 Second Stage Regression and Results  

In the second stage, we investigate how a bank’s degree of income diversification affects its level of 

efficiency by regressing the first stage estimates on a financial conglomeration index as well as other 

environmental factors. Specifically, we estimate the following regression equation.  

2
1 2 3 4 5

17
6 7 8 9 1

*ln lnj j j j j j j

j j j j i i j ji

TE DIVIN DIVIN DIVIN AST EQAST AST

ROAE MS LLP COMM d Country u

    

   


    

     
  [14] 

In this regression equation the dependent variable jTE  is the output oriented technical efficiency 

estimated in the first stage. As covariates, we include DIVIN to capture a bank’s degree of income 

diversification, lnAST, which is the logarithm of total assets, to control for bank size and a 

multiplicative interaction term.
10, 11

 Following Pallich et al. (2000), Elsas et al. (2010) and Berger et 

al. (2010), among others, we include DIVIN
2
, a quadratic term for income diversification, in our 

specification to capture any non-linearities between the level of bank efficiency and the banks’ degree 

of diversification.
12

 We also include the EQAST and the ROAE variables. The former, defined as the 

                                                 
8
 The ECM test is based on estimating the DEA model twice. First with all the variables included in the model 

(full model) and subsequently with omitting the candidate variable from the model (reduced model). We set the 

tolerance level of efficiency change at 1.1   and postulate that the variable is regarded as influential if the 

proportion of banks with a change in their efficiency levels exceeding the tolerance level due to omitting the off 

balance sheet variable is greater than 5%. 
9
 The ECM statistic is T=125 and follows the binomial distribution with p=0.05 and N=1556.    

10
 Both DIVIN and lnAST variables have been demeaned to facilitate the interpretation of the results. 

11
 To investigate the robustness of our results with regard to the measurement of diversification we also employ 

the Asset Diversification measure as defined in Laeven and Levine (2007). Our findings indicate that the 

relationship between banks’ efficiency levels and their degree of diversification remains fairly robust to the 

employed measures of diversification. 
12

 We thank a referee for suggesting the inclusion of a quadratic term for the diversification index.   
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ratio of equity over total assets, measures the level of capitalisation, while the latter is defined as the 

return on average equity and measures bank profitability. In addition, we include each bank’s market 

share of deposits (MS) as a measure of market conditions, as well as the LLP variable, defined as the 

loan loss provision over total customer loans, to capture the quality of each bank’s loan portfolio. A 

dummy variable (COMM) takes the value of 1 if a bank is classified as commercial and 0 otherwise. 

Finally, we incorporate country dummies to control for systematic differences in operating 

performance across countries due to features and conditions specific to each country’s banking sector 

and economy. 

 The results of the estimation are given in Table 6. Column 2 reports the parameter 

estimates. Columns 3-12 report the endpoints of 95% confidence intervals, respectively generated 

with asymptotic normal approximation, basic and percentile bootstrap methods and basic and 

percentile double bootstrap methods with the basic bootstrap confidence interval being the suggested 

method by SW (2007). As mentioned above the dependent variable, jTE  is bounded between unity 

and infinity, with unity representing perfect efficiency. Therefore, estimated parameters with negative 

signs indicate sources of efficiency and vice versa.  

<Insert Table 6 about here> 

Diversifying into financial services like insurance and securities underwriting and the 

economic benefits associated with it are often cited as the main driving forces behind mergers 

between firms specialising into different financial services. The results presented in Table 6 

corroborate this view.  

The negative sign of the coefficient on the interaction term between size and diversification 

suggests that for a given level of diversification larger banks be able to achieve higher efficiency 

levels. A plausible explanation is that larger institutions are operating with some slack capacity which 

can be set in good use by diversifying into other financial activities as well. This finding is 

statistically significant at the 5% level for all four bootstrap confidence interval estimates, but 

according to the simulation results, our preferred method for conducting hypothesis tests is the double 

bootstrap confidence intervals. Incidentally, the coefficient is also found statistically significant by the 
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normal approximation method, although this method does not enable consistent inference in this 

context, given the dimensionality of the problem in the first stage.  

Looking at the lower-order interaction-term coefficients, these are statistically significant 

according to both double bootstrap interval methods. The coefficients for DIVIN and DIVIN
2
 suggest 

a nonlinear (concave) relationship between diversification and operating (in)efficiency for the 

averaged sized bank in our sample. On the other hand the negative sign of the size coefficient 

indicates that larger banks are also more efficient, implying that they enjoy scale economy advantages 

over their smaller counterparts, conditional on being as diversified as the average diversified bank in 

the sample. 

