
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

The 2014 General Video Game Playing Competition
Diego Perez, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Simon M. Lucas,

Adrien Couëtoux, Jerry Lee, Chong-U Lim, Tommy Thompson

Abstract—This paper presents the framework, rules, games,
controllers and results of the first General Video Game Playing
Competition, held at the IEEE Conference on Computational
Intelligence and Games in 2014. The competition proposes the
challenge of creating controllers for general video game play,
where a single agent must be able to play many different games,
some of them unknown to the participants at the time of submit-
ting their entries. This test can be seen as an approximation of
General Artificial Intelligence, as the amount of game-dependent
heuristics needs to be severely limited.

The games employed are stochastic real-time scenarios (where
the time budget to provide the next action is measured in
milliseconds) with different winning conditions, scoring mech-
anisms, sprite types and available actions for the player. It is
a responsibility of the agents to discover the mechanics of each
game, the requirements to obtain a high score and the requisites
to finally achieve victory. This paper describes all controllers
submitted to the competition, with an in-depth description of
four of them by their authors, including the winner and the
runner-up entries of the contest. The paper also analyzes the
performance of the different approaches submitted, and finally
proposes future tracks for the competition.

I. INTRODUCTION

Game-based AI competitions provide a popular way of
benchmarking AI algorithms, and they have recently become
a central feature of the AI/CI in games research field. In
such competitions, AI methods are typically tested on their
ability to play a game; competitors submit controllers which
are evaluated in solo or competitive play. The main reason
for testing algorithms through game-based competitions is that
they provide fair and reliable benchmarks based on activities
which are proven to be challenging for human cognition. But
such competitions also have obvious appeal in that the results
are easy to understand and interpret and they are, quite simply,
fun. This contributes to raising awareness of AI research
as well as to drawing competitors, and the software suites

Diego Perez, Spyridon Samothrakis, Simon M. Lucas (School of Computer
Science and Electronic Engineering, University of Essex, Colchester CO4
3SQ, UK; email: {dperez,ssamot,sml}@essex.ac.uk);
Julian Togelius (New York University, 2 Metrotech Center, Brooklyn, 11201
New York; julian@togelius.com),
Tom Schaul (New York University, 715 Broadway, 10003, New York. He is
now with Google DeepMind, London; schaul@gmail.com),
Adrien Couëtoux (Institute of Information Science (IIS), Academia Sinica,
128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan, adri-
enc@iis.sinica.edu.tw),
Jerry Lee (Department of Computer Science and Information Engi-
neering, National Taiwan Normal University, 106 Taipei City, Taiwan;
jerry789520@gmail.com),
Chong-U Lim (Computer Science and Artificial Intelligence Laboratory
(CSAIL) Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, MA 02139, USA; culim@mit.edu),
Tommy Thompson (University of Derby, Kedleston Old Rd, Derby, UK;
tommy@t2thompson.com)

developed for competitions often double as student exercises
in addition to their roles as “serious” AI benchmarks.

However, almost all existing competitions focus on a single
game. This has the drawback that competitors overfit their
solution to the specific game, limiting the value of the compe-
tition as a benchmark. If competitors are given the opportunity
to tailor their solutions to the particular game, the results of the
competition might reflect the ingeniousness of the competitor
in engineering domain-specific adaptations, rather than the
quality of the underlying AI algorithm. Therefore, it would
seem that the promises of game-based AI benchmarking could
only be fully realised if the competitor was not aware of
which game(s) its submitted controller would get to play. One
could also argue that the ability to play any of a number of
unseen games is a valid approximation of artificial general
intelligence, or “broad” AI, as opposed to “narrow” AI which
is concerned with solving individual problems.

In this paper we describe one of the first competitions
to focus not on the playing of a single game, but on a
number of unseen games within a relatively large space of
possible games. This competition focuses on video games,
in particular the type of two-dimensional arcade games that
were common in the infancy of the video game medium,
and is consequently called the General Video Game Playing
Competition. The competition was run by the first five authors
of this paper: Diego Perez, Spyridon Samothrakis, Julian
Togelius, Tom Schaul and Simon M. Lucas; who also designed
all the games and implemented the framework. The additional
authors are those competition participants who scored highest
in the contest, and those participants who also participated in
a pre-competition debugging phase.

The remainder of this paper is structured as follows. In the
next section we highlight some of the most important related
research concerning game description languages and game-
based AI competitions. We then describe the General Video
Game-AI (GVG-AI) framework in Section III, with particular
focus on the Video Game Description Language (VGDL),
followed by a description of the infrastructure and rules of
the competition in Section IV. A long Section V contains
descriptions of the controllers submitted to the competition:
sample controllers developed by the organisers, and submitted
controllers. Four submitted controllers are described in-depth
by their developers (who also appear as authors of this
paper). Finally, we describe the results of the competition in
Section VI. Final conclusions and guidelines for future work
appear in Section VII.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

II. RELATED RESEARCH

The idea of benchmarking AI through games is as old as AI
itself. In particular, Chess was proposed as an AI benchmark
by Turing, who proceeded to play the game using a manual
execution of the Minimax algorithm, probably the world’s first
instance of AI game playing [1]. The World Computer Chess
Championship series was inaugurated in the seventies as a way
of allowing systematic comparison of AI approaches using this
game, and has continued unabated for four decades [2]. These
days, computers mainly compete with each other as the best
computer programs have been able to beat the best humans
since IBM’s Deep Blue defeated the reigning human Chess
champion, Garry Kasparov.

This victory of machine over man led to a re-evaluation of
the idea that you needed to be intelligent to play Chess, or
indeed that Chess-playing ability was a good proxy of general
intelligence at all, as the winning program essentially did tree
search with plenty of domain-specific heuristics. But perhaps
other games would be different? After all, playing Chess is
different from playing Go and poles apart from playing Halo
or Grand Theft Auto. Presumably, playing these games well
requires very different cognitive skills.

In the last decade, a community of researchers has formed
that focuses on applications of AI and CI in games, centred
on the CIG and AIIDE conferences. In conjunction with these
conferences, a number of competitions have been run, mostly
organised as competition series with one or more competition
events annually. These competitions have structured research
activities in the field through the practice of competitors
publishing their submissions as papers, and through the use
of the software developed for the competitions as standard
benchmarks.

The diversity of these competitions is considerable. There
are competitions focused on board games, such as Go and Oth-
ello; first-person shooter games, in particular Unreal Tourna-
ment 2004 [3]; platform games, such as Super Mario Bros [4]
and Geometry Friends [5]; car racing, such as TORCS [6];
classic arcade games, such as Ms. Pac-Man [7] and X-Pilot [8];
and real-time strategy games, such as StarCraft [9]. There
are also competitions based on games tailor-made to test
particular problem-solving capacities, such as the Physical
TSP game and competition [10], and several others that there
is no space to discuss here. In addition to these conferences,
the International Computer Games Association has hosted a
Computer Olympiad since 1989, focusing on a number of
board games and occasionally puzzles [11].

Though many of these competitions have been successful
in the sense that they have had multiple entries that, over a
succession of competition events, have advanced the state of
the art in playing that particular game, they are still ultimately
subject to the same limitations as the Chess championships
in terms of benchmarking general intelligence. Many of the
winning entries, especially in later iterations of any particular
competition series, are based on domain-specific engineer-
ing solutions as much as general AI and machine learning
algorithms. Success is often more about knowing the domain
than developing good algorithms. This limits the amount we

can learn from any particular competition. Although it is true
that some techniques have arisen from research in particular
games (such as Transposition Tables and Iterative Deepening
from Chess, or Monte Carlo Tree Search from Go), an agent
that wins one of these competitions would likely not perform
above chance level in one of the others, even if it conformed to
the same interface. Therefore, a competition designed with this
in mind would allow us to learn more about artificial general
intelligence.

One competition that has attempted to remedy this problem
to some extent is the General Game Playing Competition
(GGP), which ran for the first time in 2005 [12]. In this
competition, agents are submitted and evaluated on their
capacity to play a number of unseen games; the competitors do
not know which games their agents will play when submitting.
The games used in the GGP competition are usually variants of
existing board games, or otherwise turn-based discrete games.

Another interesting initiative is the Arcade Learning En-
vironment (ALE), which is based on an emulation of the
Atari 2600 game console [13]. The Atari 2600, released in
1977, was capable of implementing simple arcade games with
rudimentary 2D graphics. Nevertheless, some of these games
were of very high quality and became classics, e.g. Pac-
Man, Adventure, Pitfall and Frogger. In ALE, the controller is
presented with just the raw screen capture of the game, plus a
score counter; in return, it outputs the set of buttons it chooses
to press in each frame on the ALE’s virtual Atari 2600 control
stick.

Within the study of artificial general intelligence (AGI),
there exists the idea that the intelligence of an agent can
be quantified as its performance over a large number of
environments. This rather simple idea has been formalised in
several ways. In particular, it has been argued that an agent’s
intelligence can be estimated from its performance over a
number of games sampled from a game space, and weighted
by the lengths of their descriptions [14].

