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Abstract—This paper addresses the need to enhance 

transparency in Ambient Intelligent Environments by developing 

more natural ways of interaction, which allow the users to 

communicate easily with the hidden networked devices rather 

than embedding obtrusive tablets and computing equipment 

throughout their surroundings. Ambient Intelligence vision aims 

to realize digital environments that adapt to users in a 

responsive, transparent and context aware manner in order to 

enhance users’ comfort. It is therefore appropriate for employing 

the paradigm of ‘Computing With Words’ (CWWs), which aims to 

mimic the ability of humans to communicate transparently and 

manipulate perceptions via words. One of the daily activities that 

would increase the comfort levels of the users (especially people 

with disabilities) is cooking and performing tasks in the kitchen. 

Existing approaches on food preparation, cooking, and recipe 

recommendation stress on healthy eating and balanced meal 

choices while providing limited personalization features through 

the use of intrusive user interfaces. Herein, we present an 

application, which transparently interacts with users based on a 

novel CWWs approach in order to predict the recipe’s difficulty 

level and to recommend an appropriate recipe depending on the 

user’s mood, appetite and spare time. The proposed CWWs 

framework is based on Linear General Type-2 (LGT2) Fuzzy 

Sets, which linearly quantify the linguistic modifiers in the third 

dimension in order to better represent the user perceptions while 

avoiding the drawbacks of type-1 and interval type-2 fuzzy sets. 

The LGT2 based CWWs framework can learn from user 

experiences and adapt to them in order to establish more natural 

human-machine interaction. We have carried numerous real-

world experiments with various users in the University of Essex 

intelligent flat. The comparison analysis between Interval Type-2 

Fuzzy Sets and LGT2 Fuzzy Sets demonstrates up to 55.43% 
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improvement when general type-2 fuzzy sets are used than when 

interval type-2 fuzzy sets are used instead. The quantitative and 

qualitative analysis both show the success of the system in 

providing a natural interaction with the users for recommending 

food recipes where the quantitative analysis shows the high 

statistical correlation between the system output and the users’ 

feedback; and the qualitative analysis presents social science 

evaluation confirming the strong user acceptance of the system.  

 
Index Terms— ambient intelligence, computing with words, 

general type-2 fuzzy sets 

I. INTRODUCTION 

he recent years have witnessed a rapid increase in the 

miniaturization of computers which enabled to embed 

computing throughout our spaces in familiar objects such as 

home appliances (e.g. washing machines, refrigerators, etc.), 

portable devices (e.g. mobile phones, tablets, etc.), cars, etc. In 

addition, the advances in communications allowed such 

devices to be networked and connected to the Internet. Among 

the highlights of the connected and miniaturized devices bring 

to real life is the opportunity of customization and therefore 

personalization. Lately, it is getting more important to deliver 

personalized content in areas such as food planning which is 

becoming an important personal issue that affects the 

individual’s health and comfort. There are several factors to 

take into account and many researchers have different 

approaches in the literature where Freyne and Berkovsky [61] 

presented preliminary design of a recipe recommender, which 

focussed on food-recipe relationships based on user ratings. In 

[81], researchers have examined the ingredients and the 

relationships between them within tens of thousands of recipes 

from websites to find out which ingredients go well together 

as well as regional preferences of the users. As another 

perspective, using recipe recommendation experiments, 

Forbes and Zhu [82] investigated content-boosted matrix 

factorization for recommender systems. However, these 

studies have not considered user conditions that affect food 

selection. Correspondingly, Mino and Kobayashi [78] 

proposed a method to recommend recipes for a diet taking into 

account the user’s personal activities categorized in event 

types such as party, lunch, sports, etc. Additionally, Ueda et 
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al. [62] explored a method for extracting the user’s favourite 

ingredients using recipe browsing and cooking history to 

tackle the problems of picky eating for nutritional health 

concerns. Moreover, Yajima and Kobayashi [63] developed a 

recommendation system that analyses the content of the 

recipes (in terms of number of ingredients, cooking processes, 

etc.) as well as the user’s condition (with regards to the 

possessed seasonings, user’s preference and schedule, date and 

season, etc.). Even though these studies considered user’s 

conditions to provide personalization, they have not taken into 

account the uncertainties introduced by personal 

recommendations which can be handled using fuzzy logic 

systems. Accordingly, Lee et al. [83] used type-1 fuzzy logic 

to calculate the calorie allowance in an intelligent ontological 

agent for diabetic food recommendation. In their following 

studies, they have further developed their system to involve 

type-2 fuzzy ontology [84] as well as Fuzzy Markup Language 

[85]. However, these studies concentrated on the diabetics as a 

health condition and not on the user’s mood, appetite and 

spare time which are quite crucial in deciding what to eat. In 

this paper, we present an ambient intelligent platform for 

cooking recipes recommendation which predicts the level of 

difficulty of a recipe and recommends a recipe that would be 

appropriate to the user depending on the user’s mood, appetite 

and spare time using general type-2 fuzzy logic. 

 
On the other hand, the aforementioned widespread 

availability of networked computing resources sparked the 

emergence of the Ambient Intelligence (AmI) vision, which 

aims to realise digital environments that adapt to users in a 

responsive, transparent and context aware manner [57][69]. 

The previous years have witnessed an increase of applying 

AmI technologies to enhance users’ comfort [60] and to help 

the elderly and people with disabilities especially those having 

vision impairment (according to World Health Organization 

statistics1, the estimated number of visually impaired people 

worldwide is 285 million). Such AmI applications included 

alerting carers for emergency cases such as falling down [70], 

using robots to assist the elderly in daily tasks [71] or 

suggesting safe navigation techniques for the blind via GPS, 

RFID, etc. [72][73]. One of the major daily activities that 

would increase the comfort levels of the users and help people 

with disabilities is cooking and performing tasks in the 

kitchen. As mentioned previously, most approaches on food 

preparation, cooking, and recipe recommendation stress on 

healthy eating and balanced meal choices [74]-[78]. In 

addition, the existing applications such as the ‘recipe 

recommenders’ mentioned in [61]-[64], [81], [83]-[85] 

provide limited personalization features while neglecting the 

notion of adaptation and they also require the use of intrusive 

user interfaces. Hence, there is a need to enhance transparency 

in AIEs (especially when dealing with disabled and elderly 

people) by developing more natural ways of interaction which 

allow the users to communicate easily with the hidden 

networked devices rather than embedding obtrusive tablets 

and computing equipment throughout their surroundings. 

The most widely used inter-human communication is via 

spoken language conversations which can inspire a transparent 

human-computer interaction. This necessitates having systems 

capable of modelling words and computing with them. For 

this purpose, the paradigm of ‘Computing With Words’ 

(CWWs) was coined by Zadeh in mid 90s to mimic the ability 

of humans to communicate and manipulate perceptions via 

words [1]. CWWs have been studied within various 

approaches including human-interpretable decision making 

[7], judgment analysis [8], perceptual reasoning [9] leading to 

perceptual computing [10], fuzzy automata [11], text 

categorization [12], linguistic modelling of words essentially 

stressing the use of interval type-2 (IT2) fuzzy systems [13]-

[18]. In this work, CWWs paradigm is used in order to create 

adequate word models which are capable of representing the 

human’s perceptions. This requires improving the naturalness 

of communication between humans and machines. For 

example, making the AmI space sensitive enough to 

distinguish between 40oC and 43oC in order to capture the user 

perception and provide better response to the user needs.  

As Mendel [65] states, using a type-1 fuzzy set to model a 

word is scientifically incorrect because a word is uncertain 

whereas a type-1 fuzzy set is certain. In addition, type-1 and 

IT2 fuzzy sets have problems when employed to model words 

from a linguistics perspective where Klein [22] argues that 

natural ordering on real numbers can be lost in fuzzy 

semantics. Fig. 1a shows a situation where 𝑥′=40oC and 

𝑥′′=43oC and both 𝑥′ and 𝑥′′ have a membership value of 1 to 

the linguistic term Extremely hot (when either type-1 or IT2 

fuzzy sets are employed). The same applies to the temperature 

values of 34oC and 40oC which will have the same type-1 and 

IT2 membership values to the linguistic term Very hot. Hence, 

from the machine point of view, there is no way to distinguish 

between 𝑥′ and 𝑥′′ (although the difference can be perceived 

 
1http://www.who.int/mediacentre/factsheets/fs282/en/ 

 
(a) 

 
(b) 

Fig. 1.  Problems with using (a) IT2 fuzzy sets (shown in solid black lines) 

and type-1 fuzzy sets (shown in red dashed lines) in CWW scenarios (b) 
Type-1 fuzzy sets (shown in red dashed lines) and IT2 (shown in solid black 

lines) shoulder sigmoidal fuzzy sets. 
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by humans) as they belong to the same linguistic term with the 

same membership degrees. Hence, by using type-1 or IT2 

fuzzy sets, we might lose essential information. Even, if a 

shoulder sigmoidal type-1 fuzzy set is used as shown in Fig. 

1b, we might have different membership values for 𝑥′ and 𝑥′′, 
however, this poses a restricted representation when it comes 

to interpreting the difference in the membership degrees where 

the differences in the membership degrees of 𝑥′ and 𝑥′′ might 

not represent the natural ordering difference in real-world.  

 

 
This paper presents the novel application of an ambient 

intelligent platform for cooking recipes recommendation 

which interact with users via natural language based on a 

CWWs approach. Such a platform can increase the user 

comfort in AIEs and it can be a very important tool for AIEs 

which care for the elderly and people with major disabilities 

including vision impairment. The presented CWWs approach 

is based on Linear General Type-2 (LGT2) Fuzzy Sets which 

quantify the third dimension in a linear fashion. Moreover, the 

proposed LGT2 based CWWs framework can learn from user 

experiences and adapt to them in order to link the computers 

and users in a humanlike manner for an improved interaction 

in AIEs. The contribution and novelty of this paper is also 

outlined in Table I. 

We have carried numerous real world experiments with 

various users in the University of Essex intelligent apartment 

(iSpace). We will report results from the comparison analysis 

between IT2 Fuzzy Sets and LGT2 Fuzzy Sets as well as the 

quantitative and qualitative analysis which show the success 

of the system in providing a natural interaction with the users 

for recommending food recipes considering the user’s mood, 

appetite and spare time. The comparison analysis 

demonstrates 49% improvement when general type-2 fuzzy 

sets are used than when interval type-2 fuzzy sets are used 

instead. The quantitative analysis shows the high statistical 

correlation between the system output and the users’ feedback. 

In addition, the qualitative analysis presents social science 

evaluation that confirms the strong user acceptance of the 

system. 

The rest of the paper is organized as follows. In Section II, 

we introduce LGT2 FSs. Section III provides an in-depth 

description of the proposed CWWs Framework. Section IV 

details the application of the proposed CWWs Framework to 

an ambient intelligent platform for cooking recipes 

recommendation. Section V presents the experiments and 

results. Finally, Section VI presents the conclusions and the 

future work. 

II. LINEAR GENERAL TYPE-2 FUZZY SETS (LGT2 FSS) 

Any CWWs paradigm necessitates having -as a basic 

building block- adequate models which are capable of 

representing ‘words’ to capture the human’s perceptions. 

Formally, from linguistics perspective, Klein [22] considers 

the following condition in fuzzy semantics regarding 

Extremely hot temperature: For all 𝑥, 𝑥′ ∈

𝑋, 𝜇𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑜𝑡(𝑥) = 𝜇𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑜𝑡(𝑥′), if  𝑥 is exactly as 

Extremely hot as 𝑥′. If we want to interpret the claim “43oC is 

hotter than 40oC” in fuzzy semantics using the information 

𝜇𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑜𝑡(40) and 𝜇𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑜𝑡(43), we would 

obviously let 𝜇𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑜𝑡(43) > 𝜇𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑜𝑡(40) where 

> is the natural ordering on the real numbers. But this 

conflicts with the reasonable assumption that if the 

temperature 𝑥 reaches a certain value, say 40oC, then 𝑥 is 

definitely Extremely hot and hence 𝜇𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑜𝑡(40) = 1 

(the case of shoulder membership functions (MFs)). Hence, 

𝜇𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑜𝑡(40) =  𝜇𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑜𝑡(43), and the claim “43oC 

is hotter than 40oC is” comes out false. Another perspective 

was cited by Greenfield and John [46] regarding the 

propositions under different types of logic. In crisp logic, the 

statement 𝑆 ={The perpetrator is tall.} is equivalent to the 

below statement [46]: 

𝑆𝑐𝑟𝑖𝑠𝑝 ={‘The perpetrator is tall.’ is true.} 

On the other hand, in type-1 fuzzy logic, the statement 𝑆 

can take the form of: 

𝑆𝑡𝑦𝑝𝑒−1 = {‘The perpetrator is tall.’ has a truth value of 

0.8.} 

whereas in IT2 fuzzy logic, the statement 𝑆 can take the 

TABLE I 

CONTRIBUTION AND NOVELTY OF THE PAPER WITH REGARDS TO THREE MAJOR 

DOMAINS 

Domain  Contribution  Novelty 

General 

Type-2 
Fuzzy 

Logic 

 

A special kind of 

GT2 FS named 
Linear General 

Type-2 FS 

 
First nested Footprint of 

Uncertainty approach in the 

third dimension that indicate 

linguistic modifiers  

Better represent the 

perceptions while avoiding 
the drawbacks of type-1 and 

interval type-2 fuzzy sets 

Inter-disciplinary approach 
(inspired from linear 

adjectives, antonyms, and 

modifiers) 

Computing 
With 

Words 

(CWWs) 

 

Architecture for 

a CWWs 
Framework 

 
First comprehensive 

framework for CWWs 

paradigm, which is capable 
of modelling words using 

human experience 

Merging inter-disciplinary 
approaches from 

neuroscience, psychology, 

linguistics (using LGT2 FSs), 
and artificial intelligence to 

mimic human reasoning 

Ambient 

Intelligence 

(AmI) 

 

Ambient 
Intelligent 

Platform for 

Cooking Recipes 
Recommendation 

 
First application of CWWs in 
AmI 

Enhance transparency in 

AIEs and establish natural 
communication between 

humans and machines 

Learn from user experiences 
and adapt to them while 

increasing user comfort 

levels in terms of food 
planning 
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following forms [46]: 

𝑆𝐼𝑇2 = {The statement {‘The perpetrator is tall.’ has a truth 

value of 0.8} has a truth value of 1.} 

𝑆𝐼𝑇2′ = {The statement {‘The perpetrator is tall.’ has a truth 

value of 0.5} has a truth value of 1.} 

Hence, according to [46], the statements 𝑆𝐼𝑇2 and 𝑆𝐼𝑇2′ are 

inconsistent and the examples above show how an IT2 fuzzy 

set can generate a number of incompatible statements. 