Moreover, we observe that the technical efficiency decreases with the banks’ level of 

capitalisation. In particular the sign of the EQAST coefficient is positive. This finding is in line with 

other studies in Europe, and suggests that efficient banks finance their assets by relying less on their 

capital. This is also in accordance with the notion of pro-cyclical leverage (Adrian and Shin, 2008). 

That is, raising capital for funding asset growth is relatively expensive, especially in periods when 

money markets are characterised by excess liquidity, as in 2004, resulting in banks turning to 

alternative more cost-effective funding sources.  

This view is corroborated by the negative sign of the LLP coefficient. It implies that efficient 

banks also have a reduced loan portfolio quality, a finding in line with the skimping hypothesis 

(Berger and DeYoung, 1997). In other words, it is likely that resources previously devoted to 

screening and monitoring of loans are transferred to other activities with higher growth prospects. 

That is, managers faced with the trade-off between short-term performance and future loan quality  

choose to focus on the former by putting emphasis on growth opportunities in general and asset 

growth in particular. Moreover, the negative sign on MS variable is consistent with the efficient 

structure theory (Berger, 1995), lending further support to the above argument. However, the two 

double bootstrap methods yield different outcomes, hence, the results on the significance of this 

coefficient are inconclusive. Moreover the coefficient on the ROAE variable is not significant at the 

5% level. As such there appears to be no strong relationship between variation in profitability and 
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efficiency levels. Finally, the results suggest that the commercial banks are more efficient than their 

savings counterparts. 

 

5. SUMMARY AND CONCLUSION 

The two-stage approach provides a framework for determining those factors that significantly affect 

the efficiency of a firm or organisation. This methodology can be a useful tool in the hands of 

managers and policy makers who consider production analysis to be of key interest. In most realistic 

cases, though, where production technology is defined in a multidimensional input-output space, 

classical inference methods are no longer consistent. This is due to the inherent dependency of the 

efficiency estimates. To overcome this problem, SW (2007) put forward two alternative algorithms 

for generating confidence intervals, based on bootstrap resampling. The main distinction between the 

two is that the second algorithm incorporates an additional procedure for bias-correcting the 

efficiency estimates. Use of bias estimates, however, is likely to introduce additional noise in the 

procedure. Hence, in this paper we have considered a refinement of SW (2007)’s first algorithm by 

iterating the bootstrap principle and investigated how the basic interval fares relative to its simpler 

percentile counterpart.  

Our Monte Carlo experiments indicate, in the case of 3p q   that convergence of the 

confidence intervals towards their nominal significance levels are non-monotonic. That is, the 

coverage error will most likely increase with greater sample size, before it starts converging towards 

zero. Consequently, this finding has important implications for empirical applications, where the 

dimensionality of the production problem is similar or greater than this one. In addition, the Monte 

Carlo evidence confirms that the convergence rate of confidence intervals is adversely affected by the 

number of dimensions assumed for the production process in the first stage. The simulation results 

also show that the percentile bootstrap interval method performs better than its basic counterpart and 

is even better than the asymptotic interval, whenever the latter is valid. Despite its apparent advantage 

over the basic bootstrap method, the results suggest that in more realistic cases neither the percentile 

nor the basic bootstrap intervals can approximate well the nominal coverage probabilities. In these 
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cases, iterating the principle of bootstrapping provides a correction to the single bootstrap intervals, 

offering a considerable improvement in the coverage errors.  

Finally we applied the SW (2007)’s first algorithm and its refinement as suggested in this 

paper to a sample of European banks. The results indicate that even after controlling for various bank 

and country specific factors, the degree of diversification has a positive effect on bank efficiency. 

Moreover, this finding is robust to alternative double bootstrap confidence interval methods.  
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Table 1. Estimated coverages of confidence intervals generated by conventional and single bootstrap methods. 