In order to be able to sample a space of games, or indeed
to create a variety of new games, there needs to be a way
of representing them; a game description language (GDL)
is required (there also needs to be a game engine that can
take a valid GDL description and execute it as a playable
game). In the GGP competition, all games are expressed in
a GDL based on first-order logic; syntactically, it’s a version
of Prolog [15]. The description language is rather low-level,
and the description of a simple game such as Tic-Tac-Toe
is several pages long. Further, this language is limited to
deterministic turn-based finite games, and almost all of the
games implemented in it are board games. Other authors have
developed other GDLs, for other domains of games and/or at a
higher level of abstraction (and therefore more compact). Such
languages include the Ludi language for combinatorial board
games [16] and the Card Game Description Language [17]. An
overview of GDLs and other representations for game rules
and mechanics can be found in [18].

The General Video Game Playing Competition is also based
on a GDL, VGDL, which will be described in the next section.
Unlike the language used for the GGP competition, VGDL
is aimed at real-time games with a player avatar, potential

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

stochastic effects and hidden information. The specification of
games in a GDL allows an infinite a number of games, which
distinguishes this competition from the ALE.

III. THE GVG-AI FRAMEWORK

A. VGDL: A Video Game Description Language

The VGDL is designed around objects that interact in
a two-dimensional space. All objects are physically located
in a rectangular space (the screen), with associated coordi-
nates (and possibly additional physical properties). Objects
can move actively (through internally specified behaviors,
or player actions), move passively (subject to physics), and
interact with other objects through collisions. All interac-
tions are local, subject to rules that depend only on the
two colliding objects, and can lead to object disappearance,
spawning, transformation, or changes in object properties. To
a certain degree, non-local interactions can still be achieved,
e.g., through projectile particles or teleportation effects. The
avatar(s) are special types of objects, in that they are also
affected by control signals from the bot (or human player).

A game is defined by two separate components, the (tex-
tual) level description, which essentially describes the initial
positions of all objects and the layout of the game in 2D, and
the game description proper, which describes the dynamics
and potential interactions of all the objects in the game. Each
game terminates after a finite number of timesteps with integer
score value together with an indication of whether the game
was won or lost.

The game description itself is composed of four blocks of
instructions. The LevelMapping describes how to translate the
characters in the level description into (one or more) objects,
to generate the initial game state. The SpriteSet defines the
classes of objects used, organized in a tree, where a child
class will inherit the properties of its ancestors. Further, class
definitions can be augmented by keyword options. Objects
can have a number of properties that determine how they are
visualized (color, shape, orientation), how they are affected
by physics (mass, momentum), and what individual behaviors
they have (e.g., chasing, spawning others). One additional
kind of property is resources, like health, mana or ammu-
nition, which increase or decrease as a result of interactions
with other objects (finding health packs, shooting, taking fall
damage). The InteractionSet defines the potential events that
happen when two objects collide, e.g., bouncing, transforming,
teleporting, replicating. Each such interaction maps two object
classes to an event method. Finally, the TerminationSet defines
different ways by which the game can end.

In order to permit the descriptions to be concise, an un-
derlying ontology defines many high-level building blocks for
games, including the types of physics used, movement dynam-
ics of objects, and interaction effects upon object collisions.

Given these ingredients, VGDL can describe a wide variety
of video games, including approximate versions of classic
games like Sokoban, Pong, Pac-Man, Lunar Lander, Dig-Dug,
Legend of Zelda, Tank wars, Combat or Mario Bros.

For more detailed descriptions and possible uses of the
language, we refer the interested reader to the report in which

the initial ideas were laid out [19], and a follow-up paper [20]
that fleshes them out, and includes a prototype written in
Python (py-vgdl).

B. The GVG-AI Framework: java-VGDL

Java-vgdl is the Java port of the initial implementation of
VGDL (py-vgdl), and is the framework used in the competition
(also referred to here as the GVG-AI framework). The frame-
work is able to load games and levels described in VGDL,
exposing an interface that allows the implementation of con-
trollers that must determine the actions of the player. The
game engine also provides a forward model and information
regarding the state of the game to the controllers. However, the
VGDL definition of the game is not accessible to the controller
(this is different to other competitions, such as GGP [12],
[15]), so it is the responsibility of the agents to determine the
nature of the game and the actions needed to achieve victory.

A controller in the GVG-AI framework must inherit from
an abstract class and implement two methods. The first one
is the constructor, which is called once per game and must
finish before 1 second of CPU time1. The second method is
the function act, called every game cycle, that must determine
the next action of the agent in no more than 40 milliseconds.
If the agent takes between 40ms and 50ms to return an action
then the NIL (no action) is applied. If the agent takes more
than 50ms to respond or if it exceeds the constructor budget
time then it is disqualified from that particular game run.

Both methods receive a timer with information on when
the call is due to end, and a StateObservation ob-
ject that represents the current state of the game and pro-
vides the forward model. Thus, it is possible to advance
the StateObservation object to the next state given
an action, allowing the agent to analyze the effects of
an action taken in the game, and to create copies of the
StateObservation object. The games from the frame-
work are generally stochastic in nature, and it is the respon-
sibility of the agent to deal with this phenomenon.

The StateObservation object also provides the fol-
lowing information about the state of the game:
• Current time step, score and victory state (win, loss or

ongoing).
• List of available actions for the agent (or avatar). Each

game in the framework can provide a different set of
available actions for the player. This list can be a subset
of all actions available in the framework: up, down, left,
right and use. The last action can trigger different effects
depending on the game being played.

• List of observations. Each sprite in the game is given a
type (identified with a unique integer) and a category (by
apparent behavior): static, non-static, NPCs (Non-Player
Characters), collectables and portals (doors). All sprites in
a game state are visible for the controller via observations,
which contain information about their category, type and
position. The StateObservation object provides a

1The competition was run in a dedicated server, Intel Core i5 machine,
2.90GHz, and 4GB of memory.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

list of observations grouped by category (first) and sprite
type (second).

• Observation grid. The same group of observations pro-
vided to the player is also accessible in a grid format,
where each observation is placed in a bi-dimensional
array matching the positions of the sprites on the level.

• History of avatar events. An avatar event is a collision
that happens between the avatar, or a sprite produced by
the avatar, and any other sprite in the game. This list is
sorted by game step, and each event provides information
about the position where the collision happened and the
type and category of each sprite in the event.

IV. THE GVG-AI COMPETITION

A. Server infrastructure

There is a very simple server infrastructure, based on a
combination of python/php scripts. The infrastructure is based
on the concept of “instant gratification”, i.e. that submitted
agents/players should be evaluated as fast as possible. Each
submitted agent is pushed into a queue, and dequeued one
by one (so as to account for correct use of CPU time). Once
at the head of the queue, the agent zip file is delegated to
a python script which unzips the file, compiles it and runs
it against a predefined set of games and levels. The script
also performs basic error checking (e.g., propagates crashes
or compilation errors) and attributes correct error levels to
each type of problem. Once the run is over, the results are
collected in a log file, which is then processed, beautified and
pushed into a database. The information collected (e.g, score
runs, possible failures) is presented to the users in a tidy html
output.

B. Game Sets

The GVG-AI Competition featured 30 single-player games,
each one of them with 5 different levels. These games are
grouped into 3 different sets of 10 games each: training,
validation and test. The training set is provided with the GVG-
AI framework, and the description of the games can be seen
in Table V.

The validation set was kept in the competition server,
but its nature was unknown to the participants. During the
competition, before the deadline, the contestants were able to
submit their entries to the server, where the controllers were
evaluated (in both the training and the validation sets) and
the results posted on the competition website. Therefore, the
participants were able to evaluate their controllers in unknown
games and compare their performance in this set. After the
competition, the games from this set were made public, and
they are described in Table VI.

The third set (test) was employed to compute the final
rankings of the competition. The participants were not able to
know the identities of these games, and never got the chance
to execute their controllers in this set. These games will be
kept secret until the next edition of the competition, where
they will be used as the validation set. Table I summarizes
some of the features of all games (including the ones from
the test set).

The Score System refers to the nature of the reward that
the game provides via its score. In the binary (B) case, the
only reward different than 0 is given when victory is achieved.
For instance, in Frogs the score will be 1 only when the
agent reaches the exit (note that the avatar must die during
the game, however in Frogs this does not determine the score
but the victory state). Other games have an incremental (I)
score system, where different events provide a small increase
in the score. An example of such a game is Aliens, where
each enemy killed provides some additional score. Finally,
the third category is discontinuous (D), which games use an
incremental score system but include a particular event that
provides a score gain a few orders of magnitude higher than
the regular rewards obtained during the game. Obviously, those
algorithms that are able to find this particular reward have
a great advantage in these particular games. An example of
this is Eggomania, in which killing the chicken produces 100
points, whereas saving each particular egg is only awarded 1
point. Note that the training set did not include any game of
type D, with the aim of discovering if any of the algorithms
submitted were able to discover this reward structure.

Another interesting aspect of these games is that not all
of them provided the same set of actions to the player. The
complete set is given in those games labeled as A0. A1
represents those games where the actions are only directional
(there is no use action) and A2 indicates that the only available
actions are right, left and use.

Regarding NPC types, each game can be labeled as having
Friendly (which do not harm the player) and/or Enemies (that
cause damage to the player) NPCs. The column > 1 type is
ticked if there is more than one type of NPC (either friendly or
enemy). The resources column indicates if the game contains
sprites that the avatar can pick up or not.