According to [46], in the case of modelling statements using 

general type-2 (GT2) fuzzy logic, the statements 𝑆𝐺𝑇2 and 

𝑆𝐺𝑇2′ would be consistent as follows: 

𝑆𝐺𝑇2 = {The statement {‘The perpetrator is tall.’ has a truth 

value of 0.8} has a truth value of 1.} 

𝑆𝐺𝑇2′ = {The statement {‘The perpetrator is tall.’ has a 

truth value of 0.5} has a truth value of 0.6.} 

Hence, from the above discussion, we can see that type-1 

fuzzy sets cannot handle the linguistic uncertainties associated 

with words. In addition, as shown in Fig. 1a, IT2 as well as 

type-1 fuzzy sets have problems when employed to model 

words from a linguistics perspective as the natural ordering on 

real numbers can be lost in fuzzy semantics [22] and also IT2 

FSs can lead to incompatible statements [46]. This has 

motivated us to investigate the use of general type-2 (GT2) 

FSs to overcome the abovementioned problems faced when 

modelling words for CWWs.  

One of the most important characteristics of GT2 FSs is the 

additional degrees of freedom they provide which can enable 

handling higher uncertainty levels. As GT2 FSs have 

membership grades which are type-1 FSs; they are very useful 

in circumstances where it is difficult to determine an exact 

membership value for a given input and hence, they can be 

useful for handling the linguistic uncertainties [28]. 

Furthermore, it has been concluded by Hisdal [29] that 

increased fuzziness in a description means increased ability to 

handle inexact information in a logically correct manner. 

Recently, the introduction of zSlices [31] and alpha-planes 

[79] [87] has helped to bridge the gap caused by the 

complexity of the design and implementation of GT2 FSs. 

In this paper, we will present a special kind of GT2 FSs 

termed Linear General Type-2 Fuzzy Sets (LGT2 FSs) [4] 

where the third dimension is quantified in a linear fashion. The 

theoretical formulation of LGT2 FSs is based on linear 

adjectives [22], antonyms [21] and modifiers [23]. From the 

linguistics perspective, we observed that the words (i.e. 

linguistic terms for linguistic variables) used in fuzzy logic are 

possibly adjectives (e.g. hot, cold, high, low, etc.), which have 

the distinctive characteristic of gradability [22] as they are 

modelled in a sortal range2 within their mathematical domain. 

Formally, given that 𝐴 is an adjective, Klein [22] puts forward 

two types of adjectives classified according to the following 

 
2 The definition of the word ‘sortal’ in English is “Denoting or relating to a 

term representing a semantic feature that applies to an entity as long as it 

exists, classifying it as being of a particular kind.” (Source: 

http://www.oxforddictionaries.com/definition/english/sortal) 
Hence, ‘sortal range’ in this paper can be defined to be the numerical 

domain (universe of discourse) of the variable in question whose values can 

be sorted. For example, for variable ‘hot’ assuming that the numerical domain 
is [20, 30], the values in this domain can be sorted as in 24<25. 

condition: “Whenever 𝑐 is a context of use, 𝑁𝑃1,𝑁𝑃2 denote 

individuals within the sortal range of 𝐴, then the sentence 

𝑁𝑃1𝑖𝑠 𝐴 − 𝒆𝒓 𝑡ℎ𝑎𝑛 𝑁𝑃2 has a definite truth value in 𝑐.” [22]. 

Accordingly, the linear adjectives are those that satisfy this 

condition and the ones that do not are called to be nonlinear 

[22]. For example, let 𝑐  be a context of temperature, 𝑁𝑃1 =
43 and 𝑁𝑃2 = 40 within the sortal range of = ′ℎ𝑜𝑡′ , then the 

sentence “43 𝑖𝑠 ℎ𝑜𝑡(𝑡) − 𝒆𝒓 𝑡ℎ𝑎𝑛 40” has a definite truth 

value in temperature context; therefore, ‘hot’ is a linear 

adjective as it satisfies the above condition.  

From another linguistics perspective, Kennedy [23] presents 

a decompositional approach where he argues that “… the 

meaning of a gradable adjective contains a measure function” 

[23]. To illustrate, let ‘hot’ be a gradable adjective and 

‘extremely’ be a measure function which determines the 

degree to which a variable x is ‘hot’; in this case ‘extremely’ 

alone is not the core meaning of the adjective according to 

[23]. In linguistics literature, modifiers as measure phrases 

have been studied in detail [24]-[26] where it is agreed that 

semantics of measure phrases require an adjustment in the 

meaning of an adjective [25]. However, the adjustments 

caused by measure phrases (i.e. modifiers) also introduce 

linguistic uncertainties.  

In order to model a word for CWWs, there is a need to deal 

with the linguistic uncertainty that modifiers encapsulate as 

their level of intensifying or diminishing the meaning of an 

adjective changes from one person to another. For example, 

when the modifier ‘extremely’ is used to intensify the meaning 

of an adjective, it might mean different amount of 

intensifications to different people. Herein, we aim to handle 

the linguistic uncertainty conveyed by modifiers in a novel 

way and we propose to model modifiers as second-order word 

uncertainty. The point of departure for this is twofold: 1) there 

exists a hierarchical analogy (see Fig. 2c) between the linear 

adjectives and a linguistic variable in a fuzzy system 2) as 

mentioned by [23], the major meaning of the linguistic term is 

delivered by the adjective and this semantically justifies 

modelling the adjective as first-order uncertainty. 

On the other side, antonyms are regarded to be an important 

phenomenon of language that is needed for building up 

linguistic variables in fuzzy logic [21]. In Fig. 2a, Zadeh [66] 

uses nested FSs where the linguistic terms (i.e. small and 

large) represent the two opposite sides of a phenomenon, and 

the modifiers (i.e. very, not very), which are used to intensify 

or weaken the meaning of a word, are nested in the type-1 

primary membership functions of the antonyms. Furthermore, 

[32]-[34] suggest that antonyms can provide an insight to the 

operation of the human mind with regards to making 

perceptual judgments, which is a matter of deciding between 

two opposite sides (e.g. hot and cold, good and bad, etc.). 

Moreover, according to Trillas and Guadarrama [21], “… 

many words are better managed once we have used pairs of 

words (P, opposite of P).”  

Consequently, the abovementioned studies from linguistics 

[23], fuzzy logic [21][66], and neuroscience [32]-[34] lead to 

the following proposal: for modelling the linguistic terms, we 

cluster the major meaning of the linguistic variable into two 

http://www.oxforddictionaries.com/definition/english/sortal
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opposite sides (i.e. antonyms) by using two shoulder (left and 

right) trapezoidal membership functions as shown in Fig. 2b; 

and for the modelling of linguistic modifiers, we propose a 

nested way similar to Zadeh’s approach [66] but instead of 

designing primary memberships for all the linguistic 

modifiers, we propose to design secondary memberships using 

GT2 FSs as shown in Fig. 2b. To avoid misunderstanding, it 

should be noted that ‘none’ in Fig. 2b is not used as a 

linguistic modifier; instead, it is used to indicate the lack of 

linguistic modifier (i.e. empty space), and is omitted in the 

implementation. For example, if someone would like to say 

‘hot’, the linguistic modifier from the system point of view is 

an empty space, hence ‘none’. 

A. Mathematical Definition of the LGT2 FSs 

Formally, based on the notation of a general type-2 fuzzy set 

in [86], a Linear General Type-2 FS denoted 𝐿̃ can be 

expressed as follows [4]: 

 

                    𝐿̃ =  ∫ ∫ 𝜇𝐿̃(𝑥, 𝑢)/(𝑥, 𝑢) 
𝑢∈𝐽𝑥𝑥∈𝑋

  𝐽𝑥 ⊆ [0,1]  (1) 

 

More on the mathematical definition of the LGT2 FSs can 

be found in [4]. In order to represent GT2 FSs, we have opted 

to use zSlices approach introduced by Wagner and Hagras 

[31]. However, the equivalence between alpha-plane and 

zSlices representations has been proven in [80]. Accordingly, 

LGT2 FSs can also be represented using alpha-planes 

introduced by Liu [87] and Mendel et al. [79]. 

A zSlice 𝑍𝑖 is formed by slicing a GT2 FS in the third 

dimension (z) at level 𝑧𝑖 and is equivalent to an IT2 FS with 

the exception that its membership grade 𝜇𝑍̃𝑖
(𝑥, 𝑢) in the third 

dimension is not fixed to 1; instead is equal to 𝑧𝑖 where 0 ≤

𝑧𝑖 ≤ 1. Thus, the zSlice 𝑍𝑖 can be written as follows [31]: 

 

                            𝑍𝑖 = ∫ ∫ 𝑧𝑖/(𝑥, 𝑢𝑖)𝑢𝑖∈𝐽𝑖𝑥𝑥∈𝑋
  (2) 

where at each 𝑥 value, zSlicing creates an interval set with 

height 𝑧𝑖 and domain 𝐽𝑖𝑥
,  1 ≤ 𝑖 ≤ 𝐼, and I is the number of 

zSlices (excluding 𝑍0) and 𝑧𝑖 = 𝑖/𝐼. 

We have employed zSlices to represent the LGT2 FSs for 

real world applications where Fig. 3b shows zSlices 

representation of the LGT2 FSs namely ‘dark’ and ‘bright’ for 

the linguistic variable Ambient Light Level. The novelty of 

LGT2 FSs is to quantify the third dimension in a linear way 

where the modifiers (e.g. extremely, very, etc.) are nested for 

preserving the natural ordering. For simplicity, we have used 

equally spaced FOUs for the third dimension as a design 

decision and ease of implementation. It should be noted that 

the design process does not restrict the number of zSlices used 

to be equal to the number of linguistic modifiers to be 

modelled. In other words, a linguistic modifier can be 

represented using multiple zSlices (as seen in Fig. 3b and in 

Appendix B) based on the experience data. It is important to 

note that, by nesting the Footprint of Uncertainties (FOUs) at 

different levels in the third dimension (i.e. zLevels), we can 

achieve the same level of profoundness (yet different 

resolution) as an IT2 model (see Fig. 3a and Appendix A3) 

while simplifying the primary MF design of the linguistic 

variable. 

B. Benefits of LGT2 FSs 

One of the major advantages of LGT2 FSs is that they can 

overcome the drawbacks of type-1 and IT2 FSs as the LGT2 

FSs (through their linear third dimension) allow preserving the 

natural ordering of numbers. For example, distinguishing 

between 40oC and 43oC as shown in Fig. 2b where 

 𝜇𝐿̃(43,1) >  𝜇𝐿̃(40,1) for Extremely hot linguistic term. 

Furthermore, with the highlight of human experience, the 

design features of LGT2 FSs can eliminate the problem of 

resolution (due to natural ordering) as well as the need for 

expert interference during creation of adaptive systems using 

FSs.  

Another major advantage of LGT2 FSs is their compact 

design which is based on the use of antonyms. Employing 

LGT2 FSs decreases the number of linguistic terms to be 

designed to two while keeping the same level of profoundness 

as in an IT2 design (see Fig. 3a). Hence, using LGT2 FSs not 

only simplifies the modelling process of a linguistic variable, 

but also decreases the number of fuzzy rules in the rulebase of 

a Fuzzy Logic System (FLS). In our previous studies 

[3][19][20], we have realized further practical benefits of 

LGT2 FSs which can be outlined as follows: 

 
3 Appendices can be downloaded from the web: 

http://www.aysenurbilgin.com/#!publications/mainPage 

 
(a)                                                                    (b)                                                                       (c) 

Fig. 2.  (a) Use of antonyms in linguistic terms (adapted from [66]) (b) Example of LGT2 FS with the primary domain [below] and the secondary domain [top] 

for showing how the third dimension is quantified (c) Hierarchical analogy between linguistics and fuzzy logic. 

  

http://www.aysenurbilgin.com/#!publications/mainPage
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 LGT2 FSs can facilitate the intelligent systems to 

respond faster [3]. That is, the processing time of a 

complete rulebase (having all the combinations of the 

input linguistic terms) of a LGT2 based FLS is 

significantly lower than the processing time of a 

complete rulebase of an IT2 based FLS. 