  
Basic Bootstrap Alg. 
Nominal significance  

Percentile Bootstrap Alg. 
Nominal significance  

Asymptotic Normal Apr. 
Nominal significance 

n 
 

0.80 0.90 0.95 0.99  0.80 0.90 0.95 0.99  0.80 0.90 0.95 0.99 

p=q=1 

100  0.76 0.83 0.89 0.95  0.77 0.88 0.94 0.98  0.77 0.85 0.90 0.96 

200  0.78 0.86 0.91 0.95  0.78 0.88 0.93 0.98  0.78 0.87 0.92 0.96 

400  0.78 0.88 0.93 0.98  0.77 0.90 0.94 0.99  0.78 0.89 0.93 0.98 

600  0.79 0.89 0.94 0.99  0.80 0.90 0.95 1.00  0.79 0.90 0.95 0.99 

1200  0.79 0.88 0.94 0.98  0.80 0.89 0.94 0.99  0.79 0.89 0.94 0.98 

3400  0.82 0.91 0.96 0.99  0.82 0.92 0.96 0.99  0.82 0.91 0.96 0.99 

5000  0.80 0.90 0.95 0.99  0.80 0.90 0.95 0.99  0.80 0.90 0.95 0.99 

10000  0.80 0.90 0.96 0.99  0.80 0.90 0.96 0.99  0.80 0.90 0.96 0.99 

15000  0.81 0.91 0.95 0.99  0.81 0.91 0.95 0.99  0.81 0.91 0.95 0.99 

p=q=2 

100 
 

0.70 
 

0.76 
 

0.81 
 

0.87 
 

 
0.72 

 

0.82 
 

0.88 
 

0.96 
  

0.71 
 

0.77 
 

0.83 
 

0.90 

 200 
 

0.71 
 

0.80 
 

0.84 
 

0.91 
 

 
0.73 

 

0.83 
 

0.89 
 

0.97 
  

0.72 
 

0.80 
 

0.86 
 

0.92 

 400 
 

0.70 
 

0.80 
 

0.87 
 

0.94 
 

 
0.71 

 

0.83 
 

0.90 
 

0.97 
  

0.70 
 

0.81 
 

0.87 
 

0.95 

 600 
 

0.74 
 

0.84 
 

0.89 
 

0.95 
 

 
0.75 

 

0.86 
 

0.92 
 

0.98 
  

0.75 
 

0.86 
 

0.90 
 

0.96 

 1200 
 

0.71 
 

0.83 
 

0.88 
 

0.96 
 

 
0.72 

 

0.85 
 

0.90 
 

0.97 
  

0.71 
 

0.84 
 

0.90 
 

0.97 

 3400 
 

0.72 
 

0.84 
 

0.91 
 

0.97 
 

 
0.72 

 

0.85 
 

0.93 
 

0.98 
  

0.72 
 

0.84 
 

0.92 
 

0.97 

 5000 
 

0.73 
 

0.82 
 

0.90 
 

0.96 
 

 
0.73 

 

0.84 
 

0.91 
 

0.97 
  

0.73 
 

0.83 
 

0.90 
 

0.96 

 10000 
 

0.73 
 

0.85 
 

0.91 
 

0.97 
 

 
0.73 

 

0.85 
 

0.92 
 

0.98 
  

0.73 
 

0.85 
 

0.91 
 

0.98 

 15000 
 

0.77 
 

0.87 
 

0.93 
 

0.98 
  

0.77 
 

0.88 
 

0.93 
 

0.98 
  

0.77 
 

0.88 
 

0.93 
 

0.98 

 p=q=3 

100  
0.63 

 

0.69 
 

0.73 
 

0.81 
 

 
0.66 

 

0.79 
 

0.85 
 

0.94 
 

 
0.64 

 

0.71 
 

0.76 
 

0.84 
 200  

0.68 
 

0.76 
 

0.80 
 

0.87 
 

 
0.70 

 

0.81 
 

0.87 
 

0.96 
 

 
0.69 

 

0.76 
 

0.81 
 

0.90 
 400  

0.62 
 

0.72 
 

0.78 
 

0.87 
 

 
0.64 

 

0.77 
 

0.85 
 

0.95 
 

 
0.62 

 

0.73 
 

0.80 
 

0.89 
 600  

0.67 
 

0.76 
 

0.82 
 

0.91 
 

 
0.69 

 

0.79 
 

0.86 
 

0.96 
 

 
0.68 

 

0.77 
 

0.84 
 

0.93 
 1200  

0.57 
 

0.69 
 

0.79 
 

0.89 
 

 
0.59 

 

0.73 
 

0.83 
 

0.95 
 

 
0.58 

 