Finally, different termination conditions for the game are
established. The most general type is Counters, that refers
to one or more type of sprite being created or destroyed.
This includes cases such as when the avatar is killed (as,
for instance, in Seaquest), or a certain number of sprites are
captured by the player (as in Butterflies). Some games are
finished when the avatar reaches a certain location or Exit Door
(see Firestorms), and others end (either with a victory or a loss,
depending on the game) when a certain timeout is reached, as
in Survive Zombies. This termination is independent from the
maximum number of game steps that can be played in a game,
2000, common for all games. This limit is introduced in order
to avoid degenerate players never finishing the game, resulting
in a loss if this limit is violated.

Table I shows that the 30 games of the GVG-AI framework
differ significantly. The games were manually assigned to
these 3 sets in order to obtain game sets whose features
were distributed as evenly as possible. This way, there are no
features in the final test set that have not been encountered
before by the participants, either in the training or in the
validation set.

All games present an assorted collection of winning con-
ditions, different numbers of non-player characters (NPCs),
scoring mechanics and even available actions for the agent.
For instance, some games have a timer that finishes the game

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

Game Score System NPC Types Resouces Terminations Action SetFriendly Enemies > 1 type Counters Exit Door Timeout
Aliens I X X A2

Boulderdash I X X X X A0
Butterflies I X X A1

Chase I X X X A1
Frogs B X A1

Missile Command I X X A0
Portals B X A1

Sokoban I X A1
Survive Zombies I X X X X A1

Zelda I X X X A0
Camel Race B X X X A1

Digdug I X X X A0
Firestorms B X X A1
Infection I X X X A0
Firecaster I X X A0
Overload I X X X A0
Pacman I X X X X A1
Seaquest D X X X X X A0

Whackamole I X X A1
Eggomania D X X X X A2

Test Set Game 1 I X X X X A0
Test Set Game 2 I X X X A0
Test Set Game 3 I X A1
Test Set Game 4 I X X X X A0
Test Set Game 5 I X X X A0
Test Set Game 6 D X X X X X A0
Test Set Game 7 B X X A1
Test Set Game 8 I X X X X A0
Test Set Game 9 B X X A1
Test Set Game 10 I X X X A0

TABLE I
GAMES FEATURE COMPARATIVE. ALL GAMES OF THE COMPETITION ARE LISTED, DIVIDED INTO THE 3 GAME SETS: TRAINING (FIRST 10), VALIDATION
(NEXT 10) AND TEST (LAST 10). LEGEND: I: INCREMENTAL; B: BINARY; D:DISCONTINUOUS; A0: ALL MOVES; A1: ONLY DIRECTIONAL; A2: LEFT,

RIGHT AND USE. CHECK SECTION IV-B FOR A FULL DESCRIPTION OF THE MEANING OF ALL TERMS IN THIS TABLE.

with a victory (as in Whackamole) or a defeat (as in Sokoban).
In some cases, it is desirable to collide with certain moving
entities (as in Infection, or in Chase) but, in other games,
those events are what actually kill the player (as in Portals, or
Chase).

These differences in game play make the creation of a
simple game-dependent heuristic a considerably complex task,
as the different mechanisms must be handled on a game
per game basis. Furthermore, a completely domain-dependent
controller would fail to successfully play the unseen games
from the validation (during the competition) and test sets.

C. Evaluation

The entries to the competition were evaluated in the test set
to obtain the final rankings. Each controller was executed 10
times on each one of the 5 levels of each of the 10 games,
summing up to 500 games played in total.

For each particular game, three different statistics were
calculated out of the 50 plays: number of games finished
with a victory, total sum of points and total time spent. The
controllers were ranked according to these three criteria, with
the highest number of victories as the first objective to be
considered. In the case of the same number of victories,
controllers with the highest score were ranked first. Finally,
the lowest time spent was used as the second tie-breaker.

Once the controllers were ranked on each game, points
were awarded to them according to their position, following a
Formula-1 score system. 25, 18, 15, 12, 10, 8, 6, 4, 2 and 1
points were given to entries ranked from the first to the tenth
position, respectively. The rest of the entries obtained 0 points.

The winner of the competition was determined by the sum
of points across all games. In the case of a tie, the controller
with more first positions was considered better. If the draw
persisted, then the number of second, third, etc. positions were
taken into account, until the tie was broken.

V. CONTROLLERS

This section includes the description of the controllers
submitted to the competition. First, detailed explanations of
four agents are given by their developers. Then, the sample
controllers are described, followed by a brief explanation of
the other agents submitted to the competition. Each one of the
entries is indicated with its final position in the rankings and
the controller name.

A. 1st - adrienctx (OLETS) - Adrien Couëtoux

1) Main algorithm: Open Loop Expectimax Tree Search
(OLETS) is inspired by Hierarchical Open-Loop Optimistic
Planning (HOLOP, [21]). HOLOP samples sequences of ac-
tions and evaluates them by using the generative model of
the problem, without actually storing states in memory. The

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

Algorithm 1 OLETS
1: procedure OLETS(s, T)
2: T ←root . initialize the tree
3: while elapsed time < T do
4: RUNSIMULATION(T , s)
5: return action = argmaxa∈C(root) ns(a)

6: procedure RUNSIMULATION(T , s0)
7: s← s0 . set initial state
8: n←root(T) . start by pointing at the root
9: Exit←False

10: while ¬Final(s) ∧ ¬Exit do . Navigating the tree
11: if n has unexplored actions then
12: a←Random unexplored action
13: s←ForwardModel(s,a)
14: n←NewNode(a,Score(s))
15: Exit←True
16: else . use node scoring to select a branch
17: a← argmaxa∈C(n)OLE(n,a)
18: n← a
19: s←ForwardModel(s,a)
20: ne(n)← ne(n) + 1
21: Re(n)← Re(n) + Score(s)
22: while ¬P (n) = ∅ do . update the tree
23: ns(n)← ns(n) + 1

24: rM (n)← Re(n)
ns(n)

+ (1−ne(n))
ns(n)

maxc∈C(n) rM (c)

25: n← P (n)

26: procedure OLE(n,a)
27: return score = rM (a) +

√
ln(ns(n))

ns(a)

sampled sequences are used to build a tree, whose nodes
correspond to explored actions. This approach is non-optimal
for stochastic domains, but it saves considerable computing
power, and actually performs well in practice [21]. OLETS
has three big differences compared to HOLOP. First, it is
designed for finite action spaces. Second, it does not use the
average reward of simulations in a node to give it a score in the
bandit formula, as is done in algorithms derived from Upper
Confidence Tree (UCT [22]). Instead, it uses our new method
called Open Loop Expectimax (OLE). And lastly, OLETS does
not use any roll-out and relies on the game scoring function
to give a value to the leaves of the tree.

A node n stores the following data: ns(n) the number of
simulations that have passed through n, ne(n) the number of
simulations that have ended in n, Re(n) the cumulated reward
from simulations that ended in n, C(n) the set of children of
n, and P (n) the parent of n. rM (n) replaces the empirical
average reward in the node scoring procedure and is the core
of OLE. rM (n) is the weighted sum of two components.
The first part is the empirical average reward obtained from
simulations that exited in n. The second part is the maximum
of n’s children rM values. See Algorithm 1 for more details.

2) Online and Offline Learning: We did not use any offline
or online learning techniques in OLETS, because the compu-

tation time given at each step was very short. We decided to
focus our efforts on the look ahead part of the algorithm. Still,
adding offline learning techniques could greatly improve our
controller, and should be a priority for future work, especially
to handle more complex games.

3) Strengths and Weaknesses: The biggest weakness of
OLETS is the absence of learning. As it stands, OLETS
would do poorly on a difficult game that requires a long
computation time to be solved. The main strength of OLETS
is its computational simplicity. It is an open loop method,
which means that it only stores sequences of actions. In
comparison to closed loop methods that would store sequences
of action-state, this reduces the search space dramatically,
while inducing an additional error. Another strength is that
OLETS uses OLE for its node scoring procedure. Because of
this, high reward-paths are quickly identified, and information
propagates to the root faster than when relying on traditional
average reward.

The only game where OLETS obtained a very bad score
was Camel Race. This poor performance is probably due to
the fact that this game’s rewards are only received many time
steps after the right actions are chosen. Our algorithm does not
use random walk simulations, and only sees the future as far
as its tree branches go. This choice makes OLETS vulnerable
on games where the rewards are very delayed.

4) Domain Knowledge: We added a taboo bias to the node
scoring function. Our goal was to push the avatar to unexplored
tiles of the screen when all other evaluation methods failed.
Every time a node is added to the tree, if its state has been
visited in the past T time steps, this node receives a taboo
penalty of an order of magnitude smaller than 1. This showed
good empirical results with 10 < T < 30. We also added an
ε-greedy exploration to the OLE procedure, with ε = 0.05.

B. 2nd - JinJerry - Jerry Lee
1) Main algorithm: JinJerry is inspired by Monte Carlo

Tree Search (MCTS) [23] and uses an action selection strategy
similar to the one introduced in [24]. It builds a one-level tree
in every game cycle with the current game state as the root
node and the one-action-ahead states of all actions as the leaf
nodes. Then, it evaluates the immediate and potential score
of all the leaf nodes. The immediate score is evaluated by
the one-action-ahead state, and the potential score is evaluated
by the state resulting from doing roll-outs of SimulationDepth
extra random actions. A scoring heuristic evaluates states. The
action selection strategy is to select the action with a safe
state and a high score. If the random actions lead to a game-
over state, the potential score is not considered. The potential
score will replace the immediate score if it has a higher score.
Algorithm 2 gives the pseudo-code of JinJerry.