 Use of LGT2 FSs can enrich the system’s outputs as 

LGT2 FSs can model the small differences in the 

input [3][19]. In other words, LGT2 FSs offer a 

richer output range as they have a distinct secondary 

membership for every 𝑥 value in the universe of 

discourse, which in turn has a crucial impact on 

generating unique outputs. 

 Due to the concise design of LGT2 FSs, they are 

more advantageous than IT2 FSs regarding the 

convenience in learning and adaptation aspect of 

fuzzy membership functions. It has been shown in 

[20] that LGT2 FSs can easily accommodate the 

changes in the inputs and can dynamically represent 

human perceptions as they reflect on the experienced 

information rather than data collected through 

surveys ahead of time. 

 

 

III. THE PROPOSED CWWS FRAMEWORK 

The far-reaching objective of the proposed CWWs 

Framework is to enable the humans to communicate with 

computers as if they are communicating with another human 

being in the course of rather complex reasoning and problem 

solving. This is why, the proposed CWWs Framework has 

been blended from eclectic literature review about human 

problem solving behaviours/approaches from neuroscience 

[32][33][41][44][51], psychology [2][27][37][52][53], 

linguistics [54], cognitive science [55] and artificial 

intelligence (AI) [6][38][40][42][45][48][50][59] perspectives.  

In the following subsections, we will give brief background 

information on the literature review that has guided the 

construction of the proposed CWWs Framework. Then, we 

will introduce the operation principles of the proposed CWWs 

Framework with an example. In Subsections C and D, we will 

detail the theoretical grounds of the two important segments of 

the framework, which are named granulation and causation-

organization. 

A. Background Literature 

Zadeh [50] stresses that there is a connection between the 

machinery of fuzzy logic and human reasoning. Furthermore, 

he [50] groups the concepts underlying the human cognition 

into three: granulation, organization and causation. These 

concepts are informally defined in [50] as follows: 

granulation involves decomposition of whole into parts; 

organization involves integration of parts into whole; and 

causation involves association of causes with effects. 

Following Zadeh's [50] suggestions, the proposed CWWs 

Framework is divided into two segments which are 

granulation and causation-organization as shown in Fig. 4a. 

Words, as the building blocks of natural language, can be 

referred to be natural language representations of human 

perceptions. Being a key component of inter-human 

communication, perceptions are defined to be a particular way 

of experiencing and organizing the stimulus [52] by calling on 

stores of memory data and by performing classification, 

comparisons and myriad decisions [51]. 

Our past sensory experiences, which are stored in memory 

and brought online in working memory, are combined with 

current sensory inputs to inform our perceptual decisions. In 

their work, Heekeren et al. [32] suggest a mechanism where 

‘the neural architecture for perceptual decision-making’ can be 

viewed as a system that consists of four distinct but interacting 

processing modules. Accordingly, the first of these modules 

(denoted NA1 in Fig. 4a) accumulates and compares sensory 

evidence; the second (denoted NA2 in Fig. 4a) detects 

perceptual uncertainty or difficulty and signals when more 

attentional resources are required to process a task accurately; 

the third (denoted NA3 in Fig. 4a) represents decision 

variables and includes motor and premotor structures; and the 

fourth (denoted NA4 in Fig. 4a) is involved in performance 

monitoring, which detects when errors occur and when 

decision strategies need to be adjusted to maximize 

performance [32]. Hence, it can be deduced from [32] that 

accumulation of sensory evidence requires some sort of 

storage/memory. 

 
(a) 

 
(b) 

Fig. 3.  Comparison of (a) IT2 model and (b) LGT2 model showing 

zSlices implementation and also showing the different characterization of 
the various zLevels. 
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B. The Operation Principles 

The operation of the proposed framework is as follows: 

input words represent a problem that needs to be 

answered/solved and to do this; in granulation segment, the 

input words are first granulated by being mapped into sensory 

evidence of remembered solution in the human experience. 

The sensory evidence (bits of information) retrieved from the 

memory is regarded to be numerical descriptors of a solution 

that relates to the decision variables in human reasoning. For 

example, on an ordinary weekday, you come home from work 

tired and very hungry and you need to prepare something very 

easy considering your status. Your interpretation of ‘very 

easy’ depends on some criteria which happen to be the 

preparation time and the cooking time of the recipe. The 

problem descriptors in this case are tiredness and hungriness 

(in words), whereas the solution descriptors are preparation 

time and cooking time of the recipe in minutes (hence 

numerical). In other words, the identification element in the 

granulation segment takes tiredness and hungriness in words 

and outputs bits of information for preparation time and 

cooking time in numbers.  

Next is causation-organization segment in the proposed 

CWWs Framework. As human reasoning is done using 

natural language, the numerical sensory evidence is converted 

into words by input processing element so that the bits of 

information are classified to cope with the uncertainty 

(mentioned in [32]) associated to it in the human mind. The 

mapping of sensory evidence is done using fuzzy 

representations of the decision variables that characterize the 

human reasoning, which is represented in IF-THEN fuzzy 

rule format. For example, the decision variables in the 

previously mentioned scenario are preparation time and 

cooking time (linguistic variables), which have fuzzy 

representations using the linguistic terms ‘short’ vs. ‘long’ for 

the preparation time, and ‘quick’ vs. ‘slow’ for the cooking 

time. Moreover, the solution is described by the difficulty 

level of the recipe and has a fuzzy representation using the 

linguistic terms ‘challenging’ vs. ‘easy’. So, in this scenario, 

the human reasoning is represented using fuzzy rules such as 

‘If preparation time is short and the cooking time is very quick 

then the difficulty level of the recipe is very easy’. Depending 

on the numerical inputs (bits of information), active rules are 

found by the association element and the output is drawn by 

first aggregating active rules into an interval format and then 

generalizing this interval into chunks of information (words) 

to be communicated back to the user. This concludes one way 

information flow of the causation-organization segment. 

After the solution is presented to the user, for performance 

monitoring purposes, the output word needs to be evaluated 

by the user so that the proposed CWWs Framework can learn 

and adapt. This can be done by asking the user via natural 

language to provide interpretations for the decision variables 

and concludes the two way information flow in the causation-

organization segment. For example, the user is asked to 

provide words for preparation time and cooking time as well 

as the difficulty level of the recipe in his/her opinion. Upon 

receiving this feedback, the human reasoning, which is in the 

form of IF-THEN fuzzy rules, can be modified to incorporate 

the incoming information. Hence, the proposed CWWs 

Framework follows a cyclic and integrated process of 

identifying in the granulation segment, and associating 

together with adapting in the causation-organization segment. 

Granulation in the proposed CWWs Framework is a means 

to mimic human problem solving and achieve human 

reasoning in machine processes by correlating words with past 

experiences. From human psychology perspective, reasoning 

by re-using past situations or experiences is a powerful and 

frequently applied way to solve problems [38]. Consequently, 

several studies from cognitive psychology research have 

embarked on an approach, coined as ‘Case Based Reasoning’ 

(CBR), which is based on the recall and reuse of specific 

experiences [39]. In particular, CBR can mean adapting old 

solutions to meet new demands; using old cases to explain 

new situations; or reasoning from precedents to interpret a 

new situation or create an equitable solution to a new problem 

[40]. 

C. Granulation in the Proposed CWWs Framework 

The foundation of CBR can be complementary to the 

foundation of CWWs paradigm from a human-centric 

perspective as CBR is laid on reflecting human use of 

remembered problems/solutions to new problem solving [59], 

 
                                    (a)                                                                                                               (b) 

Fig. 4.  (a) Components of the proposed CWWs Framework that mimics human-like communication (the black arrows show the direction of information flow, 
and the grey dashed arrows show the possible impact factors that should be handled) (b) The role of case representation in granulation and how words are 

decomposed into numbers by the help of case representation in CBR 
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whereas CWWs is laid on mimicking human use of natural 

language for computing and reasoning. It has been emphasized 

that the fundamental characteristic that distinguishes CBR 

from other problem solving techniques in artificial intelligence 

is being memory based [59]. In support to [59], studies from 

neuroscience [32], neurobiology [41], neuropsychology [53], 

psycholinguistics [54], and cognitive science [55] point out 

keeping past events in memory and using past experiences in 

coordination with the current situation in forming perceptual 

judgments as well as in human reasoning. Similar to the steps 

taken in everyday problem solving behaviour of humans [42], 

principal tasks in CBR are to identify the current problem 

situation and find a past case similar to the new one 

(Retrieve), use that case to suggest a solution to the current 

problem (Reuse), evaluate the proposed solution (Revise), and 

update the system by learning from this experience (Retain). 

In fact, CBR is a cyclic and integrated process [38] of 

remembering, adapting and storing. 

The first process in CBR, which is marked as Identification 

in Fig. 4a and analogous to Retrieve step, is the case retrieval 

task and it plays a pivotal role, which has been the focus of a 

considerable amount of research [59]. Equally important, case 

representation, which is influenced by the intended purpose of 

a CBR system [42], is a prior design decision that needs to be 

made. In our approach, we will refer to one of the most 

traditional representations of a case, which consists of 

‘problem’ and ‘solution’ parts. Furthermore, both the problem 

and the solution parts will involve feature-value pairs (see Fig. 

4b) where the values can take the form of fuzzy linguistic 

terms or numbers. 

CBR literature assumes that similar experiences can guide 

future reasoning, problem solving, and learning [42]. Hence, 

the similarity concept is a very important issue in the case 

retrieval process. One of the most common forms used in 

computing relatedness among cases is the weighted feature-

based similarity [42]. In the proposed CWWs Framework, we 

use a global similarity measure applied to the feature-value 

pairs of problem parts of cases under comparison. The values 

of the features in problem parts of cases are in the form of 

linguistic terms, which are represented in memory using 

zSlices based LGT2 FSs. In [42], a global similarity degree 

between two cases having multiple-feature descriptions is 

obtained by aggregating degrees of similarities pertaining to 

each feature, referred to as local similarity. We apply local 

similarity measure to each corresponding feature-value pair of 

the problem parts of the cases under comparison. In 

implementation, we use Jaccard similarity measure (as it is 

proven to be better than other similarity measures for IT2 FSs 

[67]) formulated as follows [67]: 

 

𝑠(𝐴̃, 𝐵̃) =
∫ 𝑚𝑖𝑛(𝜇𝐴̃(𝑥),   𝜇𝐵̃(𝑥))𝑑𝑥

𝑥
 +∫ 𝑚𝑖𝑛(𝜇𝐴̃(𝑥),   𝜇𝐵̃(𝑥))𝑑𝑥

𝑥

∫ 𝑚𝑎𝑥(𝜇𝐴̃(𝑥),   𝜇𝐵̃(𝑥))𝑑𝑥
𝑥

 +∫ 𝑚𝑎𝑥(𝜇𝐴̃(𝑥),   𝜇𝐵̃(𝑥))𝑑𝑥
𝑥

 (3) 

 

In a zSlices based LGT2 system, let 𝐹𝑛 be a feature, and 𝑉𝑛 

be the value of  𝐹𝑛 where 𝑛 = 1 … 𝑁, and 𝑁 is the total 

number of features. Herein, we assume that the number of 

features are consistent for all the cases in Case Base 𝐶𝐵, 

which is stored in memory. As mentioned earlier, 𝑉𝑛 is 

represented by zSlices based LGT2 FS 𝐿̃.In comparing zSlices 

based LGT2 FSs, we need to compare each zSlice 𝑧̃𝑖
𝐿̃ of 𝐿̃ with 

zSlice 𝑧̃𝑗
𝑄̃

 of 𝑄̃, which is another LGT2 FS. Given that a zSlice 

𝑧̃𝑖 is equivalent to an IT2 set with particular height in the third 

dimension ℎ𝑡𝑖 = 𝑖/𝐼 where 1 ≤ 𝑖 ≤ 𝐼, and I is the number of 

zSlices, we can infer 𝑧̃𝑖
𝐿̃ and 𝑧̃𝑗

𝑄̃
 are special cases of IT2 FSs 

having heights ℎ𝑡𝑖
𝐿̃ = 𝑖/𝐼 and ℎ𝑡𝑗

𝑄̃ = 𝑗/𝐼, respectively, where 

𝑖, 𝑗 = 1 … 𝐼. The adapted definition of Jaccard similarity in 

Equation (3) to be applied on individual zSlices 𝑧̃𝑖
𝐿̃ and 𝑧̃𝑗

𝑄̃
 is 

shown in Equation (4) [20]. 