0.71 
 

0.81 
 

0.92 
 3400  

0.54 
 

0.67 
 

0.77 
 

0.89 
 

 
0.54 

 

0.69 
 

0.79 
 

0.93 
 

 
0.54 

 

0.67 
 

0.78 
 

0.91 
 5000  

0.52 
 

0.65 
 

0.75 
 

0.88 
 

 
0.53 

 

0.66 
 

0.77 
 

0.90 
 

 
0.52 

 

0.66 
 

0.76 
 

0.89 
 10000  

0.47 
 

0.58 
 

0.71 
 

0.87 
 

 
0.47 

 

0.59 
 

0.74 
 

0.90 
 

 
0.47 

 

0.59 
 

0.72 
 

0.88 
 15000  

0.47 
 

0.60 
 

0.70 
 

0.86 
 

 
0.46 

 

0.60 
 

0.71 
 

0.89 
 

 
0.46 

 

0.60 
 

0.70 
 

0.87 
 Note: Results are based on 1,000 Monte Carlo trials. 

 

 

 

 



 25 

 

Table 2. Widths of estimated confidence intervals generated by conventional and single bootstrap methods 

  
Basic Bootstrap Alg. 

Mean width - Nominal sign.  
Percentile Bootstrap Alg. 

Mean width - Nominal sign.  
Asymptotic Normal Apr. 

Mean width - Nominal sign. 