2) Online and Offline Learning: The main design of Jin-
Jerry is on the scoring heuristic for evaluating a state. It
considers the following factors:
• awayDist (chaseDist): is the distance between the agent

and the closest hostile (friendly) NPC.
• collectDist / movableDist / portalDist: is the distance

between the agent and the closest resource / movable
object / portal.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

Algorithm 2 JinJerry
1: procedure JINJERRY(s)
2: for each a in Actions do
3: s ← ForwardModel(s, a)
4: scores[a] ← EvaluateState(s)
5: for i← 1 to SimulationDepth do
6: nextAction← Random(Actions)
7: s ← ForwardModel(s, nextAction)
8: if Final(s) then
9: break

10: if ¬Final(s) then
11: nextScore← EvaluateState(s)
12: if nextScore > scores[a] then
13: scores[a] ← nextScore

14: return a ← argmaxa (scores)

• visitedCount[x][y]: is the number of times a position (x,
y) was visited by the agent.

• avatarResScore: is the total number of resources the agent
collects.

• gameScore: is the actual game score.
• winScore: is set by the maximal (minimal) floating-point

value when the agent wins (loses) the game.
Based on the above factors, we calculate five sub-scores:

NPCs = (awayDist× 3− chaseDist)/(X × Y)

Resources = 1− collectDist/(X × Y)

Movables = movableDist/(X × Y)

Portals = 1− portalDist/(X × Y)

Explores = 1− visitedCount[x][y]/(X × Y)

In the above equations, X and Y denote the width and height
of the game map. The product (X × Y) is used to make the
distance-based scores smaller than one so that their effects are
not greater than the actual game score, which is integral. The
final score of a state is the weighted sum of the sub-scores,
as shown in Equation 1. Normalizing the sub-scores into the
same range [0, 1] also makes setting weights in the weighted
summation easier. We started by setting all weights by one and
examined the performance in the training set of games. Then,
we gradually increased the weights of each sub-score to see
whether the increase is helpful. The pilot runs revealed that
the exploration is very important for our controller to check
unvisited areas and to avoid being stuck in a certain area.
Getting resources is the main goal in some games and also
worth a higher weight.

Finals = winScore+ gameScore+

avatarResScore+ 5× Explores + 2×Resources+
Portals +NPCs +Movables

(1)

3) Strengths and Weaknesses: When the goal and structure
of the game is simple and clear, JinJerry can lead the agent to
the goal quickly. In games such as Chase, Missile Command
and Survive Zombies, it is relatively easy for the agent to

achieve the goal. Thus, JinJerry performs well in these games
and achieves high scores.

When the goal is complicated, as in the game Sokoban
that asks the agent to move the boxes along non-blocking
ways to suitable positions, JinJerry has no idea about how
to achieve the goal. Another problem of JinJerry is that it
uses Euclidean distance to estimate the distance between two
positions. This causes JinJerry to get stuck on the map when
there are many immovables (obstacles). In games such as
Zelda and Boulderdash, getting stuck causes JinJerry to die
easily. Furthermore, these games have two-stage goals the
agent needs to collect enough resources and then go to a portal.
This is not considered in the design of JinJerry. JinJerry thinks
of movable objects as bullets or hostile things and runs away.
This makes it perform very badly, for instance, in the game
Eggomania.

4) Domain Knowledge: Some domain knowledge is sum-
marized from the training set of games and then is imple-
mented in JinJerry. The principles include: (1) getting closer
to the NPC, identifying whether it is hostile, and moving
towards/away from it accordingly; (2) getting closer to re-
sources; (3) getting closer to the portal when there is no
resource; and (4) moving to unexplored areas.

C. 6th - culim - Chong-U Lim

1) Main algorithm: The controller uses a reinforcement
learning technique called Q-Learning [25] as an approach to
general videogame playing. In Q-Learning, the environment
is modeled as a Markov Decision Process [26] with a set of
states S and a set of actions A. For a given state s ∈ S,
performing an action a ∈ A results in a new state s′ ∈ S,
and an associated reward r ∈ R for this state-action pair. The
aim of the learning is to approximate the Quality function
Q : S × A → R using a Q-table (tabular Q-learning). This
enables the controller to choose the best action for any given
state, which provides the largest reward.

2) Online and Offline Learning: In order to compute the
Q-table, the controller performs online learning – updating the
Q-table during a game’s run during each act() call using the
following Q-table update loop:

1) Pick a random action a ∈ A for given state s.
2) Performs the action a on s to obtain the next state s′.
3) Calculate the reward r for this state-action pair.
4) Updates the Q-table using the update function:

Q(s, a)← Q(s, a)+α·(r+γmaxa′ Q(s′, a′)−Q(s, a))
5) Set s← s′ and repeat.

Given the large state space, the resulting Q-table resembles
a sparse matrix data structure. During the update, the learning
rate α affects the controller’s likelihood to override existing
Q-table values. When α = 0, no learning (i.e., updates from
rewards) occurs and when α = 1, the controller is always
learning (i.e., updates using the most recent rewards.) The
discount factor γ affects the prioritization of future rewards.
With γ = 1, the controller will prioritize future rewards, while
γ = 0 results in prioritizing only immediate rewards. We
initialized our controller with α = 0.7 and γ = 1.0. As each

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 8

game run is non-deterministic, α was set to decay over time
down to a minimum of αmin = 0.1.

The controller also contains a depth parameter d – the
maximum number of allowed update loop iterations (look-
aheads). When the number of loop iterations exceeds d, learn-
ing restarts from the starting state s. This simulates having
multiple instances of the controller performing learning on the
same Q-table, but trading-off having fewer look-aheads. We
experimented and settled on d = 10 to balance sufficient look-
aheads and multiple learning instances, while keeping within
the time limit imposed on controllers for the competition.

While we experimented with offline learning by saving
learned Q-tables, the final version of the controller did not
include them. One reason was that the amount of time it took
to read the large Q-tables was greater than the competition’s
allowed startup time. Also, each Q-table would have been
specific to a given game and level, which might not have
generalized well for the validation and test set games.

3) Strengths and Weaknesses: Q-Learning is largely model-
free and thus, the controller performs fairly well across all
the games, particularly in the final test set used for rankings.
However, it does not perform as well in games with large
search spaces, especially with a large number of NPCs or
movable objects, particularly those that can cause the player
to lose (e.g., vehicles in Frogger.)

4) Domain Knowledge: The following sections describe
areas in which domain knowledge of VGDL and its games
were used.

a) State Meta-Information: Due to the size of the
StateObservation object in Java and the large size
(|S| × |A|) of the Q-table, storing them for Q-table lookups
was not feasible. Hence, each Q−Learning state object used
the following meta-information for comparison:
• The position of the avatar.
• The average distance to all NPCs.
• The average distance to all portals.
• The grid position of the nearest NPC.
• The id of the nearest NPC.
• The number of NPCs remaining in the level.
While reducing the overall state space, the following points

were observed. Firstly, two StateObservation objects
might differ in other aspects (e.g., absolute positions of each
NPC,) but still be considered “equal.” Secondly, using real-
values (e.g., squared-distances) results in a large range for
comparison. However, with mostly grid-based games, we did
not encounter significantly large variations. These trade-offs
did not factor heavily in our controller and made our approach
feasible and performant for general videogame playing.

b) Reward Calculation: To calculate a given state-action
pair’s reward, we used a weighted sum of the following (signs
in parenthesis denote contributing positively or negatively):
• The game’s score. (+)
• The number of remaining NPCs. (−)
• The Manhattan distance to the closest NPC. (−)

If the game had ended, rather than using the game’s score,
a high positive (negative) reward was returned if the player
had won (lost). In most games, fewer NPCs usually meant

better progress towards winning (e.g., Butterflies, Aliens.) The
Manhattan distance measure has been shown to be an effective
general heuristic for progress in grid-based puzzle games [27].

D. 10th - T2Thompson - Tommy Thompson

1) Main algorithm: This controller was largely inspired
by controllers submitted to previous competitions that were
reliant on simple, albeit effective methods. Notably, Robin
Baumgarten’s submission to the Mario AI Competition in 2009
which won the original gameplay track while reliant primarily
on A* search [4]. Given the breadth of potential games that
the VGDL permits, this controller was intended to measure
how successful a controller reliant solely on state-based search
could be.

The agent is reliant upon two methods: A* search and
a steepest-ascent hill climber. In order for these to operate
effectively, there is a need for heuristics. A collection of six
heuristics were identified from the starter set that encapsulated
the majority of gameplay objectives: shooting enemy sprites,
killing enemy sprites with weapons, moving towards exit doors
and collecting valuable artefacts. In addition, a basic win/lose
heuristic and score improvement heuristic are provided as
the default. These heuristics are managed at runtime and
are selected based upon events occurring during play that
increase the score. While the agent will start by searching
to improve score, not die and potentially win, as it identifies
what features of gameplay cause the score to increase it will
become increasingly more focussed upon them.

The use of either A* search or hill climbing is dependent
upon both the heuristics selected and the present state of the
game. Each heuristic also identifies which search method to
adopt while using it. The selection of method is based largely
on experimentation by the author. However, in the event that
the agent appears to be under threat, then the hill climber is
adopted to find the safest escape route from the current state.