 

𝑠𝑧 (z̃𝑖
𝐿̃, z̃𝑗

𝑄̃
) =

∫ 𝑚𝑖𝑛(𝜇
𝑧̃𝑖

𝐿̃(𝑥)∗ℎ𝑡𝑖
𝐿̃ ,   𝜇

z̃
𝑗
𝑄̃(𝑥)∗ℎ𝑡𝑗

𝑄̃
)𝑑𝑥

𝑥

 +∫ 𝑚𝑖𝑛(𝜇
z̃𝑖

𝐿̃(𝑥)∗ℎ𝑡𝑖
𝐿̃,   𝜇

z̃
𝑗
𝑄̃(𝑥)∗ℎ𝑡𝑗

𝑄̃
)𝑑𝑥

𝑥

∫ 𝑚𝑎𝑥(𝜇
z̃𝑖

𝐿̃(𝑥)∗ℎ𝑡𝑖
𝐿̃,   𝜇

z̃
𝑗
𝑄̃(𝑥)∗ℎ𝑡𝑗

𝑄̃
)𝑑𝑥

𝑥

 +∫ 𝑚𝑎𝑥(𝜇
z̃𝑖

𝐿̃(𝑥)∗ℎ𝑡𝑖
𝐿̃,   𝜇

z̃
𝑗
𝑄̃(𝑥)∗ℎ𝑡𝑗

𝑄̃
)𝑑𝑥

𝑥

 (4) 

 

For calculating the overall Jaccard similarity measure 

between two LGT2 FSs 𝐿̃ and 𝑄̃, we need a weighting factor 

which will increase if the two zSlices under comparison are 

closer (e.g. 𝑖 = 3, 𝑗 = 3, 𝐼 = 5) in their level in the third 

dimension, and will decrease if the two zSlices under 

comparison are further (e.g. 𝑖 = 0, 𝑗 = 5, 𝐼 = 5) in their level 

in the third dimension. Hence, we use weighting factor 𝑡, 

which denotes the effect of difference in the zLevels of two 

LGT2 FSs, as follows [20]: 

 

                                            𝑡 = 1 − (
|𝑖−𝑗|

𝐼
) (5) 

 

According to Equation (5), the further the zSlices are from 

each other, the less weight for similarity the zSlices have. 

Likewise, the closer the zSlices are to each other, the more 

weight for similarity the zSlices have. The final local 

similarity measure, denoted 𝑠𝑙𝑜𝑐𝑎𝑙(𝐿̃, 𝑄̃), is based on weighted 

average calculation as shown in Equation (6) [20]: 

 

                              𝑠𝑙𝑜𝑐𝑎𝑙(𝐿̃, 𝑄̃) =
∑ ∑ 𝑠𝑧(z̃𝑖

𝐿̃,z̃𝑗
𝑄̃

)∗𝑡𝑍
𝑗

𝑍
𝑖

∑ ∑ 𝑡𝑍
𝑗

𝑍
𝑖

 (6) 

 

Next, we need to calculate the global similarity between 

two cases 𝐶𝑙 and 𝐶𝑘 where there are multiple features defined 

and 𝑙, 𝑘 = 1 … 𝑀, 𝑀 is the number of cases in 𝐶𝐵. As 

mentioned earlier, for each feature 𝐹𝑛, there exists a value 𝑉𝑛. 

For cases 𝐶𝑙 and 𝐶𝑘, the values will be denoted as 𝑉𝑛
𝑙 and 𝑉𝑛

𝑘, 

respectively. By applying weighted average on local 

similarities for each feature in the problem part of the case 

representation, the global similarity is calculated as shown in 

Equation (7) where 𝑤𝑛 denotes the weights of the features that 

are predefined by the user [20]. 

 

                     𝑠𝑔𝑙𝑜𝑏𝑎𝑙(𝐶𝑙 , 𝐶𝑘) =
∑ 𝑠𝑙𝑜𝑐𝑎𝑙(V𝑛

𝑙 , V𝑛
𝑘 )∗𝑤𝑛

𝑁
𝑛

∑ 𝑤𝑛
𝑁
𝑛

 (7) 
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Retrieving the most similar cases from the memory can be 

analogous to the humans’ remembering [38]. The solution 

parts of these retrieved cases consist of feature-value pairs and 

this is where granulation segment ends. The remembered 

information represented as the bits of information is used in 

the causation-organization segment, which will be detailed in 

the next section. 

D. Causation-Organization in the Proposed CWWs 

Framework 

The processes for causation and organization in the 

proposed CWWs Framework are quite integrated and follow 

the approach of ‘Fuzzy Composite Concepts’ (FCCs) 

proposed by Wagner and Hagras [45] to mimic the way 

humans organize the stimulus. In addition to [50][51][52], 

studies from psychology literature claim that humans 

intuitively combine, summarize and hence generalize 

information where particularly Miller [37] has distinguished 

between ‘bits of information’ and ‘chunks of information’ in 

the human mind. Herein, the sensory evidence (individual 

stimulus) can be regarded as bits of information and the 

composite concept (perceptions, words) can be regarded as 

chunks of information since it composes various stimuli. Fig. 

4a shows where the analogy is mapped to the proposed 

CWWs Framework: ‘bits of information’ refer to the 

granulated information in numerical format (sensory 

evidence) and ‘chunks of information’ refer to the organized 

information (output words) following the rules of causation in 

the human mind. 

1) Input Processing Element 

Formally, the input processing element uses the 

representative LGT2 models for the decision variables, which 

are stored in memory. These models are created using the data 

accumulated in memory [32][44] according to Algorithm 1. 

The aim of the input processing element is to calculate the 

degrees of membership of the sensory evidence to the LGT2 

FSs of the decision variables. This mapping of the numerical 

sensory evidence to the LGT2 models can handle the 

uncertainty mentioned in [32] and can help mimic human 

reasoning via the association element using IF-THEN fuzzy 

rules with linguistic terms. 

2) Association Element 

The association element helps in two areas: 1) forming the 

representative mathematical models for the output perceptions 

using the human experience encoded in cases and 2) 

combining the sensory evidence using human reasoning to 

relate to output perceptions. For the first functionality, the 

formal explanation of forming the mathematical models for 

the output perception is done according to Algorithm 2, which 

explores the human experience (the case base) in order to 

calculate the ratio of occurrences of the two antonyms 

(linguistic terms of the output) relative to each other. 

According to [35], sensory experience in general is 

characterized by self-adjustment to the prevailing level of 

stimulation. Hence, the calculation of this relative ratio 

mimics self-adjustment to the most frequently experienced 

perceptions. Fig. 5 shows how the ratio, which is normalized 

to be in the unit interval [0,1] for ease of calculations, is 

applied to construct the LGT2 FSs for the output perception. 

The ratio 𝑝𝐸𝑛𝑑𝑜𝑟𝑠𝑖𝑛𝑔 in Fig. 5 represents the occurrences of 

the endorsing linguistic term whereas the opposing ratio 

𝑝𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔 represents the occurrences of the opposing 

linguistic term. The definition of endorsing and opposing 

linguistic terms are configured at the time of vocabulary 

creation. Also, the uncertainty (FOU width) is pre-defined (as 

a design decision) and is applied as shown in Algorithm 2. We 

use Equations (8) and (9) to mark the parameters of the LGT2 

FSs in modelling the output perception. 

                                𝑎𝑟𝑠 = 𝑐𝑙𝑠 = 𝑝𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔 (8) 

                         𝑏𝑟𝑠 = 𝑑𝑙𝑠 = 1 −  𝑝𝐸𝑛𝑑𝑜𝑟𝑠𝑖𝑛𝑔 (9) 

 

As experience accumulates (new cases are added to the case 

base), the ratios 𝑝𝐸𝑛𝑑𝑜𝑟𝑠𝑖𝑛𝑔 and 𝑝𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔 will be 

recalculated. Hence, the critical data points (𝑐 and 𝑑 for the 

left shoulder MF, 𝑎 and 𝑏 for the right shoulder MF) will shift 

Algorithm 1: Forming the mathematical models for the input decision 

variables 

1 

 
Create vocabulary (database) for linguistic terms and 
modifiers (can be defined by either the user or the system in 

the beginning and only once) 

2 
 For each decision variable d, analyse the experience 

(accumulated data in memory) 

3 
  Organize the experience by counting the number of 

 occurrences per unique value 

4   Find weighted average of step 3 

5 

 Group the experience into two linguistic terms (antonyms) 

 according to weighted  average of step 4 

 If the value in the experience < weighted average of  
  step 4 

      Add the value to ResourcesRight (data to be   
   modelled as right shoulder MF) 

    Else 

       Add the value to ResourcesLeft (data to be modelled 

   as left shoulder MF) 

    End 

6 

  Group the linguistic labels (ResourcesLeft, 

 ResourcesRight) into modifiers ResourcesLeftModifiers 
 and ResourcesRightModifiers 

7 
  Find the weighted average values for the 

 ResourcesLeftModifiers and ResourcesRightModifiers 

8 

  Create type-1 upper MFLeft [als,bls,cls,dls] : 

          als = minimum value of ResurcesLeft 

          bls = als 
          cls = last value of ResourcesLeftModifiers 

          dls = first value of ResourcesRightModifiers 

9 
  Create type-1 lower MFLeft = upper MFLeft (no 

 uncertainty yet) 

10 

  Create type-1 upper MFRight [ars,brs,crs,drs] : 

          ars = cls 
          brs = dls 

          crs = maximum value of ResourcesRight 

          drs = crs 

11 
  Create type-1 lower MFRight = upper MFRight (no 

 uncertainty yet) 

12 
  Aggregate different data sources for the decision variable 

 to create adaptive FOU [19] 
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on the horizontal x-axis. According to Michalski [48], 

modifying or constructing representations of what is being 

experienced is identified to be ‘learning’. Hence, we can infer 

that the proposed CWWs Framework has the potential to learn 

and to adapt, which not only satisfies the requirements of a 

real-world application, but also paves the way for establishing 

a high-level interaction between the humans and the machines. 

 

 
Moreover, the second functionality of the association 

element is to combine the sensory evidence using human 

reasoning in order to produce an interval for the 

representation of the aggregated output. The procedure to 

aggregate sensory evidence to produce the aggregated output 

(FCC) in an interval form can be referred to as a simplified 

case of Linguistic Weighted Average (LWA), which has been 

introduced as a generalization of fuzzy weighted average [47] 

and employed within existing CWWs engines [49]. The well-

known formula of the weighted average, which is the origin of 

the LWA, is given in Equation (10) [47]: 

 

                                         𝑦 =  
∑ 𝑥𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (10) 

 

where 𝑤𝑖  are the weights that act upon the attributes 𝑥𝑖. In the 

proposed CWWs Framework, 𝑥𝑖 are type-1 interval fuzzy 

numbers, i.e. 𝑥𝑖 = [𝑎𝑖 , 𝑏𝑖] where the interval end-points 𝑎𝑖 and 

𝑏𝑖 denote respective lower and upper membership degrees of 

the corresponding linguistic term; and 𝑤𝑖  is a crisp number 

calculated according to the human experience.  

 

 

Formally, let 𝐿̃𝑠
𝑗
 be a zSlices based LGT2 FS,𝑐𝑠

𝑗
 be the 

linguistic term for the sensory evidence and 𝑤𝑠
𝑗
 be the 

corresponding association weight where 𝑤𝑠
𝑗

∈ {0,1}, 𝑠 =

1 … 𝑆, 𝑆 is the total number of sensory evidence (equals 

number of decision variables) and 𝑗 = 1 … 𝐽, 𝐽 is the number 

of linguistic terms used to model the linguistic variable (e.g. in 

an LGT2 system, 𝐽 = 2). The process of combining the 

sensory evidence with human reasoning starts with analysing 

IF-THEN fuzzy rules. The analysis involves grouping the 

linguistic terms of the decision variables in accordance to the 

two linguistic terms for the output perceptual judgment. We 

will refer to the two linguistic terms for the output perceptual 

judgment as the fuzzy composite label ‘𝐿𝐵’ and ‘the opposite 

of 𝐿𝐵’ as mentioned in [21]. Moreover, the analysis of the 

fuzzy rules involves counting the occurrences of 𝑐𝑠
𝑗
 that give 

rise to either of the two fuzzy composite labels. The prevailing 

stimuli label 𝑐𝑠
𝑗
 for each fuzzy composite label is interpreted to 

have an effect as follows: if the fuzzy composite label 𝐿𝐵 is 

indicated to be a right shoulder MF (at the time of vocabulary 

creation), then the prevailing stimuli label 𝑐𝑠
𝑗
 for this 𝐿𝐵 are 

said to have an endorsing effect. Similarly, the prevailing 

stimuli label 𝑐𝑠
𝑗
 for the opposite of 𝐿𝐵, which is indicated to be 

a left shoulder MF, is said to have an opposing effect. 