n 
 

0.80 0.90 0.95 0.99  0.80 0.90 0.95 0.99  0.80 0.90 0.95 0.99 

p=q=1 

100  0.266 0.347 0.422 0.587  0.266 0.347 0.422 0.587  0.270 0.347 0.414 0.544 

200  0.184 0.238 0.286 0.384  0.184 0.238 0.286 0.384  0.185 0.237 0.283 0.372 

400  0.128 0.165 0.198 0.263  0.128 0.165 0.198 0.263  0.128 0.165 0.196 0.258 

600  0.104 0.134 0.160 0.213  0.104 0.134 0.160 0.213  0.104 0.134 0.159 0.210 

1200  0.074 0.095 0.113 0.150  0.074 0.095 0.113 0.150  0.074 0.095 0.113 0.148 

3400  0.043 0.056 0.066 0.088  0.043 0.056 0.066 0.088  0.043 0.056 0.066 0.087 

5000  0.036 0.046 0.055 0.072  0.036 0.046 0.055 0.072  0.036 0.046 0.055 0.072 

10000  0.025 0.032 0.038 0.051  0.025 0.032 0.038 0.051  0.025 0.032 0.038 0.050 

15000  0.020 0.026 0.031 0.041  0.020 0.026 0.031 0.041  0.020 0.026 0.031 0.041 

p=q=2 

100 
 

0.326 0.437 0.549 0.864 
 

0.326 0.437 0.549 0.864 
 

0.340 0.436 0.520 0.683 

200 
 

0.211 0.274 0.331 0.452 
 

0.211 0.274 0.331 0.452 
 

0.212 0.272 0.325 0.427 

400 
 

0.137 0.177 0.212 0.284 
 

0.137 0.177 0.212 0.284 
 

0.136 0.175 0.209 0.275 

600 
 

0.112 0.144 0.172 0.228 
 

0.112 0.144 0.172 0.228 
 

0.111 0.142 0.170 0.223 

1200 
 

0.076 0.098 0.116 0.154 
 

0.076 0.098 0.116 0.154 
 

0.075 0.097 0.115 0.152 

3400 
 

0.044 0.057 0.068 0.089 
 

0.044 0.057 0.068 0.089 
 

0.044 0.056 0.067 0.088 

5000 
 

0.036 0.047 0.056 0.073 
 

0.036 0.047 0.056 0.073 
 

0.036 0.046 0.055 0.073 

10000 
 

0.025 0.032 0.038 0.051 
 

0.025 0.032 0.038 0.051 
 

0.025 0.032 0.038 0.051 

15000 
 

0.020 0.026 0.031 0.041 
 

0.020 0.026 0.031 0.041 
 

0.020 0.026 0.031 0.041 

p=q=3 

100  0.467 0.669 0.925 1.985  0.467 0.669 0.925 1.985  0.580 0.745 0.888 1.167 

200  0.268 0.353 0.433 0.624  0.268 0.353 0.433 0.624  0.271 0.348 0.415 0.546 

400  0.164 0.212 0.254 0.343  0.164 0.212 0.254 0.343  0.163 0.209 0.249 0.327 

600  0.129 0.166 0.198 0.265  0.129 0.166 0.198 0.265  0.127 0.164 0.195 0.256 

1200  0.084 0.108 0.129 0.171  0.084 0.108 0.129 0.171  0.083 0.107 0.127 0.167 

3400  0.047 0.060 0.072 0.095  0.047 0.060 0.072 0.095  0.046 0.060 0.071 0.093 

5000  0.038 0.049 0.058 0.077  0.038 0.049 0.058 0.077  0.038 0.048 0.058 0.076 

10000  0.026 0.033 0.040 0.053  0.026 0.033 0.040 0.053  0.026 0.033 0.040 0.052 

15000  0.021 0.027 0.032 0.042  0.021 0.027 0.032 0.042  0.021 0.027 0.032 0.042 
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Table 3. Estimated coverages of confidence intervals generated by double bootstrap methods. 

  Basic Double Bootstrap Alg. 
Nominal significance 

 Percentile Double Bootstrap Alg. 
Nominal significance 

n 
 

0.80 0.90 0.95 0.99  0.80 0.90 0.95 0.99 

p=q=1 

100  0.77 0.88 0.94 0.98  0.78 0.90 0.95 0.99 

200  0.79 0.89 0.95 0.98  0.79 0.90 0.95 0.99 

400  0.79 0.91 0.95 0.99  0.80 0.91 0.96 0.99 

p=q=2 

100  0.74 0.84 0.91 0.94  0.75 0.86 0.93 0.99 

200  0.75 0.84 0.91 0.95  0.76 0.86 0.92 0.99 

400  0.74 0.86 0.92 0.98  0.74 0.86 0.93 0.99 

p=q=3 

100  0.72 0.80 0.87 0.88  0.71 0.83 0.90 0.98 

200  0.72 0.83 0.91 0.93  0.73 0.85 0.92 0.99 

400  0.68 0.80 0.88 0.95  0.69 0.80 0.90 0.99 

Note: Results are based on 1,000 Monte Carlo trials 

 

Table 4. Widths of estimated confidence intervals generated by double bootstrap methods. 

  Basic Double Bootstrap Alg. 
Nominal significance 

 Percentile Double Bootstrap Alg. 
Nominal significance 

n 
 

0.80 0.90 0.95 0.99  0.80 0.90 0.95 0.99 

p=q=1 

100  0.281 
 

0.363 
 

0.429 
 

0.479 
 

 0.292 
 

0.392 
 

0.498 
 

0.819 
 200  0.190 0.244 

 
0.303 

 

0.356 
 

 0.192 
 

0.251 
 

0.307 
 

0.475 
 400  0.131 

 
0.168 

 
0.203 

 

0.264 
 

 0.131 
 

0.170 
 

0.206 
 

0.312 
 p=q=2 

100  0.305 
 

0.443 
 

0.504 
 

0.608 
 

 0.405 
 

0.603 
 

1.124 
 

2.009 
 200  0.218 

 
0.283 

 
0.345 

 

0.389 
 

 0.224 
 

0.295 
 

0.367 
 

0.582 
 400  0.141 

 
0.181 

 
0.220 

 

0.277 
 

 0.141 
 

0.184 
 

0.223 
 

0.341 
 p=q=3 

100  0.532 
 

0.686 
 

0.847 
 

1.641 
 

 0.891 
 

1.772 
 

4.490 
 

6.425 
 200  0.280 0.358 

 
0.410 

 

0.452 
 

 0.300 
 

0.409 
 

0.540 
 

1.040 
 400  0.168 

 
0.216 

 
0.268 

 

0.313 
 

 0.170 
 

0.223 
 

0.273 
 

0.423 
 Note: Results are based on 1,000 Monte Carlo trials 
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Table 5. Descriptive statistics 