The A* implementation seeks to identify what the agent
should do at a fixed step in the future. This is achieved by
simulating the state of play 20 frames in the future. From this
point, the A* then uses the time available to search for a path
that maximises the selected heuristic(s).

2) Online and Offline Learning: The controller does not
conduct any offline learning, given it is reliant upon the es-
tablished set of hand-crafted heuristics mentioned previously.
In order for these heuristics to be selected, online learning
is adopted per-se. This is achieved using a fixed rule-set that
assesses events that occur during play that result in an increase
in score. If an event corresponds to a predefined rule, then
a heuristic is selected for the agent to use for future action
selection. For example, should the avatar fire a missile that
eliminates a sprite and improves the overall score, then a rule
will dictate the agent should now adopt the heuristic which is
focussed on eliminating that sprite class using missiles.

3) Strengths and Weaknesses: A key strength of the agent
is that once a heuristic that matches the gameplay has been
identified, then often the agent can quickly maximise score.
However, this is also one of the agent’s largest weaknesses,
given that it will conduct local search with a rather primitive

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 9

heuristic until it can trigger an event that will subsequently
help establish more intelligent search. In addition, if the ruleset
does not correspond an event with a heuristic, then the agent
will not identify how to maximise score using this information.

An additional weakness of the agent is that any search
conducted is reliant upon the forward model provided in the
GVG-AI API. This may be stochastic and hence there is a
probability that an A* search will be interrupted as a result of
unpredicted future events.

4) Domain Knowledge: This agent is heavily reliant upon
domain knowledge, given it adopts the aforementioned six
heuristics, four of which were built by assessing raw data
acquired from gameplay.

E. Sample controllers

1) 3rd - Sample MCTS: This controller is an implementa-
tion of a vanilla Monte Carlo Tree Search (MCTS) algorithm.
A full description of the algorithm, variants and applications
can be found in [23]. Due to the real-time constraints of the
framework, the iterations of the algorithm reach a final state
very rarely. Therefore, the algorithm requires a function to
evaluate states, which in this case is quite simple: in case a
game is finished, a high positive (resp. high negative) reward is
given if the game was won (resp. lost). Otherwise, the reward
is the current score of the game.

The algorithm uses a play-out depth of 10 moves, an
exploration-exploitation constant value of

√
2 and selects the

most visited action at the root to pick the move to return for
each game cycle.

2) 12th - Sample GA: The Sample GA controller is a
rolling horizon open loop implementation of a minimalistic
steady state genetic algorithm, known as a microbial GA [28].
At each timestep, the algorithm performs an evaluation be-
tween two different individuals from a sample population.
Each individual is represented as an array of integers, with
each integer denoting one possible action from the action space
of a certain depth. By default the algorithm has a search depth
of 7 (which means that each genome will have 7 ∗ |A| genes,
where |A| is the number of actions). A tournament takes place
between two individuals and the loser of the tournament is
mutated randomly, with probability 1/7, whereas certain parts
of its genome are recombined with parts from the winner’s
genome with probability 0.1. The procedure continues until
the time budget is consumed. The evaluation function used
is exactly the same as the one used by the Sample MCTS
controller.

3) 14th - Random: This is the simplest controller provided
within the framework. It just returns a random action at each
game cycle, without any evaluation of the state to which this
move takes the game.

4) 16th - One Step Look Ahead: This is a very simple
controller that just moves the model one step ahead, evaluates
the position using the same heuristic as Sample MCTS and
selects the action with the highest evaluation score. The
controller demonstrates simple use of the forward model.

F. Other controllers

1) 4th - Shmokin: This is a hybrid controller, which uses
A* as the default algorithm and switches to sample MCTS
after a certain amount of steps of failing to find the goal.

2) 5th - Normal MCTS: This entry is a variant of the
Sample MCTS controller. The tree policy is changed adding
a third term to the UCB1 formula [29]: the sum of rewards at
that particular game state. Additionally, the action picked as
the next move to make is the most visited one at the root,
although this controller adds the sum of rewards as a tie
breaker. The state evaluation function is the same as in the
Sample MCTS controller.

3) 7th - MMBot: An MCTS controller that uses macro-
actions of variable length (which cycles every 5 levels and
ranges from 1 to 5) as part of the default policy. The heuristic
used also tries to detect friend/foe NPCs.

4) 8th - TESTGAG: This controller is a variation of the
Sample GA controller. The genetic algorithm is kept the same,
but the state evaluation (or fitness) function is modified. As in
the original controller, high positive or negative rewards are
given for winning or losing the game, respectively. However,
this controller provides a more involved score function in
case the game is still ongoing, considering the distances to
resources, NPCs and non-static sprites.

5) 9th - Yraid: This controller provides a more involved
version of the sample GA controller, but with the addition
that it incorporates “learning”, i.e. it tries to identify which
NPCS/items are harmful or helpful - that one can consider
as some kind of online “training”. It uses the information
collected as part of the evaluation function.

6) 11th - MnMCTS: This entry is another controller based
on Sample MCTS. The main differences consist of the use of
discounted rewards during the play-outs and the use of a linear
model to learn the importance of the features (such as distances
to other sprites) in relation to the score change observed in the
game. The predictions of this learnt model are used to bias the
tree policy.

7) 13th - IdealStandard: This controller combines classical
planning (i.e. tree search) with some form of online learning. It
tries to guide the searches by associating types of items/NPCs
with their properties (e.g., an NPC can kill you, thus better
avoid it). Navigation through the level is performed by an A*
path planning algorithm.

8) 15th - Tichau: This is the simplest controller received
in the competition. It always, no matter the state or the game,
or even the available actions, tries to apply the action use.

9) 17th - levis501: This is a stochastic, two-ply search
controller. It performs a two-ply search and then proceeds
with either playing the optimal move or chooses one move
that does not make the controller lose the game at random.
The two-ply tree search is performed using the same heuristic
as sample MCTS and sample GA, while the randomness of
actually play is increased every turn.

10) 18th - LCU 14: This controller does not use any
Computational Intelligence technique. It basically consists of
a rule based system that accounts for the presence of sprites
close to the avatar. Action selection depends on the distances to
these sprites, and also on the possession of resources that can

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 10

be picked up. The controller incorporates domain knowledge
about some specific games in the training set.

VI. RESULTS

The participants of the competition were able to submit their
controllers to both the training and the validation game sets
before the deadline. Tables II and III show the final rankings
in these two sets, respectively. It is interesting to analyze these
results because participants could only see the games of the
training set, while the ones from the validation set were hidden
from them. Finally, Table IV shows the final results of the
competition. The full rankings, including the results on each
game, can be seen at the competition website (www.gvgai.net).

A first aspect to notice is that the first three entries are
ranked in the same order in all sets, showing consistency with
respect to the quality of these controllers. The winner of the
competition leads most of the games of the validation set,
whereas its performance and that of the runner-up are very
similar in training and test.

Another interesting analysis can be made of the percentage
of victories achieved in the different sets. Many controllers are
close to 50% of victories in the training set, with higher per-
centages achieved by the first two controllers in the rankings.
However, in both validation and test sets, this performance
drops significantly, with the winner of the competition being
the only one to still achieve 50% of victories. Although this
win rate is relatively good, it is far from optimal, and shows
the difficulty of the problem tackled in this competition.

It is worthwhile highlighting that entries sorted by per-
centage of victories would rank differently. Controllers like
TESTGAG in the training set, MMBot in validation, and
IdealStandard in the test set would achieve a higher position
if the rankings had been calculated this way. Nevertheless,
the percentage of victories is not a good indication of the
generality of the controllers, as this aggregates the victories
in all games. The rankings per game system reward better
controllers with a higher performance across many games.

In fact, the results of the competition show a clear gap
between the two top controllers and the rest. The controllers
that are placed in the first few positions demonstrate good
general ability and are competitive in more than one game,
achieving first to third positions on most games. The other
controllers may excel in some games, but their performance
is poor overall, ranking very low in most of them. This, of
course, is reflected in the difference of points between these
controllers.

An extreme case of this phenomenon is shown with the
controller IdealStandard. This entry is mainly based on path
planning techniques, with special emphasis on chasing re-
sources and portals. Consequently, this controller achieves first
position in the game G-1 (Camel Race) of the validation set.
In this game, the objective is to reach the goal (a portal)
quicker than other runners. It seems obvious that a path finding
algorithm with high interest in reaching portals would perform
very well, whereas other more general controllers, focused
primarly on discovering features of the game, waste valuable
time that makes them lose the race (it is especially interesting

that the winner of the competition obtains 0 points in this
game). Similar circumstances happen in the game G-7 of the
test set, that shares some characteristics with Camel Race.
This, however, does not mean that specialized controllers, like
IdealStandard, are good in many other games. Obviously, path
finding helps controllers to achieve a better performance, but
more general approaches obtained better results.

Another point to analyze is how controllers that are vari-
ations of the provided sample ones perform, compared to
these. On one hand, TESTGAG (a variation of SampleGA)
does not perform better than its counterpart on the training
and validation set, but surprisingly obtains better results on
the test set. It seems that the modifications performed adapted
the algorithm better to those final games. On the other hand,
out of the many variations of SampleMCTS, none of them
is able to achieve better results than the original controller,
in any of the sets. It is not trivial to identify a reason for
this, but a possibility is that adding domain knowledge to
the algorithm does not help to achieve better performance in
general (although the fact that performance is not good on the
training set is still difficult to explain).