Consequently, if the stimuli label 𝑐𝑠
𝑗
 has an opposing effect, 

then 𝑤𝑠
𝑗

= 1 and we use the complement operation on the 

type-1 fuzzy interval number 𝑥𝑖 = [𝑎𝑖 , 𝑏𝑖] in Equation (10). As 

denoted in [50], the complement of IT2 fuzzy set 𝐴̃, 𝐴̃ is 

formulated as follows: 

 

                  𝐴̃ = 1/ [1 − 𝜇𝐴
(𝑥), 1 − 𝜇𝐴(𝑥)] ∀𝑥 ∈ 𝑋 (11) 

 

Algorithm 2: Pseudocode for forming the mathematical models for the 

output perception 

1  
For each case c in the case base 

2   For each solution s in the solution part of c 

3 
   Find the active rules in human reasoning using  

  numerical feature values of s 

4 
   Count the occurrences of each output linguistic  

  term (oll) 

  Calculate ratios of occurrences to the number of solutions: 

5  If oll is right shoulder MF 

6 
  pEndorsingInitial = number of occurrences of oll / 

 number of solutions 

7  Else if oll is left shoulder MF 

8 
  pOpposingInitial = number of occurrences of oll / 

 number of solutions 

 
 Apply predefined uncertainty u on pEndorsingInitial and 

pOpposingInitial: 

9  pEndorsing = pEndorsingInitial – u 

10  pOpposing = pOpposingInitial – u 

 

Algorithm 3: Pseudocode for retrieving the output perception from 
aggregated interval 

1  For each LGT2 FS L 

2   For each zSlice z of L 

3    Discretize interval Y 

4    For each discretized value v of Y 

5 
    Calculate the average of upper and lower membership 

   degree of v with z 

6     If average is maximum 

7      Retrieve the linguistic term of z 

 

 
Fig. 5.  The configuration of LGT2 FS modelling for the output perception 
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where 𝜇𝐴
(𝑥) is the upper membership degree and 𝜇𝐴(𝑥) is the 

lower membership degree. Hence, the type-1 fuzzy interval 

number 𝑥𝑖 in this case is specified as 𝑥𝑖 = [1 − 𝑏𝑖 , 1 − 𝑎𝑖]. If 

the stimuli label 𝑐𝑠
𝑗
 has an endorsing effect, then 𝑤𝑠

𝑗
= 1 and 

we use the type-1 fuzzy interval number 𝑥𝑖 = [𝑎𝑖 , 𝑏𝑖] in 

Equation (10) as it is. The zero weight (𝑤𝑖 = 0) marks the 

redundancy of the stimuli label 𝑐𝑠
𝑗
 and it is used in 

circumstances where the numbers of occurrences of stimuli 

labels in the entire experience are equal for one sensory 

evidence, i.e. 𝑘
𝑐1

𝑗 = 𝑘
𝑐2

𝑗 = ⋯ = 𝑘
𝑐𝑠

𝑗. Using the above 

information, the details of the algorithm that the association 

element follows to combine the sensory evidence using human 

reasoning in order to produce an interval are listed below: 

1. For each zSlice 𝑧̃𝑞
𝐿̃𝑠

𝑗

 having height ℎ𝑡𝑞, where ℎ𝑡𝑞 =
𝑞

𝑄
, 𝑞 = 1 … 𝑄 and 𝑄 is the number of zSlices, and for each 

rule 𝑅𝑑 where 𝑑 = 1 … 𝐷, 𝐷 being the total number of 

rules in the human reasoning, the crisp inputs per sensory 

evidence 𝑠 are mapped to 𝐿̃𝑠
𝑗
 in order to find type-1 

interval fuzzy numbers, i.e. 𝑥𝑞
𝑠 = [𝑎𝑞

𝑠 , 𝑏𝑞
𝑠], where 𝑎𝑞

𝑠 ≡

𝜇
𝑧𝑞

𝐿̃𝑠
𝑗 (𝑥) and 𝑏𝑞

𝑠 ≡ 𝜇
𝑧̃𝑞

𝐿̃𝑠
𝑗 (𝑥). The aggregated output of one 

rule 𝑦𝑞 
𝑑 = [𝑦𝑙𝑞

𝑑 , 𝑦𝑟𝑞
𝑑 ] is an interval and is found as follows 

[3]: 

 

                        𝑦𝑙𝑞
𝑑 =  

∑ 𝑎𝑞
𝑠 𝑤𝑠

𝑗
𝑆

𝑠=1

∑ 𝑤𝑠
𝑗

𝑆

𝑠=1

, 𝑦𝑟𝑞
𝑑 =  

∑ 𝑏𝑞
𝑠𝑤𝑠

𝑗
𝑆

𝑠=1

∑ 𝑤𝑠
𝑗

𝑆

𝑠=1

 (12) 

 

2. For aggregating the outcome of all the activated rules in 

the human reasoning, assume that all the rules have the 

same association weight 𝑔𝑑 = 1. Activated rules are 

differentiated as follows: if the aggregated output of one 

rule 𝑦𝑞 
𝑑 ≠ [0, 0], then the rule is activated. In the 

proposed CWWs Framework, the aggregated output for 

the activated rules 𝑦𝑞 = [𝑦𝑙
𝑞

, 𝑦𝑟
𝑞

], which is an interval 

belonging to zSlice 𝑧̃𝑞
𝐿̃𝑠

𝑗

, is shown in Equation (13) [3]: 

 

                        𝑦𝑙
𝑞

=  
∑ 𝑦𝑙𝑞

𝑑 𝑔𝑑
𝐷

𝑑=1

∑ 𝑔𝑑𝐷
𝑑=1

, 𝑦𝑟
𝑞

=  
∑ 𝑦𝑟𝑞

𝑑 𝑔𝑑
𝐷

𝑑=1

∑ 𝑔𝑑𝐷
𝑑=1

 (13) 

 

3. The final aggregation is performed on all the zSlices 

having height ℎ𝑡𝑞 of the LGT2 FS 𝐿̃𝑠
𝑗
. Hence, the output 

of the association element, 𝑌, is an interval [𝑌𝑙 , 𝑌𝑟] found 

using Equation (14) [3]: 

 

𝑌𝑙 =  
∑ 𝑦𝑙

𝑞
ℎ𝑡𝑞

𝑄

𝑞=1

∑ ℎ𝑡𝑞

𝑄

𝑞=1

, 𝑌𝑟 =  
∑ 𝑦𝑟

𝑞
ℎ𝑡𝑞

𝑄

𝑞=1

∑ ℎ𝑡𝑞

𝑄

𝑞=1

 𝑎𝑛𝑑 ℎ𝑡𝑞 = 𝑞/𝑄 (14) 

 

The last step in the proposed CWWs Framework before 

outputting words to the user is to take the aggregated output 

interval in Equation (14) and to map it to the representative 

mathematical models for the output perceptions. The 

association element of the proposed CWWs Framework finds 

the output linguistic term that best represents 𝑌 using 

Algorithm 3 that returns a word to be communicated back to 

the user and completes one-way communication between the 

human and the machine. However, in order for the machine to 

develop its understanding, the output perceptions need to be 

evaluated by the user. The user feedback/performance 

monitoring element in the proposed CWWs Framework gets 

feedback from the user in natural language in order to learn 

human reasoning and accumulate experience. 

3) Performance Monitoring Element 

Essentially, the performance monitoring element can 

mimic two-way communication between the human and the 

machine as follows: As the user interacts with the system, the 

proposed CWWs Framework learns the rules of human 

reasoning and accumulates experience in the case base. In 

return, these changes in the rules of human reasoning and case 

base of human experience affect the forming of LGT2 models 

detailed in Algorithm 1 and Algorithm 2. In other words, the 

mathematical representations of the decision variables and the 

output perception in the memory can adapt to new experience 

and reasoning with each interaction. This can be seen 

analogous to interaction between two humans where one can 

learn from the other. From psychology and neuroscience 

perspectives applied to artificial intelligence, learning is a very 

important feature of CBR [38] and can be seen as a key to 

unravel human intelligence, which complies with the ultimate 

aim of the CWWs paradigm. As Roy [43] points out, an 

important part of the human learning process is remembering 

relevant facts and examples experienced before; and learning 

involves collecting and storing some information about the 

problem at hand, all of which are referenced in the proposed 

CWWs Framework. 

The proposed CWWs Framework can also be employed in 

other domains. For example: In cancer research, in order to 

infer health status and to monitor response to treatment, 

researchers are using established biomarkers, which can be a 

component in body fluid (e.g. blood, tissue or urine) that 

indicates health condition [68]. The values of biomarkers can 

be represented using words ‘low’, and ‘high’, which reflect the 

clinical parameters such as tumour grade, tumour size, etc. 

that have numerical results. In the proposed CWWs 

Framework, the biomarker having value ‘low’ can be the input 

to the system. Using the test results, which can be retrieved 

from a database of many other patients and their clinical 

information, for the granulation segment of the framework, 

the identification element granulates the biomarker input 

value into sensory evidence of corresponding cases in terms of 

clinical parameters consisting of tumour grade and tumour 

size (bits of information). Once the clinical parameters are 

known, the specialists analyse the information to anticipate the 

prognosis, which is a forecast on how likely the cancer is 

going to progress, and which takes the values ‘poor’, and 

‘good’. In the causation-organization segment of the 

proposed CWWs Framework, the reasoning on the clinical 

parameters can take the form of IF-THEN fuzzy rules such as 
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'If the tumour grade is low and the tumour size is small then 

the prognosis is good'. The input processing element maps the 

bits of information to the natural language representations of 

the decision variables so that the association element can 

aggregate the active rules into an interval format and then 

generalize this interval into chunks of information (words). 

Moreover, conducting more tests to confirm the evaluation is 

common in cancer research. In the proposed CWWs 

Framework, the feedback can be taken from the specialist's 

opinion and hence the system can learn and adapt. 

The next section describes how the proposed CWWs 

Framework is applied to an ambient intelligent platform for 

cooking recipes recommendation.  

 

 

IV. APPLICATION OF THE PROPOSED CWWS FRAMEWORK TO 

AMBIENT INTELLIGENT PLATFORM FOR COOKING RECIPES 

RECOMMENDATION 

The objective of the system is to suggest recipes according 

to the status of the user which is defined using three indicators 

(linguistic variables) for the user’s mood, appetite and spare 

time. These indicators (named as tiredness, hungriness and 

free time) represent the problem description of a case (see Fig. 

4b). The values of these linguistic variables are linguistic 

TABLE II 

THE RETRIEVED CASES FROM THE MEMORY SHOWING THEIR ZLEVELS AND SIMILARITY VALUES 

Order in List 

 

Query case 

Feature-Value Pairs 

 

Retrieved Case 

Feature-Value Pairs 

 

 

Similarity 

Recipe 1 

Very tired 

(zLevels: 3, 4) 

 

Extremely hungry 

(zLevels: 5) 

 

Busy 

(zLevels: 1,2) 

Very tired 

(zLevels: 3, 4) 

1.0 Extremely hungry 

(zLevels: 5) 
Busy 

(zLevels: 1,2) 

   

Recipe 2 

Extremely tired 
(zLevels: 5) 

0.679 
Very hungry 

(zLevels: 3, 4) 
Very busy 

(zLevels: 3, 4) 

   

Recipe 3 

Tired 

(zLevels: 1, 2) 

0.347 
Hungry 

(zLevels: 1, 2) 

Free 
(zLevels: 1, 2) 

 

TABLE III 
THE SOLUTIONS BELONGING TO THE RETRIEVED CASES IN TABLE II AND THE GRANULATED INFORMATION 

Recipe 

number 

 

Recipe name 

 Granulated Information  
Difficulty 

Interval 

 
Difficulty 

Perception   
Preparation 

Time 
 

Cooking 

Time 
 

Overall 

Time 
  

Recipe 1  
Chicken with 

mushrooms 
 10  20  30  [0.573, 0.871]  Easy 

   

Recipe 2  
Pasta Primavera 

Alfredo 
 5  15  20  [0.878, 0.939]  Extremely easy 

   

Recipe 3  
Spanish style brown 

rice 
 5  40  45  [0.489, 0.694]  Easy 

 
TABLE IV 

IF THEN FUZZY RULES LEARNT FROM THE USER AS A REPRESENTATION OF HUMAN REASONING 

Antecedents (Decision variables)  Consequent  

Rule Occurrence 
Preparation Time 

 

Cooking Time 

 

Overall Time 

 

Level of Difficulty  

Short Quick Little Easy  4 

Long Slow Big Challenging  1 

Short Slow Big Easy  2 
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terms, which are designed using LGT2 FSs based on expert 

opinion. The linguistic terms for tiredness are ‘tired’ and 

‘energetic’, for hungriness are ‘hungry’ and ‘full’, and for free 

time are ‘busy’ and ‘free’ where the modifiers constitute of 

‘very’, ‘extremely’ and ‘no modifier’. The memory as shown 

in Fig. 4a acts as a case base where all the previous past 

solutions are kept. In this scenario, the solutions are the 

recipes that are characterized with a difficulty level derived 

from the decision variables preparation time, cooking time 

and overall time (preparation time + cooking time). The 

decision variables are represented by linguistic variables, 

which have the labels of ‘short’ and ‘long’ for the preparation 

time, ‘quick’ and ‘slow’ for the cooking time, and ‘little’ and 

‘big’ for the overall time. The reasoning in the memory which 

is represented using IF-THEN fuzzy rules is empty in the 

beginning and is populated as the user interacts with the 

system as part of learning capability of the proposed CWWs 

Framework. For ease of explanations, let the system be 

adapted to the user over a couple of interactions (e.g. 7 

interactions) where the LGT2 FSs of the decision variables 

and the reasoning are not in the default starting state. 

Accordingly, the steps taken by the proposed CWWs 

Framework are exemplified below: 

Let the inputs to the proposed CWWs Framework be ‘very 

tired’, ‘extremely hungry’ and ‘busy’ describing the user’s 

status (see Table II). The identification element of the 

proposed CWWs Framework goes through the case base and 

compares the zSlices ‘very tired’, ‘extremely hungry’ and 

‘busy’ with the zSlices belonging to the corresponding 

features, which are tiredness, hungriness and free time, 

respectively, of the problem definition of the cases in the 

memory. This operation involves converting the string inputs 

(words) to the zSlices representations of the linguistic 

variables and then applying Equations (4)-(7). In order to 

apply the equations, the domains of the zSlices under 

comparison are discretized. The comparison occurs between 

the zSlices of the input and the zSlices of the corresponding 

features in the problem part of the cases in the memory. The 

global similarities (see Equation (7)) calculated between the 

input and the corresponding features in the cases are sorted in 

descending order and stored in a list, which links the global 

similarities to the cases and hence to the solutions. 