  No of  Total Assets (Size) in €.th.  Income Diversity index 

  Observations  Mean median  mean median 

AUSTRIA  92  4,446,463 409,997  0.44 0.43 

BELGIUM  16  2,370,268 1,465,646  0.53 0.40 

DENMARK  62  6,155,734 304,102  0.46 0.46 

FINLAND  6  24,227,542 9,832,681  0.53 0.51 

FRANCE  113  4,615,236 1,538,488  0.59 0.64 

GERMANY  588  6,484,665 1,142,362  0.42 0.39 

GREECE  10  11,273,294 2,625,859  0.48 0.46 

IRELAND  8  27,835,580 3,237,596  0.31 0.31 

ITALY  68  1,969,861 725,086  0.54 0.56 

LUXEMBOURG  52  6,797,045 1,418,101  0.60 0.64 

NETHERLANDS  16  53,875,885 1,926,433  0.44 0.44 

NORWAY  40  3,721,192 365,842  0.40 0.38 

PORTUGAL  7  21,780,662 6,609,877  0.55 0.60 

SPAIN  38  29,077,412 5,758,037  0.49 0.47 

SWEDEN  78  2,103,156 101,215  0.43 0.43 

SWITZERLAND  303  4,814,006 188,708  0.26 0.20 

UNITED KINGDOM  60  41,829,887 1,295,279  0.57 0.58 

         

Commercial Banks  649  16,249,536 807,461  0.51 0.50 

Savings Banks  908  2,187,380 644,445  0.36 0.37 
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Table 6. Truncated regression analysis of European bank efficiency estimates (95% Confidence Intervals, p=q=3). 

 ̂   
Asymptotic CI 

 Basic  
Bootstrap CI 

 Percentile 
Bootstrap CI 

 Basic Double 
Bootstrap CI 

 Percentile Double 
Bootstrap CI 

   
low high 

 
low high 

 
low high 

 
low high 

 
low 

High 
 

Constant 13.171 
 

13.164 13.177 
 

11.704 14.342 
 

11.999 14.637 
 

11.499 14.404 
 

11.938 14.842 

DIVIN 17.591 
 

17.463 17.720 
 

12.453 24.459 
 

10.724 22.729 
 

12.394 27.756 
 

7.427 22.788 

DIVIN
2
 -8.316 

 
-9.250 -7.382 

 
-10.596 -5.849 

 
-10.783 -6.036 

 
-10.709 -5.614 

 
-11.018 -5.923 

lnAST -0.155 
 

-0.155 -0.154 
 

-0.336 0.137 
 

-0.447 0.0264 
 

-0.338 0.305 
 

-0.616 0.028 

DIVIN*lnAST -1.047 
 

-1.053 -1.041 
 

-1.554 -0.650 
 

-1.444 -0.540 
 

-1.673 -0.629 
 

-1.465 -0.421 

EQAST 0.030 
 

0.028 0.031 
 

0.017 0.044 
 

0.015 0.043 
 

0.018 0.045 
 

0.015 0.042 

ROAE 0.0006 
 

0.00005 0.0011 
 

-0.0049 0.0065 
 

-0.0053 0.0059 
 

-0.0048 0.0053 
 

-0.0041 0.0060 

MS -13.127 
 

-13.315 -12.939 
 

-26.056 -12.494 
 

-13.761 -0.198 
 

-28.392 -12.776 
 

-13.479 2.137 

LLP -1.175 
 

-1.176 -1.174 
 

-1.479 -1.146 
 

-1.204 -0.871 
 

-1.561 -1.148 
 

-1.202 -0.789 

COMM -0.334 
 

-0.343 -0.324 
 

-0.600 -0.076 
 

-0.592 -0.067 
 

-0.613 -0.080 
 

-0.587 -0.054 

σ
2

u 1.714 
 

1.713 1.714 
 

1.650 1.805 
 

1.622 1.777 
 

1.649 1.814 
 

1.613 1.778 

Notes: (i) The dependent variable is the DEA estimate of the unobserved inefficiency score of firm j. (ii) The technology describing the production process is defined in a 

3-input 3-output space. (iii) The regression also includes country dummy variables which are not reported. (iv) The independent variables are defined as follows: DIVIN is 

a measure of diversification calculated as the 1-|(Net Interest Income-Other Operating Income)/Total Operating Income|. lnAST is the logarithm of total assets. EQAST is 

the ratio of equity over total assets. ROAE is the ratio of return on average equity. MS is the market share of deposits. LLP is a measure of loan portoflio quality measured 

as the Loan Loss Provisions over Total Customer Loans. COMM is a dummy variable that equals 1 if a bank is commercial and zero otherwise. (v) The basic bootstrap 

confidence interval is the Simar and Wilson (2007)’s suggested confidence interval.  