A final remark can be made about the SampleMCTS con-
troller and the winner of the competition. SampleMCTS em-
ploys a (non-optimal) closed loop approach, storing the states
of the game in the nodes of the tree without taking into account
the stochasticity of the environment: during the expansion
phase, the state of the new mode is reached by advancing
the game with a specific action. The forward model provides a
next state that depends only on a single advance call, resulting
in a state that could be unrepresentative of the states reachable
from that position. However, such a state will remain at that
position in the tree during the rest of the iterations, producing
a deceptive effect in the search.

An open loop planning algorithm, such as the competition
winner, will accumulate the statistics based on the actions
taken during the tree policy, resulting in a better approximate
to the quality of an action. As can be seen, the difference
between this controller and SampleMCTS in the test set is large
in terms of points and percentage of victories. Both approaches
are not optimal and can diverge, but an “incorrect” closed loop
seems to be far worse. An interesting future approach is to
create a “correct” close loop version where the forward model
is sampled during tree policy as well.

VII. CONCLUSIONS

This paper described the rationale, setup and results of the
first General Video Game AI competition. The competition
attracted a reasonable number of entries and the leading two
of these were able to significantly improve on the supplied
Sample MCTS controller in terms of overall results.

Unlike the previous GGP competitions, this one is specifi-
cally tailored towards video games. Interestingly, despite the
very different nature of the games involved in GVG versus
GGP, MCTS has proven to be a leading approach in each type
of competition, despite the fact that in GVG the 40ms time
limit places severe restrictions on the number of playouts that
can be done for each move.

www.gvgai.net

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 11

Rank Username G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 Total Points Victories
1 adrienctx 25 25 6 18 10 12 25 25 18 25 189 40/50
2 JinJerry 18 10 18 25 25 25 15 4 25 8 173 33/50
3 SampleMCTS† 15 18 2 6 6 18 6 12 1 12 96 27/50
4 MnMCTS 2 12 8 15 2 10 12 10 12 6 89 25/50
5 MMbot 0 15 0 10 4 8 4 15 10 15 81 23/50
6 Shmokin 0 2 10 8 0 15 8 18 8 1 70 21/50
7 SampleGA† 8 0 25 4 8 0 0 8 0 10 63 19/50
8 Normal MCTS 12 0 12 0 0 0 0 2 15 18 59 18/50
9 IdealStandard 0 0 4 12 0 4 10 0 0 0 30 13/50
10 LCU 14 4 1 15 0 1 0 0 0 6 0 27 13/50
11 Yraid 1 0 1 0 0 0 18 6 0 0 26 14/50
12 T2Thompson 0 4 0 1 15 2 0 0 0 4 26 15/50
13 levis501 0 0 0 0 18 0 0 2 0 0 20 10/50
14 OneStepLookAhead† 6 0 0 0 12 0 0 0 0 0 18 9/50
15 TESTGAG 10 0 0 2 0 1 2 0 0 2 17 15/50
16 culim 0 6 0 0 0 6 0 2 2 0 16 9/50
17 Random† 0 8 0 0 0 0 1 0 0 0 9 5/50
18 Tichau 0 0 0 0 0 0 0 0 4 0 4 7/50

TABLE II
FINAL RANKINGS ON THE TRAINING SET. †DENOTES A SAMPLE CONTROLLER. G-1: ALIENS, G-2: BOULDERDASH, G-3: BUTTERFLIES, G-4: CHASE,

G-5: FROGS, G-6: MISSILE COMMAND, G-7: PORTALS, G-8: SOKOBAN, G-9: SURVIVE ZOMBIES, G-10: ZELDA

Rank Username G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 Total Points Victories
1 adrienctx 0 25 25 18 25 25 25 25 25 10 203 24/50
2 JinJerry 10 18 15 25 15 15 12 10 4 1 125 14/50
3 SampleMCTS† 0 12 0 2 4 12 15 18 15 18 96 11/50
4 MnMCTS 4 1 8 8 12 6 6 12 12 25 94 12/50
5 Shmokin 6 8 0 12 10 10 18 6 18 6 94 13/50
6 levis501 8 6 18 0 18 0 1 0 0 12 63 8/50
7 culim 0 15 12 6 1 0 4 15 1 8 62 6/50
8 MMbot 0 10 0 10 0 8 0 8 8 15 59 9/50
9 IdealStandard 25 0 6 15 2 0 0 0 0 0 48 12/50
10 SampleGA† 0 0 0 0 10 18 0 0 0 0 28 6/50
11 T2Thompson 18 2 0 0 0 0 2 1 0 4 27 6/50
12 OneStepLookAhead† 15 0 10 0 0 0 0 0 0 0 25 6/50
13 Random† 0 0 0 4 10 0 8 0 0 0 22 4/50
14 Yraid 12 0 2 0 0 1 0 0 6 0 21 6/50
15 LCU 14 0 0 0 0 0 0 10 0 10 0 20 5/50
16 Normal MCTS 2 4 0 0 0 4 0 4 2 0 16 6/50
17 TESTGAG 1 0 1 1 0 2 0 2 0 0 7 6/50
18 Tichau 0 0 4 0 0 0 0 0 0 2 6 1/50

TABLE III
FINAL RANKINGS ON THE VALIDATION SET. †DENOTES A SAMPLE CONTROLLER. G-1: CAMEL RACE, G-2: DIGDUG, G-3: FIRESTORMS, G-4:

INFECTION, G-5: FIRECASTER, G-6: OVERLOAD, G-7: PACMAN, G-8: SEAQUEST, G-9: WHACKAMOLE, G-10: EGGOMANIA

Rank Username G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 Total Points Victories
1 adrienctx 25 0 25 0 25 10 15 25 25 8 158 256/500
2 JinJerry 18 6 18 25 15 6 18 18 12 12 148 216/500
3 SampleMCTS† 10 18 6 4 18 25 6 12 0 0 99 158/500
4 Shmokin 6 25 0 12 10 8 0 10 6 0 77 127/500
5 Normal MCTS 12 0 4 15 4 15 10 4 4 0 68 102/500
6 culim 2 12 8 1 8 4 8 6 10 2 61 124/500
7 MMbot 15 0 1 2 12 12 2 15 0 0 59 130/500
8 TESTGAG 0 8 15 0 0 1 1 0 2 25 52 68/500
9 Yraid 0 6 10 0 0 0 12 0 15 6 49 93/500
10 T2Thompson 0 0 0 10 0 0 0 1 18 18 47 87/500
11 MnMCTS 8 8 0 0 1 18 4 8 0 0 47 109/500
12 SampleGA† 4 10 12 0 0 2 0 0 8 4 40 76/500
13 IdealStandard 1 6 0 0 6 0 25 0 0 1 39 134/500
14 Random† 0 15 0 18 2 0 0 0 0 0 35 78/500
15 Tichau 0 6 0 8 0 0 0 0 1 15 30 55/500
16 OneStepLookAhead† 0 6 0 0 0 0 0 0 1 10 17 51/500
17 levis501 0 0 2 6 0 0 0 2 1 0 11 50/500
18 LCU 14 0 4 0 0 0 0 0 0 0 0 4 54/500

TABLE IV
FINAL RESULTS OF THE GVGAI COMPETITION. †DENOTES A SAMPLE CONTROLLER.

In the process of conceiving, planning and running the
competition it has become clear that there are many ways

to set up GVG competitions. The current one has already
produced interesting results, and we now describe plans for

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 12

future competitions both in terms of the main tracks and other
variations.

• Gameplay track (current track): To date, competitors have
only had a few months to develop their controllers, so
we believe there is more to be learned by running this
track for at least another year or two. The gameplay track
provides a forward model and, while learning can be used
to enhance performance, reasonable performance can
already be obtained without any learning, as evidenced by
the SampleMCTS controller finishing in third position.

• Learning track: Unlike the gameplay track, the learning
track will not provide a forward model of the game which
means that planning algorithms such as MCTS cannot
be applied directly. This track will be set up to provide
a testing ground for reinforcement learning algorithms.
With no forward model a controller must learn while
playing the game which actions in which states tend to
lead to higher rewards. To perform planning, an agent
would have to learn an approximate model of the game
while playing.

• PCG track: The aim of this track will be to find the best
systems for generating game levels as well as entirely
new games. We envisage using VGDL as the basis for
this since it provides an elegant way to describe both
game levels and game rules. This track will provide a
new avenue for research in the area, building on previous
work [30], [18], [16], [17]. More specifically, there has
already been initial work on exploring the playability of
randomly generated VGDL games [31].

We plan to run all the above tracks in the near future.
Also under discussion is the concept of an Oracle track.
The aim of this track would be to investigate the extent to
which the development of general game AI can be simplified
by providing a full model (oracle). The oracle could be
queried by setting the game engine to any state desired by
the controller, and obtaining the score and transition outcomes
(with associated probabilities) for any desired action. This puts
the controller fully in charge of its own learning behavior.
There would be a time constraint limiting the use of the oracle,
so that managing this resource would be crucial, and may
involve approaches such as active learning. However, it may be
infeasible to provide this functionality for all GVG-AI games.