Consequently, identification element retrieves the most 

relevant solutions from the experience. There exists various 

ways for deciding the number of retrieved cases: 1) 

introducing a threshold value for similarity and retrieving the 

cases that have a higher similarity value than the threshold or 

2) retrieving the N most relevant cases. In this example, we 

have used the second approach where N=3. Hence, the 

number of recipes to be recommended to the user will be the 

three most likely recipes to be chosen by the user. 

Furthermore, the solution parts of the cases are composed of 

preparation time, cooking time and overall time criteria, which 

have numerical values in memory (see Table III). The zLevels 

(that can take the values of 1, 2, 3, 4, and 5 as the number of 

zSlices=5 for the application) of the linguistic terms, which 

are used in Equation (5), are also displayed in Table II. Table 

III complements the information in Table II where the feature-

value pairs for the solution parts of the cases are presented for 

the retrieved recipes. The granulated bits of information, 

which includes the decision variables preparation time, 

cooking time and overall time, is shown in Table III. This step 

concludes how input words are decomposed into numbers 

(bits of information in Fig. 4a) in relation to the solution. 

 
The causation-organization segment deals with forming 

perceptual judgments using the granulated bits of information 

and the human reasoning. As mentioned before, the human 

reasoning is learnt from the user interactions and represented 

using IF-THEN fuzzy rules (Table IV) where the antecedents 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6.  LGT2 models for (a) preparation time (b) cooking time (c) overall 

time (d) level of difficulty. 
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are preparation time, cooking time, and overall time; and the 

consequent is the level of difficulty of the recipe. Table IV 

also shows how many times the rules have occurred. It can be 

observed that the user had 7 (4+1+2) interactions with the 

system. The input processing element in Fig. 4a takes the 

granulated information of the solution and maps the numerical 

information detailed in Table III (Granulated Information 

column) into the decision variables which are the antecedents 

shown in Table IV. In order to map this numerical information 

to the decision variables, the input processing element first 

creates the LGT2 models for the decision variables. In the 

creation of LGT2 models for the decision variables, 

Algorithm 1 is applied to the experience and the accumulated 

information (preparation time, cooking time and overall time). 

For this scenario, we have also used default information at the 

beginning. Accordingly, the parameters of the created LGT2 

models (with detailed zSlices information) for the decision 

variables are presented in Table V – Table VII. Also, Fig. 6a, 

Fig. 6b and Fig. 6c illustrate the LGT2 models that are created 

according to the parameters reported in Table V – Table VII. 

Following the creation of the LGT2 models for the decision 

variables, the input processing element maps the granulated 

bits of information to the LGT2 models to facilitate the 

process of the association module. Association module has 

the responsibility of 1) forming the representative 

mathematical models for the output perceptions using the 

human experience encoded in cases and 2) combining the 

sensory evidence using human reasoning to relate to output 

perceptions. In order to form the representative LGT2 model 

for the output perception, which is the level of difficulty in the 

case study, Algorithm 2 is employed and the rule base is 

evaluated for all the 7 cases having 7 different solutions 

(hence recipes). By counting how many times the experience 

infers ‘challenging’ or ‘easy’ recipes, the ratios are calculated 

according to Algorithm 2. Given that the predefined 

uncertainty is u = 0.05, the ratio 𝑝𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔 =  1/7 –  0.05 

whereas the ratio 𝑝𝐸𝑛𝑑𝑜𝑟𝑠𝑖𝑛𝑔 =  1 − 6 7⁄ +  0.05. Hence, 

the calculations lead to the creation of an LGT2 model for the 

level of difficulty in the unit interval [0, 1] where the variable 

ratio 𝑝𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔 = 0.092 and the variable ratio 

𝑝𝐸𝑛𝑑𝑜𝑟𝑠𝑖𝑛𝑔 = 0.907. In order to combine the sensory 

evidence using human reasoning to relate to perceptions, we 

need to find the opposing and endorsing labels and their 

associated weights. The rule base analysis is performed as 

described in Section III-B. For example, the prevailing 

opposing stimuli labels for the output linguistic term 

‘challenging’ are found to be ‘long’, ‘slow’ and ‘big’, whereas 

the prevailing endorsing stimuli labels for the output linguistic 

term ‘easy’ are found to be ‘short’, ‘quick’ and ‘little’ by 

analysing the rule base for human reasoning given in Table 

IV. Accordingly, the fuzzy interval numbers obtained from the 

opposing labels will be inverted using Equation (11) and the 

fuzzy interval numbers obtained from the endorsing labels 

will remain unchanged. The association element then 

evaluates the rule base using the bits of information via 

Equations (12)-(14). For example, let the system be processing 

Recipe 1 where the bits of information to be mapped to the 

decision variables are 10, 20, and 30 for preparation time, 

cooking time and overall time, respectively. Equations (12)-

(14) are used to calculate the type-1 interval fuzzy numbers 

(indicating the primary memberships for the lower and upper 

MFs of the corresponding zSlice of the LGT2 FS) from input 

values 10, 20 and 30. Specifically, for zLevel = 1 and for the 

first rule shown in Table IV (short-quick-little), the interval 

fuzzy numbers are found as [1.0, 1.0], [0.642, 1.0], and [0.599, 

1.0], respectively. Applying Equation (12) with the associated 

weights of the labels, which are all endorsing hence the weight 

is 1.0, the aggregated output interval is found as follows: [1.0 

+ 0.642 + 0.599,1.0 + 1.0 + 1.0] / 3.0 = [2.242, 3.0] / 3.0 = 

[0.747, 1.0]. For zLevel = 1 and for the other activated rules, 

which are (long-slow-big, and short-slow-big), we get the 

following aggregated output intervals per rule [0.476, 1.0] and 

[0.809, 1.0], respectively. Applying this to the all the activated 

rules in the human reasoning per zSlice, that is applying 

Equation (13), we obtain [0.747 + 0.476 + 0.809, 1.0 + 1.0 + 

1.0] / 3.0 = [2.033, 3.0] / 3.0 = [0.677, 1.0]. When we continue 

the calculations for all the zSlices, we get the following 

aggregated output intervals: [0.551, 0.963] for zLevel = 2, 

[0.562, 0.896] for zLevel = 3, [0.565, 0.848] for zLevel = 4, 

[0.574, 0.812] for zLevel = 5. Applying Equation (14) gives 

the following aggregated final output interval where the 

heights of the zLevels are 0.2, 0.4, 0.6, 0.8 and 1.0, 

respectively: [0.677*0.2 + 0.551*0.4 + 0.562*0.6 + 0.565*0.8 

+ 0.574*1.0, 1.0*0.2 + 0.963*0.4 + 0.896*0.6 + 0.848*0.8 + 

0.812*1.0]/ (0.2 + 0.4 + 0.6 + 0.8 + 1.0) = [0.573, 0.871] as 

shown in Table III. 

The final step of the proposed CWWs Framework is to map 

the aggregated final output interval to the representative 

mathematical models for the output perceptions (chunks of 

information) by employing Algorithm 3. For example, when 

the aggregated final output interval [0.573, 0.871] is mapped 

to the LGT2 model for the level of difficulty in Fig. 6d, the 

average upper and lower membership degrees for the 

linguistic term ‘challenging’ gives 0.0 for all the zSlices, 

whereas the average upper and lower membership degrees 

(avg) for the linguistic term ‘easy’ gives the following: for 

‘easy’ zSlice = 1, avg = 1.0; for ‘easy’ zSlice = 2, avg = 1.0; 

for ‘very easy’ zSlice = 3, avg = 0.999; ‘very easy’ zSlice = 4, 

avg = 0.968; and for ‘extremely easy’ zSlice = 5, avg = 0.879. 

Hence, according to Algorithm 3, the maximum avg is chosen 

with the highest zLevel, which is in this case ‘easy’ zSlice = 1, 

avg = 1.0, and the word output is therefore ‘easy’ as shown in 

Table III. 

The detailed calculations above emphasize how we provide 

natural communication through a system that uses words as 

inputs and words as outputs. Regarding recipe 

recommendation, as can be seen from Table III, recipes to be 

recommended have similar difficulty levels (which are easy 

and extremely easy) depending on the user’s mood, appetite 

and spare time. This also translates into the following 

behaviour pattern for the personalized recipe recommendation: 

The user has chosen to cook easy or extremely easy recipes 

when s/he was feeling tired, extremely hungry and busy in the 

past, and the recipe recommendations will follow similar logic 
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to recommend easy recipes to the user when s/he is feeling 

tired, extremely hungry and busy. 

 

V. REAL-WORLD EXPERIMENTS AND RESULTS 

The aim of the evaluation of a prototype for the Ambient 

Intelligent Platform for Cooking Recipes Recommendation 

(AIPCRR) was to quantify the performance of the system in 

mimicking human reasoning as well as to assess the user 

experience; specifically whether the participants perceived 

that the system adapted with repeated usage, and if so, 

whether the perceived adaptation was valuable.  

The application is implemented using Java programming 

language. The experiments were conducted with 17 lay users 

over a period of two weeks in the University of Essex 

intelligent apartment (iSpace). We will report results from the 

quantitative and qualitative analysis which show the success 

of the system in providing a natural interaction with the users. 

The quantitative analysis will show the high statistical 

TABLE V 
PARAMETERS OF THE LGT2 MODELS OF THE DECISION VARIABLES FOR PREPARATION TIME 

zSlice No 

 

Preparation Time Decision Variable Parameters 

Short (Left Shoulder LGT2 MF) 

  

Long (Right Shoulder LGT2 MF) 

Modifier 

 

LMF 

[a,b,c,d] 

 

UMF 

[a,b,c,d] 
Modifier 

 

LMF 

[a,b,c,d] 

 

UMF 

[a,b,c,d] 

5 Extremely 
[5.0,5.0, 

5.0,10.0] 

[5.0,5.0, 

5.0,20.0] 
Very 

[15.0,43.33, 

50.0,50.0] 

[7.5,36.66, 

50.0,50.0] 

4 Extremely 
[5.0,5.0, 
5.0,10.0] 

[5.0,5.0, 
6.66,20.0] 

Very 
[15.0,36.66, 
50.0,50.0] 

[7.5,30.0, 
50.0,50.0] 

3 Extremely 
[5.0,5.0, 

6.66,10.0] 

[5.0,5.0, 

8.33,20.0] 
Very 

[15.0,30.0, 

50.0,50.0] 

[7.5,23.33, 

50.0,50.0] 

2 Extremely 
[5.0,5.0, 

8.33,10.0] 
[5.0,5.0, 

10.0,20.0] 
No modifier 

[15.0,23.33, 
50.0,50.0] 

[7.5,16.66, 
50.0,50.0] 

1 Extremely 
[5.0,5.0, 

10.0,10.0] 

[5.0,5.0, 

11.66,20.0] 
No modifier 

[15.0,16.66, 

50.0,50.0] 

[7.5,10.0, 

50.0,50.0] 

 
TABLE VI 

PARAMETERS OF THE LGT2 MODELS OF THE DECISION VARIABLES FOR COOKING TIME 

zSlice No 

 

Cooking Time Decision Variable Parameters 

Quick (Left Shoulder LGT2 MF) 

  

Slow (Right Shoulder LGT2 MF) 

Modifier 

 

LMF 

[a,b,c,d] 

 

UMF 

[a,b,c,d] 
Modifier 

 

LMF 

[a,b,c,d] 

 

UMF 

[a,b,c,d] 

5 Extremely 
[0.0,0.0, 

0.0,29.0] 

[0.0,0.0, 

0.0,38.33] 
Very 

[30.0,71.5, 

80.0,80.0] 

[20.0,63.0, 

80.0,80.0] 

4 Very 
[0.0,0.0, 

0.0,29.0] 

[0.0,0.0, 

5.0,38.33] 
Very 

[30.0,63.0, 

80.0,80.0] 

[20.0,54.5, 

80.0,80.0] 

3 No modifier 
[0.0,0.0, 

5.0,29.0] 

[0.0,0.0, 

10.0,38.33] 
Very 

[30.0,54.5, 

80.0,80.0] 

[20.0,46.0, 

80.0,80.0] 

2 No modifier 
[0.0,0.0, 

10.0,29.0] 

[0.0,0.0, 

15.0,38.33] 
No modifier 

[30.0,46.0, 

80.0,80.0] 

[20.0,37.5, 

80.0,80.0] 

1 No modifier 
[0.0,0.0, 

15.0,29.0] 

[0.0,0.0, 

20.0,38.33] 
No modifier 

[30.0,37.5, 

80.0,80.0] 

[20.0,29.0, 

80.0,80.0] 

 
TABLE VII 

PARAMETERS OF THE LGT2 MODELS OF THE DECISION VARIABLES FOR OVERALL TIME 

zSlice No 

 

Overall Time Decision Variable Parameters 

Little (Left Shoulder LGT2 MF) 

  

Big (Right Shoulder LGT2 MF) 

Modifier 

 

LMF 

[a,b,c,d] 

 

UMF 

[a,b,c,d] 
Modifier 

 

LMF 

[a,b,c,d] 

 

UMF 

[a,b,c,d] 

5 Extremely 
[10.0,10.0, 

10.0,33.75] 

[10.0,10.0, 

10.0,50.0] 
Very 

[45.0,80.62, 

90.0,90.0] 

[25.0,71.25, 

90.0,90.0] 

4 Very 
[10.0,10.0, 

10.0,33.75] 

[10.0,10.0, 

15.83,50.0] 

No 

modifier 

[45.0,71.25, 

90.0,90.0] 

[25.0,61.87, 

90.0,90.0] 

3 No modifier 
[10.0,10.0, 

15.83,33.75] 

[10.0,10.0, 

21.66,50.0] 

No 

modifier 

[45.0,61.87, 

90.0,90.0] 

[25.0,52.5, 

90.0,90.0] 

2 No modifier 
[10.0,10.0, 

21.66,33.75] 

[10.0,10.0, 

27.49,50.0] 

No 

modifier 

[45.0,52.5, 

90.0,90.0] 

[25.0,43.12, 

90.0,90.0] 

1 No modifier 
[10.0,10.0, 

27.49,33.75] 

[10.0,10.0, 

33.33,50.0] 

No 

modifier 

[45.0,43.12, 

90.0,90.0] 

[25.0,33.75, 

90.0,90.0] 
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correlation between the system output and the users’ feedback 

which is aimed to be mimicked. Also, the comparison with 

Interval Type-2 (IT2) Fuzzy Sets will justify the employment 

of LGT2 Fuzzy Sets which outperform IT2 Fuzzy Sets by up 

to 55%. In addition, the qualitative analysis will present social 

science evaluation that confirms the strong user acceptance of 

the proposed system. 

In this paper, due to the space limitations, we have focussed 

on the causation-organization segment of the proposed 

CWWs Framework. 

A. Experimental Design 

In order to gather data from the user as well as to display 

the information to the user, we have developed a user friendly 

Graphical User Interface (GUI). A new account was created 

for each participant upon first login. Fig. 7 shows photos from 

the experiments performed by various participants in the 

iSpace. During the experiments, we used Nuance’s VoCon® 

3200 engine4 based Speech-Driven Dialogue System 

developed for the iSpace [56], which was integrated with the 

AIPCRR to replace the keyboard and mouse interaction with 

voice interaction.  

The participants were asked to complete three types of 

questionnaire. The first gathers demographics such as age, 

gender, level of education and attitude towards cooking. The 

second, Core Data Collection Questionnaire (CDCQ), 

provides the main survey data regarding the adaptation and 

personalization aspects of the application. Based on Roto [30], 

the questions were designed to focus on eliciting participants’ 

perceptions of improvements in the recipe suggestions offered 

by the system over time/usage, based on the participants own 

on-going difficulty ratings. This questionnaire was completed 

after each cycle of browsing and choosing a recipe to be 

cooked. Over a period of two weeks, the participants used the 

system at least 10 times and after each trial, the users were 

prompted to fill in the CDCQ. In the closing questionnaire, 

participants were asked to report on their overall experience of 

using the system, and their opinions regarding potential 

improvements and perceived benefits. The demographics and 

closing questionnaires were completed only once by each 

participant. 

In order to display recipes to the user, we used a Web API 

called FatSecret Platform [36], which provides free access to a 

comprehensive database of accurate food and nutrition 

information. The information that can be retrieved through the 

FatSecret API includes but is not limited to the preparation 

time, the cooking time, calories, ingredients and directions of 

the recipes as seen in the screenshot in Fig. 8a. Initially, the 

GUI offers two options to the user: viewing the tried recipes 

and exploring new recipes. In the first option where the user 

chooses to navigate through the tried recipes, the system 

behaves as a personalized recipe book and displays the 

difficulty level as shown in the screenshot in Fig. 8b. On the 

other hand, in the second option where the user chooses to 

navigate through new recipes, the system behaves as a 

 
4VoCon® 3200 - 

http://www.nuance.com/industries/automotive/products/VoCon-3200.asp 

recommender. The system displays estimation to the 

interpretation of the difficulty level of the recipe as marked 

red in Fig. 8c. Hence, recipes are recommended with attention 

to their difficulty levels (shown as 'very easy' in Fig. 8) which 

are learnt from the user feedback and adapted accordingly. 

Upon completion of the cooking process, the user is asked to 

provide feedback on the preparation time, the cooking time 

and the level of difficulty in his/her words. After submitting 

this feedback, the participant is prompted to fill in the CDCQ 

as described previously. This entire cycle of operations 

performed is referred to be one trial. The participants were 

asked to perform at least 10 trials so that the adaptation would 

be perceived over time and over the various uses. 

 

 
In the background, the two inputs to be processed by the 

causation-organization segment of the proposed CWWs 

Framework are the preparation time and the cooking time 

(provided by the FatSecret API Platform). Moreover, there is 

the third input to the system, which is the overall time 

calculated by adding the preparation time to the cooking time. 

Using these inputs, causation-organization segment of the 

proposed CWWs Framework derives the level of difficulty, 

which is the key to the adaptivity aspect of the system. 

B. Quantitative Analysis and Results 

We have performed quantitative analysis on the data 

collected through the various questionnaires. The following 6 

statements assessed on a 5 point Likert-style scale were used 

as the key instrument for eliciting participants’ perceptions of 

   
  

    
 

   
 

Fig. 7. Photos showing participants performing the experiments in the 

iSpace, University of Essex, UK. 
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adaptation in the CDCQ: 

 The system suggests the level of difficulty of the 

recipes appropriate to my skills  

 I can see how the system is adapting to my feedback 

 I noticed the system is improving its level of 

difficulty suggestion for recipes each time I use it 

 The way the system adapts to my choices is valuable 

to me 

 I would use this type of system if it was available to 

me outside this trial 

 Using the system feels like a personal experience 

 

The statements were designed to encourage reflection on 

the experience of using the system from 6 slightly contrasting 

angles so that in combination they would provide a nuanced 

indication of attitude for each participant in relation to each 

interaction. When combined over time/use for all participants, 

a shift along the continuum from Strongly Disagree (1) 

towards Strongly Agree (5) would indicate that adaptation was 

both perceived and valued. Indeed, Fig. 9 illustrates the 

positive tendency of the predicted viewpoints of the 

participants. All of the above statements were assessed using 

the same scale and the items have been represented with the 

corresponding numbers (Strongly Disagree: 1 – Strongly 

Agree: 5) as shown on the vertical axis in Fig. 9. Hence, the 

results suggest that the positive tendency based on the 6 

statements above has an average outcome of ~4.35, which 

corresponds to the Likert item ‘Agree’, with a standard 

deviation of 0.59. 

Over 270 trials performed by 17 participants show that the 

 
(a)                                                 

 
(b) 

 
 (c) 

Fig. 8. (a) Screenshot of GUI used in the experiments showing the detailed information that is available through the FatSecret API Platform. 

Navigation screens with introductory information showing the functionality of interface elements for (b) Tried recipe (c) New recipe (images are 
taken from the User’s Guide created for the application) 
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average rating per trial is ~4.5 with a standard deviation of 

0.69. Table VIII shows the results of the statistical t-Test for 

paired two sample for means. The two samples are the initial 

ratings and the final ratings regarding the participants’ 

experiences of using the system. The initial ratings are 

recorded after the first use of the system, and the final ratings 

are recorded in the closing questionnaire. It can be observed 

from the p-value (P(T<=t) two tail) given in Table VIII that 

the means of the two samples are significantly different as p-

value (0.016) < 0.05 where the confidence level has been 

specified to be 95%. Moreover, it can also be observed from 

the two means that the final rating has increased compared to 

the initial rating. This increase can be interpreted to be a 

positive tendency for the use and acceptance of the system. 

 

 
The adaptation through learning from the user experience 

facilitates better representation of the word models from 

CWWs perspective. Fig. 10 depicts the initial and final LGT2 

models for the level of difficulty, which is the output of the 

proposed CWWs Framework and represented in the domain 

[0, 1]. The semantic meaning of the level of difficulty conveys 

the perception of the user whether the recipe is challenging or 

it is easy according to the user’s experience. For example, for 

an experienced cook, the recipes that take short time to 

prepare might be perceived as very easy – meaning 

straightforward for the user to perform; whereas for an 

inexperienced cook, recipes that require slow cooking might 

be perceived as challenging – meaning difficult for the user to 

achieve a successful resulting meal. So, it is important to have 

adaptive models that can represent the user’s perceptions, 

which can also change by time. In other words, as the user 

gets more experienced, his/her perception regarding the 

difficulty level would possibly change. And the adaptive word 

models using LGT2 FSs take into account these uncertainties. 

Particularly, it can be observed from Fig. 10a that the initial 

default LGT2 model at the beginning of the experiment for 

one participant is very different from the LGT2 model shown 

in Fig. 10b, which is the final model for the level of difficulty 

for the same participant. Hence, the change in the LGT2 

model for the level of difficulty shows the adaptation to the 

participant over time. 

 
 

Fig. 10c and Fig. 10d show the final LGT2 models for the 

level of difficulty for other participants. As can be observed 

from Fig. 10, the final adapted LGT2 models for different 

participants may vary. From the machine point of view, the 

domain for the linguistic term ‘challenging’ for Participant 3 

in Fig. 10b is [0, 0.33]. However, the domain for the linguistic 

term ‘challenging’ for Participant 9 in Fig. 10c is [0, 0.47]. 

This is because different people have different experiences 

and different interpretations of concepts. Similarly, the LGT2 

model in Fig. 10b is different from the one illustrated in Fig. 

10d, and the LGT2 model in Fig. 10c is different from the one 

illustrated in Fig. 10d. Over time, the system learns and adapts 

to the user, and the LGT2 models for the level of difficulty are 

updated after each interaction of the user with the system. 

Hence, we can conclude that LGT2 FSs are adequate for 

representing the changes in the word models for CWWs for 

different user experiences accumulated over time. 

 

 

TABLE VIII 

RESULTS FOR T-TEST: PAIRED TWO SAMPLE FOR MEANS APPLIED TO 

PARTICIPANTS RATINGS ON EXPERIENCE OF USING THE SYSTEM 

 
Initial rating Final rating 

Mean 3.882352941 4.529411765 

Variance 1.235294118 0.264705882 

Observations 17 17 

Pearson 

Correlation 
0.443622131 

 

t Stat -2.677754726 
 

P(T<=t) one-tail 0.008253276 
 

t Critical one-tail 1.745883676 
 

P(T<=t) two-tail 0.016506552 
 

t Critical two-tail 2.119905299 
 

 

 
Fig. 9.  Positive tendency on predicted viewpoint of the participants 

based on the average results obtained from 6 statements 
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Viewpoint vs. Time

Predicted Viewpoint

Strongly
Disagree

Disagree

Neutral

Agree

Strongly
Agree

4.003

4.6811

TABLE IX 

PEARSON AND SPEARMAN’S RANK CORRELATION TESTS APPLIED ON USER 

FEEDBACK AND SYSTEM RESPONSE 

Participant #  
Pearson 

Correlation 
 

Spearman’s Rank 

Correlation 

1  0.755928946  0.8660 

2  1  1 

3  0.5  0.5 

4  1  1 

5  1  1 

6  1  1 

7  0.5  0.5 

8  0.654653671  0.5 

9  0.866025404  0.8660 

10  0.5  0.5 

11  0.866025404  0.8660 

12  0.866025404  0.8660 

13  1  1 

14  0.866025404  0.8660 

15  1  1 

16  0.5  0.5774 

17  1  1 

Mean  0.816157896  0.818082353 
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In order to evaluate whether the system responses are able 

to replicate the human responses, we have conducted 

statistical correlation tests on the user feedback (regarding the 

level of difficulty of the recipe) and the proposed CWWs 

Framework output (which is the level of difficulty of the 

recipe) for each participant. As we are dealing with word 

outputs, we have chosen a numerical representation for the 

linguistic terms as follows: extremely challenging:6, very 

challenging:5, challenging:4, easy:3, very easy:2 and 

extremely easy:1. The results are listed in Table IX and 

confirm that the system shows adaptation to the human 

experience over time as the Pearson correlation coefficient has 

increased up to ~0.816, whereas Spearman’s rank correlation 

coefficient has increased up to ~0.82. 

C. Comparison With Interval Type-2 Based CWWs 

Framework 

For comparison purposes, we collected data from 17 

subjects and applied EIA [88] in order to create Interval Type-

2 Fuzzy Sets (IT2 FSs) for the inputs to the causation-

organization segment of the proposed CWWs Framework. 

These inputs are preparation time, cooking time and overall 

time of the chosen recipe. The participants were asked to 

indicate what the given words meant to them using an interval 

of [0, 10]. In total, 18 words to be modelled using EIA [88] 

are as follows: for food preparation time linguistic variable: 

extremely short, very short, short, long, very long, extremely 

long; for cooking time linguistic variable: extremely quick, 

very quick, quick, slow, very slow, extremely slow, for overall 

time linguistic variable: (which is the summation of 

preparation time and cooking time) extremely little, very little, 

little, big, very big, extremely big. 

 

 
The parameters of the IT2 FS models belonging to 18 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10.  (a) Initial LGT2 model. Final LGT2 models of the linguistic variable 
level of difficulty for (b) Participant 3 (c) Participant 9 (d) Participant 5 
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Fig. 11.  (a) EIA [88] output for 18 linguistic terms based on survey data (b) 
Whole IT2 design for the linguistic variable preparation time using EIA [88] 

  

extremely short very short short long very long extremely long

extremely quick very quick quick slow very slow extremely slow

extremely little very little little big very big extremely big
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linguistic terms using the EIA are given in Appendix A 

whereas Fig. 11a illustrates the linguistic terms individually. 

With this information, the whole design for one of the 

linguistic variables, for example preparation time, using IT2 

fuzzy sets is presented in Fig. 11b. 