For each track there are also a number of orthogonal aspects
of the games which can be varied to investigate particular areas
of video game AI:

• Two player games: Currently all the games have been de-
signed as single player games, for ease of initial setup and
evaluation. However, two (or more generally N) player
games are of obvious interest and should be catered for in
the future. When running two player games care should
be taken to properly account for player strength. Beating
strong players should be worth more than beating weak
players, especially in the event that the competition is
flooded with a number of very similar weak players that
a mediocre player has been designed to exploit. Also,
the players may be heterogeneous, as in the Ghosts vs.
Pac-Man competition for example [7], [32].

• Games with continuous action spaces: Currently all our
competition games have a limited discrete action space
but in future it would be interesting to allow games with
continuous action spaces such as Lunar Lander (though
this could be approximated in the existing framework by
integrating discrete actions over time).

• Games with partial observability: In the current set of
games the StateObservation object passed to the agent
contains the complete set of game objects, but the frame-
work already supports passing a partial observation (such
as the agent’s immediate neighborhood, or objects within
a particular field of view) of the game state, and this also
offers an interesting dimension to explore.

The main initial aim of the competition was to provide a
comprehensive evaluation service for general video game AI.
This has already been achieved to a useful extent, but the value
of this will grow significantly as we receive more entries and
add more games.

It has also become increasingly clear that the framework
may serve an equally useful role in providing an evaluation
service for new video games. The idea here is that once we
have a rich set of game AI controllers ranging in intelligence
from stupid to smart we immediately have a powerful way to
evaluate new games by measuring the different experiences of
these bots when they play the game. The simplest measure is
that smarter bots should get higher scores than stupid ones in
any game of skill, but there will also be a rich set of other
general statistics that can be applied and over time these can
be correlated with human ratings of the same games. This has
an obvious application in the PCG track, but in the long term
may prove to be equally important for video game designers.

A further aim is to add value to all the tracks by enabling
access to game replays via the web site, and also allowing hu-
man players to play all the publicly available games. The latter
will be especially important for comparing the experiences of
human players with bot players and analyzing the ability of
various metrics to predict player experience.

Finally, all the current set of games have been very simply
described in VGDL which is good for speed of development
and ease of understanding, but the GVG-AI framework does
not require this (the game agents see a standard interface
that in no way depends on VGDL). We could also add non-
VGDL games where the need arises, since VGDL is currently
too restrictive to describe some of the subtler aspects of
2D video games which nonetheless significantly enhance the
player experience.

ACKNOWLEDGMENTS

This work was supported by EPSRC grant EP/H048588/1,
under the project entitled “UCT for Games and Beyond”.
The authors would also like to thank all participants of the
competition for their work and submitted controllers.

REFERENCES

[1] A. M. Turing, “Chess,” in Faster than thought, B. V. Bowden, Ed.
Pitman, 1953, pp. 286–295.

[2] M. Newborn, Computer chess. John Wiley and Sons Ltd., 2003.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 13

[3] P. Hingston, “A New Design for a Turing Test for Bots,” in Proceedings
of the IEEE Conference on Computational Intelligence in Games. IEEE,
2010, pp. 345–350.

[4] J. Togelius, N. Shaker, S. Karakovskiy, and G. N. Yannakakis, “The
Mario AI Championship 2009-2012,” AI Magazine, vol. 34, no. 3, pp.
89–92, 2013.

[5] R. Prada, F. Melo, and J. Quiterio, “Geometry Friends Competition,”
2014.

[6] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta, M. V.
Butz, T. D. Lonneker, L. Cardamone, D. Perez, Y. Sáez et al., “The
2009 Simulated Car Racing Championship,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 2, no. 2, pp. 131–
147, 2010.

[7] P. Rohlfshagen and S. M. Lucas, “Ms Pac-Man Versus Ghost Team
CEC 2011 Competition,” in Proceedings of the IEEE Congress on
Evolutionary Computation. IEEE, 2011, pp. 70–77.

[8] G. B. Parker and M. Parker, “Evolving parameters for Xpilot combat
agents,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG). IEEE, 2007, pp. 238–243.

[9] S. Ontanon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A Survey of Real-Time Strategy Game AI Research
and Competition in StarCraft,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 5, no. 4, pp. 293–311, 2013.

[10] D. Perez, P. Rohlfshagen, and S. M. Lucas, “The Physical Travelling
Salesman Problem: WCCI 2012 Competition,” in Proceedings of the
IEEE Congress on Evolutionary Computation. IEEE, 2012, pp. 1–8.

[11] J. van den Herik, H. Iida, A. Plaat, and J. Hellemons, “The Brain and
Mind-Sports Computer Olympiad,” ICGA Journal, vol. 36, p. 172, 2013.

[12] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the AAAI competition,” AI Magazine, vol. 26, no. 2, p. 62, 2005.

[13] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: an evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, no. 1, pp. 253–279, 2013.

[14] T. Schaul, J. Togelius, and J. Schmidhuber, “Measuring Intelligence
through Games,” CoRR, vol. abs/1109.1314, pp. 1–19, 2011.

[15] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General Game Playing: Game Description Language Specification,”
2008.

[16] C. Browne and F. Maire, “Evolutionary Game Design,” IEEE Transac-
tions on Computational Intelligence and AI in Games, vol. 2, no. 1, pp.
1–16, 2010.

[17] J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius, “A card
game description language,” in Applications of Evolutionary Computing,
EvoApplications 2013., ser. LNCS, A. I. Esparcia-Alcazar, A. D. Cioppa,
I. De Falco, E. Tarantino, C. Cotta, R. Schaefer, K. Diwold, K. Glette,
A. Tettamanzi, A. Agapitos, P. Burrelli, J. J. Merelo, S. Cagnoni,
M. Zhang, N. Urquhart, K. Sim, A. Ekart, F. Fernandez de Vega, S. Silva,
E. Haasdijk, G. Eiben, A. Simoes, and P. Rohlfshagen, Eds., vol. 7835.
Vienna: Springer Verlag, 3-5 Apr. 2013, pp. 254–263.

[18] M. J. Nelson, J. Togelius, C. Browne, and M. Cook, “Rules and
Mechanics,” in Procedural Content Generation in Games: A Textbook
and an Overview of Current Research, N. Shaker, J. Togelius, and M. J.
Nelson, Eds. Springer, 2014, pp. 97–117.

[19] M. Ebner, J. Levine, S. Lucas, T. Schaul, T. Thompson, and J. Togelius,
“Towards a Video Game Description Language.” Dagstuhl Follow-up,
vol. 6, pp. 85–100, 2013.

[20] T. Schaul, “A Video Game Description Language for Model-based
or Interactive Learning,” in Proceedings of the IEEE Conference on
Computational Intelligence in Games. Niagara Falls: IEEE Press, 2013,
pp. 193–200.

[21] A. Weinstein and M. L. Littman, “Bandit-Based Planning and Learning
in Continuous-Action Markov Decision Processes,” in Proceedings of
the Twenty-Second International Conference on Automated Planning and
Scheduling, ICAPS, Brazil, 2012.

[22] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Planning,” in
In: ECML-06. Number 4212 in LNCS. Springer, 2006, pp. 282–293.

[23] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4:1, pp. 1–43, 2012.

[24] D. Robles and S. M. Lucas, “A Simple Tree Search Method for Playing
Ms. Pac-Man,” in Proceedings of the 5th International Symposium on
Computational Intelligence and Games, ser. CIG’09, 2009, pp. 249–255.

[25] C. J. C. H. Watkins and P. Dayan, “Q-Learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[26] R. Sutton, D. Precup, and S. Singh, “Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning,”
Artificial Intelligence, vol. 112, pp. 181–211, 1999.

[27] C.-U. Lim. and D. F. Harrell, “An Approach to General Videogame
Evaluation and Automatic Generation using a Description Language,”
in Proceedings of the IEEE Conference on Computational Intelligence
in Games. IEEE Press, 2014, pp. 1–8.

[28] I. Harvey, “The Microbial Genetic Algorithm,” in Advances in artificial
life. Darwin Meets von Neumann. Springer, 2011, pp. 126–133.

[29] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol. 47, no. 2, pp.
235–256, 2002.

[30] J. Togelius and J. Schmidhuber, “An Experiment in Automatic Game
Design,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG), 2008, pp. 111–118.

[31] G. Barros and J. Togelius, “Exploring a Large Space of Small Games,”
in Proceedings of the IEEE Conference on Computational Intelligence
in Games, 2014, pp. 1–2.

[32] S. Samothrakis, D. Perez, P. Rohlfshagen, and S. Lucas, “Predict-
ing Dominance Rankings for Score-based Games,” IEEE Transactions
on Computational Intelligence and AI in Games, DOI: 10.1109/TCI-
AIG.2014.2346242 2014.

Diego Perez has recently achieved a Ph.D. in
Computer Science at the University of Essex (UK),
where he is now a Senior Research Officer. He
has published in the domain of Game AI, with
research interests on Reinforcement Learning and
Evolutionary Computation. He has organized several
Game AI competitions, as the Physical Travelling
Salesman Problem and the General Video Game AI
competitions, both held in IEEE conferences. He has
programming experience in the videogames industry
with titles published for game consoles and PC.

Spyridon Samothrakis is currently a Senior Re-
search Officer at the University of Essex. He holds
a B.Sc. from the University of Sheffield (Computer
Science), an M.Sc. from the University of Sussex
(Intelligent Systems) and a Ph.D (Computer Sci-
ence) from the University of Essex. His interests
include game theory, machine learning, evolutionary
algorithms and consciousness.

Julian Togelius is an associate professor at New
York University, though most of this work was car-
ried out while he was at the IT University of Copen-
hagen. He received a BA from Lund University
(philosophy), an MSc from the University of Sussex
(Evolutionary and Adaptive Systems) and a PhD
from the University of Essex (computer science).
He used to be interested in philosophy of mind,
especially consciousness, but that got him nowhere.
Nowadays, he works on various applications of AI
to games, including procedural content generation,

player modelling and general game AI.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 14

Tom Schaul is a machine learning researcher at
New York University (now at Google DeepMind),
interested in building general-purpose intelligent
agents, and thinks that scalable game environments
are a perfect testbed for that. His further interests
include (modular/hierarchical) reinforcement learn-
ing, (stochastic/black-box) optimization with min-
imal hyperparameter tuning, and deep neural net-
works. He is also an author of the PyBrain open-
source machine learning package.

Simon Lucas (SMIEEE) is a professor of Computer
Science at the University of Essex (UK) where
he leads the Game Intelligence Group. His main
research interests are games, evolutionary compu-
tation, and machine learning, and he has published
widely in these fields with over 180 peer-reviewed
papers. He is the inventor of the scanning n-tuple
classifier, and is the founding Editor-in-Chief of the
IEEE Transactions on Computational Intelligence
and AI in Games.

Adrien Couëtoux is currently a post doctoral fellow
at Academia Sinica in Taipei (Taiwan). He holds
a Ph.D in Computer Science from University Paris
South (XI), France. His research interests are rein-
forcement learning, optimization for power systems,
and artificial intelligence in games.

Jerry Lee Chen-Yu Lee received his B.S. Degree
from the Department of Computer Science and
Information Engineering (CSIE), National Taiwan
Normal University (NTNU) in 2010. He is cur-
rently working toward his M.S. degree. He is now
a member of the Metaheuristics Laboratory, CSIE,
NTNU. His research interests include metaheuristics
and related applications.

Chong-U Lim received the Bachelor of Engineering
(B.Eng) degree in Computing from Imperial College
London, United Kingdom in 2009 and the Master of
Science (S.M.) Degree in Electrical Engineering and
Computer Science from the Massachusetts Institute
of Technology, Cambridge, U.S.A in 2013 where he
is now pursuing a Ph.D. His research interests span
various topics of artificial intelligence and video
games, such as player modeling, narrative genera-
tion, automated game design and design evaluation.

Tommy Thompson Tommy Thompson is a lecturer
of Computer Science at the University of Derby
(UK). He holds a B.Sc. from the University of
Strathclyde (Computer Science), an M.Sc. from the
University of Edinburgh (Artificial Intelligence) and
a Ph.D (Computer Science) from the University
of Strathclyde. His research interests include ma-
chine learning, evolutionary algorithms, automated
planning & scheduling and their applications within
Game AI.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 15

Game Description

Aliens

Similar to traditional Space Invaders, Aliens features the player (avatar) in the bottom of the screen, shooting upwards at aliens
that approach Earth, who also shoot back at the avatar. The player loses if any alien touches it, and wins if all aliens are
eliminated. 1 point is awarded for each alien or protective structure destroyed by the avatar and −1 point is given if the player
is hit.

Boulderdash

The avatar must dig in a cave to find at least 10 diamonds, with the aid of a shovel, before exiting through a door. Some heavy
rocks may fall while digging, killing the player if it is hit from above. There are enemies in the cave that might kill the player,
but if two different enemies collide, a new diamond is spawned. 2 points are awarded for each diamond collected, and 1 point
every time a new diamond is spawned. −1 point is given if the avatar is killed by a rock or an enemy.

Butterflies
The avatar must capture butterflies that move randomly around the level. If a butterfly touches a cocoon, more butterflies are
spawned. The player wins if it collects all butterflies, but loses if all cocoons are opened. 2 points are awarded for each butterfly
captured.

Chase
The avatar must chase and kill scared goats that flee from the player. If a goat finds another goat’s corpse, it becomes angry and
chases the player. The player wins if all scared goats are dead, but loses if it is hit by an angry goat. 1 point is awarded for
killing a goat and −1 point for being hit by an angry goat.

Frogs
The avatar is a frog that must cross a road full of trucks and a river, only traversable by logs, to reach a goal. The player wins
if the goal is reached, but loses if it is hit by a truck or falls into the water. 1 point for reaching the goal and −2 points for
being hit by a truck.

Missile Command
The avatar must shoot at several missiles that fall from the sky, before they reach the cities they are directed towards. The player
wins if it is able to save at least one city, and loses if all cities are hit. 2 points are given for destroying a missile, −1 point for
each city hit.

Portals The avatar must find the goal while avoiding lasers that kill him. There are many portals that teleport the player from one location
to another. The player wins if the goal is reached, and loses if killed by a laser. 1 point is given for reaching the goal.

Sokoban The avatar must push boxes so they fall into holes. The player wins if all boxes are made to disappear, and loses when the timer
runs out. 1 point is given for each box pushed into a hole.

Survive Zombies

The avatar must stay alive while being attacked by spawned zombies. It may collect honey, dropped by bees, in order to avoid
being killed by the zombies. The player wins if the timer runs out, and loses if hit by a zombie while having no honey (otherwise,
the zombie dies). 1 point is given for collecting one piece of honey, and also for killing a zombie. −1 point if the avatar is
killed, or it falls into the zombie spawn point.

Zelda
The avatar must find a key in a maze to open a door and exit. The player is also equipped with a sword to kill enemies existing
in the maze. The player wins if it exits the maze, and loses if it is hit by an enemy. 2 points for killing an enemy, 1 for collecting
the key, and another point for reaching the door with it. −1 point if the avatar is killed.

TABLE V
GAMES IN THE TRAINING SET OF THE GVGAI COMPETITION.

Game Description

Camel Race The avatar must get to the finish line before any other camel. 1 point for reaching the finish line and −1 point if another camel
reaches the finish line.

Digdug

The avatar must collect all gems and gold coins in the cave whilst digging its way through. There are enemies in the cave that
kill the player on collision. Also, the player can at shoot boulders, which kill enemies, by pressing use two consecutive time
steps. 1 point for every gem collected, 2 points for every enemy killed with a boulder and −1 point if the avatar is killed by an
enemy.

Firestorms
The avatar must find its way to the exit while avoiding the flames spawned by portals from hell. The avatar can collect water
as it goes. One unit of water saves the avatar from one hit of flame, but the game will be lost if flames touch the avatar and he
has no water. −1 point each time a flame touches the avatar (whether he has water or not).

Infection

The avatar can get infected either through collision with bugs scattered around the level or with other infected animals (orange).
The goal is to infect all healthy animals (green). Blue sprites are medics that cure infected animals and the avatar, but they can
be killed by sword. 2 points for killing a doctor, 2 points for infecting a healthy animal and −1 point if the avatar is cured by
the doctor.

Firecaster

The avatar must find its way to the exit by burning wooden boxes down. In order to be able to shoot, the avatar needs to collect
ammunition (mana) scattered around the level. Flames spread, being able to destroy more than one box, but they can also hit
the avatar. The avatar has health, that decreases when a flame touches it. If its health goes down to 0, the player loses. 1 point
for each mana collected, 1 point for each box burnt and −2 points for each flame that touches the avatar.

Overload

The avatar must reach the exit with a determined number of coins, but if the amount of collected coins is higher than a (different)
determined number, the avatar is too heavy to traverse the marsh and to finish the game. In this event, the avatar may kill marsh
sprites with its sword, if it manages to collect one. 2 points for collecting the weapon, 1 point for clearing a marsh and 1 for
each coin collected.

Pacman

The avatar must clear the maze by eating all pellets and power pills. There are ghosts that kill the player on collision if it hasn’t
eaten a power pill (otherwise, the avatar kills the ghost). There are also fruit pieces that must be collected. 40 points for killing
a ghost, 10 points for eating a power pill, 5 points for eating a fruit piece, 1 point for eating a pellet and −1 point if a ghost
kills the player.

Seaquest

The player controls a submarine that must avoid being killed by animals whilst rescuing divers by taking them to the surface.
Also, the submarine must return to the surface regularly to collect more oxygen, or the avatar loses. The submarine’s capacity
is 4 divers, and it can shoot torpedoes at the animals. 1 point for killing an animal with a torpedo, and 1000 points for saving
4 divers in a single trip to the surface.

Whackamole
The avatar must collect moles that appear from holes. There is also a cat in the level doing the same. If the cat collides with
the player, the game is lost. 1 point for catching a mole, −1 point for each mole captured by the cat and −5 points if the cat
catches the avatar.

Eggomania
There is a chicken at the top of the level throwing down eggs. The avatar must move from left to right to avoid eggs breaking
on the floor. Only when the avatar has collected enough eggs, can it shoot at the chicken to win the game. If a single egg is
broken, the player loses the game. 1 point for each egg saved from crashing to the floor and 100 points for killing the chicken.

TABLE VI
GAMES IN THE VALIDATION SET OF THE GVGAI COMPETITION.