For comparison purposes, we have developed a conversion 

paradigm to redesign (using LGT2 FSs) the linguistic 

variables, which are modelled using EIA [88]. The conversion 

paradigm takes several key points within the parameters of 

IT2 fuzzy sets (as marked in Fig. 12a) to redesign the 

linguistic variable using LGT2 FSs (as reflected in Fig. 12b). 

Appendix B gives the resulting parameters of the LGT2 fuzzy 

sets including each zSlice derived using the paradigm detailed 

in Fig. 13a. 

 

 
The design of the LGT2 fuzzy set based models for one of 

the inputs (i.e. preparation time) to the causation-organization 

segment is given in Fig. 13b. The illustrated LGT2 fuzzy set 

has been created using the parameters in Appendix B and the 

paradigm described in Fig. 13a. The linguistic modifiers 

marked as 'extremely', 'very' and 'none' are pointed with 

arrows in Fig. 13b and are modelled in the third dimension 

using zSlices representation. As illustrated below, among 

visual advantages of LGT2 FSs is their compact design, which 

is based on the use of antonyms. Employing LGT2 FSs 

reduces the number of MFs to be designed to two while 

keeping the same level of profoundness as in an IT2 design. It 

is important to note that, for this paper, both IT2 and LGT2 

fuzzy sets have been fixed ahead of time based on the survey 

data collected from 17 subjects. 

 
 

In practice, the result of mimicking the human reasoning 

can be determined by comparing the classified outputs (words 

represented by numbers) using the distance (absolute value of 

the numerical difference between the system output and the 

user feedback). When the words are represented with numbers 

(extremely challenging:6, very challenging:5, challenging:4, 

easy:3, very easy:2 and extremely easy:1), the absolute 

difference between the LGT2 based system response and the 

user feedback is significantly less when compared to the 

absolute difference between the IT2 based system response 

and the user feedback for all of the participants. We have 

employed two statistical measures for error calculation, which 

are MAPE (Mean Absolute Percentage Error) and RMSE 

(Root Mean Square Error). The formulas used for the MAPE 

and RMSE calculation are given in Equation (15) where the 

variable 𝑥𝑆𝑦𝑠 represents the system response in numbers and 

the variable 𝑥𝑈𝑠𝑒𝑟 represents the user feedback in numbers 

stated above. 

 
(a) 

 
(b) 

Fig. 12.  (a) The theoretical view of IT2 FS model b) The theoretical 
view of LGT2 FS model showing the parameters and key points used in 

the Conversion Paradigm in Fig. 13a 

 

 

 
(a) 

 
(b) 

Fig. 13.  (a) The conversion paradigm where steps are categorized 
according to left shoulder and right shoulder MFs (b) The whole 

LGT2 word model for preparation time linguistic variable created 

using conversion paradigm 
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                   𝑀𝐴𝑃𝐸(𝑥) =
1

𝑛
∑ |

𝑥𝑆𝑦𝑠−𝑥𝑈𝑠𝑒𝑟

𝑥𝑈𝑠𝑒𝑟
|   

𝑛

𝑖=1
   

𝑅𝑀𝑆𝐸(𝑥) = √
1

𝑛
 ∗ ∑ (𝑥𝑆𝑦𝑠 − 𝑥𝑈𝑠𝑒𝑟)2𝑛

𝑖=1                (15) 

 

According to EIA [88], the supports of the data-driven 

linguistic variable designs (i.e. [𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑒𝑛𝑑]) are [0, 10]. 

Since the original domain of the linguistic variables might be 

different than [0, 10], the original domain of the input 

linguistic variables require to be scaled into the interval [0, 

10]5. Correspondingly, we have noticed in our experiments 

that changing the minimum and maximum values in the input 

data that are used in the scaling of the linguistic variables 

causes greater disturbance in the RMSE and MAPE results 

belonging to IT2 based CWWs Framework than those 

belonging to LGT2 based CWWs Framework. Table X gives 

the corresponding values of mean and standard deviation of 

the MAPE and RMSE results (derived from 17 subjects) for 

both IT2 based and LGT2 based CWWs Framework as well as 

the improvement percentage for LGT2 based system over IT2 

based system (calculated using: 100*(Mean of IT2 - Mean of 

LGT2) / Mean of IT2). 

 

 
It can be observed from the results that the improvement of 

LGT2 based system can increase up to 55.43% for MAPE and 

to 36.77% for RMSE. Most importantly, we have noticed over 

four different scales that the disturbance caused by the change 

of the input domain is much more in an IT2 based system 

compared to LGT2 based system. For example, for another 

scale where preparation time domain is [2, 120], cooking time 

domain is [2, 420], and overall time domain is [5, 435], the 

mean of MAPE for LGT2 based system is 55.57% whereas the 

mean of MAPE for IT2 based system is 61.3%. When 

compared to the mean values given in Table X, this can be 

interpreted as LGT2 based system can better handle the 

extreme value ranges in the input, and hence can be more 

robust when compared to IT2 based system for CWWs 

Framework.  

In our experiments, we have also recorded the progressive 

 
5 We would like to clarify that the examples in [88] were for word data for 

which there was no context, and so the scale [0, 10] was appropriate. 

However, in our paper, the data are collected for linguistic terms that are 

associated with linguistic variables that have a physical scale, where the 
subjects need to provide their interval end-points on the physical scale [l, r] 

where l and r are the two end-points of the physical scale. However, to 

facilitate the representation in accordance with the representation in [88], we 
scaled the interval [l, r] to be the range [0, 10]. 

MAPE and RMSE, which are recalculated after each 

interaction, in other words, after each input in a periodical 

manner. Herein, the results can be interpreted in terms of 

convergence regarding the decrease in the MAPE and RMSE. 

The faster the convergence, the better the learning and 

adaptation capabilities of the system. The progressive MAPE 

and RMSE results are illustrated in Fig. 14a and Fig. 14b for 

one participant due to space constraints. The graphs in Fig. 14 

demonstrate the fast convergence for LGT2 based CWWs 

Framework as well as the lower overall MAPE and RMSE 

results compared to IT2 based CWWs Framework. Hence, it 

can be observed that LGT2 based CWWs Framework 

outperforms IT2 based CWWs Framework in the pace of 

learning and adaptation. 

 

 
The overall results suggest that LGT2 based CWWs 

Framework outperforms IT2 based CWWs Framework by up 

to 55.43% in MAPE and up to 36.77% in RMSE. Hence, we 

can deduce that LGT2 based system mimics the human 

reasoning better as it can replicate the user responses much 

more closely when compared to its counterpart IT2 based 

system. Also, we can conclude that LGT2 fuzzy sets provide 

better performance for the whole system.  In other words, for 

the application of the proposed CWWs approach, we have 

achieved up to 55.43% improvement when we use general 

type-2 fuzzy sets than when we use interval type-2 fuzzy set 

instead. 

D. Social Science Qualitative Analysis and Results 

In this social science qualitative analysis, participants were 

asked to interact with the prototype through two cycles of 

TABLE X 

RESULTS OF THE MAPE AND RMSE CALCULATIONS FOR LGT2 AND IT2 

BASED CWWS FRAMEWORK WHERE PREPARATION TIME DOMAIN IS [2, 120], 

COOKING TIME DOMAIN IS [2, 120], AND OVERALL TIME DOMAIN IS [5, 150] 

 
 MAPE 

 

RMSE 

 LGT2  IT2 LGT2  IT2 

Mean  48.984  109.904 1.596  2.525 

Standard 

Deviation 
 16.835  32.080 0.340  0.371 

Improvement 

of LGT2 over 

IT2 

 55.43% 36.77% 

 

 
(a) 

 
(b) 

Fig. 14.  (a) Comparison of progressive MAPE for LGT2 and IT2 based 

CWWs Framework for Participant 7 (b) Comparison of progressive 

RMSE for LGT2 and IT based CWWs Framework for Participant 7 
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recipe browsing and selecting (one cycle for the tried recipes, 

and another cycle for the new recipes).  The aims of the trial 

were twofold; firstly to assess the perceived naturalness of the 

interaction including comparisons with the graphical interface; 

and secondly to complement the broader quantitative study 

with in-depth qualitative insight into the perceived value of the 

adaptive nature of the application and elicit ideas for its 

further development.    

In this instance, the inquiry was concerned with 

understanding the participants’ step-by-step experience, their 

inner thoughts, feelings and reactions to each engagement with 

the application in the flow of browsing and selecting. To 

achieve this insight without constantly interrupting the 

experience, participants were asked to be conscious of their 

own moments of hesitation, uncertainty, frustration, pleasure 

and satisfaction as they moved through the process of 

browsing and selecting, and to signal with a thumbs up 

(positive) or thumbs down (negative) when such a moment 

occurred. Their interactions with the application were video 

recorded and a semi-structured interview schedule was 

designed to focus on the signalled moments.  The participant 

and the interviewer then played back the video together 

stopping at each signal and exploring the participants’ 

reactions and perceptions.  Participants were also asked for 

their overall responses to adaptation and naturalness of the 

AIPCRR.  Five and a half hours of interview data were 

recorded and transcribed; this material was then subject to a 

systematic analysis which focussed on resonances and 

contrasts in participants’ responses in relation to their 

identified moments. The analysis was conducted with the 

support of Nvivo Qualitative analysis software6.  

 
The entire dialogue is exemplified in Fig. 15. The 

qualitative study clearly supported the findings of the earlier 

quantitative outcomes by demonstrating that all four 

participants, in repeated references, perceived and valued the 

 
6http://www.qsrinternational.com/products_nvivo.aspx 

adaptation aspect of the prototype, for example P2 and P3 

mentioned (in their own words) that the system was adaptive 

over time and it was interesting to see that the system was 

giving personalized options. 

The users also valued the fact that their personalized recipe 

ratings could be accessed via the internet from anywhere, and 

when asked about how the application compared to using a 

conventional cook book, three of the four participants 

expressed a clear preference. When the interaction was 

passing back and forth from user to system seamlessly, 

participants reported a feeling of enjoyment, control and 

engagement, verging for some on anthropomorphised 

companionship, as P3 expresses: “it is like having some 

companion, some entity there helping you.”. This feedback 

actually affirms that the system was able to establish a natural 

human-machine communication as intended.  

An evaluation of this nature highlights what works well and 

where things can be improved, and it is often the case that 

incidents where things do not go to plan provide the most 

interesting insight. There was also, naturally, a greater 

emphasis on the voice-controlled interface in comparison to 

the quantitative evaluation. However, when asked to reflect on 

the overall acceptability and convenience of the adaptive 

ambient intelligent platform for food recipe recommendation 

concept as embodied in both the GUI and speech interface 

versions of the prototype, participants demonstrated a 

balanced understanding and were unanimously positive. For 

example, P1 mentioned its convenience in a busy life at home 

together with the advantage of updated content (from web), P4 

referred to its usefulness and integrated architecture, and all 

the participants quoted that they ‘like it’. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented a CWWs framework 

merging the advancements from neuroscience, psychology, 

linguistics, cognitive science and artificial intelligence. As an 

initial step in the accomplishment of getting the machines 

understand the human beings, we have pointed out the 

significance of past experience, and the aggregation of bits of 

information to form granulated chunks of information. Also, 

we have introduced the theory and a real-world application of 

Linear General Type-2 Fuzzy Sets, which have nested FOUs 

in the third dimension as a novelty. By this feature, in order to 

represent words for CWWs paradigm, LGT2 FSs have 

significant advantages over type-1 and interval type-2 fuzzy 

sets. First of all, LGT2 FSs assure mimicking human 

reasoning with regards to preserving natural ordering as 

human beings can do. Second, LGT2 FSs show adaptation 

capabilities over time which can be easily represented by the 

LGT2 model after each interaction. Third, LGT2 FSs facilitate 

the modelling of third dimension for the linguistic modifiers 

and hence offer a more compact and efficient design for the 

word model. Finally, the comparison analysis for LGT2 based 

and IT2 based CWWs Framework demonstrates up to 55.43% 

improvement when general type-2 fuzzy sets are used than 

when interval type-2 fuzzy sets are used instead. 

Furthermore, to our knowledge, there is no real-world 

Fig. 15.  Example dialogue between the user and the AIPCRR using 
speech-driven dialogue system 
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application of CWWs in an AmI scenario, in particular, in a 

scenario using past experiences of the users. In an inter-

disciplinary manner, we have also got support from social 

evaluation on the perception of adaptation and the overall 

concept of CWWs. Consequently, we presented interesting 

and promising qualitative and quantitative results for the first 

real-world prototype for the Ambient Intelligent Platform for 

Cooking Recipes Recommendation. We have carried 

numerous real world experiments with various users in the 

University of Essex intelligent apartment (iSpace). We 

reported results from the comparison analysis between Interval 

Type-2 Fuzzy Sets and LGT2 Fuzzy Sets as well as the 

quantitative and qualitative analysis which showed the success 

of the system in providing a natural interaction with the users 

for recommending food recipes. The comparison analysis 

demonstrated encouraging improvement on the use of general 

type-2 fuzzy sets instead of IT2 fuzzy sets. The quantitative 

analysis showed the high statistical correlation between the 

system output and the users’ feedback. In addition, the 

qualitative analysis presented social science evaluation that 

confirms the strong user acceptance of the system. To 

recapitulate, the participants perceived, valued and 

acknowledged the adaptation of the system and also gave 

positive indications to take the study further. 

With regards to future research, there is a myriad of options 

to improve the system to have different activities or various 

composite concepts in addition to the options for further 

investigating learning and adaptation aspects of particular 

components of the proposed CWWs Framework. 
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