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Abstract
Wepresent a classical linear response theory for amagneto–dielectricmaterial and determine the
polariton dispersion relations. The electromagneticfieldfluctuation spectra are obtained andpolariton
sumrules for their optical parameters are presented. The electromagneticfield for systemswithmultiple
polariton branches is quantized in three dimensions andfield operators are converted to 1–dimensional
forms appropriate for parallel light beams.We show that thefield–operator commutation relations
agreewith previous calculations that ignored polariton effects. TheAbraham(kinetic) andMinkowski
(canonical)momentumoperators are introduced and their corresponding single–photonmomenta are
identified. The commutation relations of these andof their angular analogues support the identification,
in particular, of theMinkowskimomentumwith the canonicalmomentumof the light.We exploit the
Heaviside–Larmor symmetry ofMaxwell’s equations to obtain, very directly, the Einsetin–Laub force
density for action on amagneto–dielectric. The surface and bulk contributions to the radiation pressure
are calculated for the passage of anoptical pulse into a semi–infinite sample.

1. Introduction

At the heart of the problemof radiation pressure is the famous Abraham–Minkowski dilemma concerning the
correct formof the electromagneticmomentum in amaterialmedium [1–4]; a problemwhich, despite of its
longevity, continues to attract attention [5–9]. The resolution of this dilemma lies is the identification of the two
momenta, due toAbrahamandMinkowski, with the kinetic and canonicalmomenta of the light, respectively
[10]. It serves to indicate,moreover, why the differentmomenta are apparent in different physical situations [9].
In this paper we shall be concernedwithmanifestations of opticalmomentum in radiation pressure onmedia
and, in particular, onmagneto–dielectricmedia.

Most existingworkon the theoryof radiationpressure, as reviewed in [5–9], treatednon-magneticmaterials but
there has been recent progress in thepartial determinationof the effects ofmaterialmagnetization.The rise of interest
inmetamaterials and inparticular thosewithnegative refractive index addsurgency to addressing this point [11].

We considermagneto–dielectricmaterials inwhich both the electric permittivity ε and themagnetic
permeability μ are isotropic functions of the angular frequencyω. The quantum theory of the electromagnetic
field for suchmedia is nowwell–developed, with analyses in the literature based onGreen’s functions [12, 13]
and also onHopfield–likemodels based on coupling to a harmonic polarization andmagnetization field [14–
17]. The approachwe shall adopt is toworkwith the elementary excitations within themedium, which are
polarition coupled–modes of the electromagnetic fieldwith the electric andmagnetic resonances. The classical
linear–response theory in section 2 allows direct calculations of the electric andmagnetic field–fluctuation
spectra. The corresponding quantized field operators are expressed in terms of the polariton creation and
destruction operators andwe show that these satisfy the required standard commutation relations.We use these
to construct theMinkowski andAbrahammomentumoperators and also the corresponding angularmomenta,
and showhow the commutators of thesewith the vector potential facilitate the interpretation of the rival
momenta [10]. The known formof themagnetic Lorentz force is confirmed and used to explore themomentum
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transfer from light to a half–space sample and so provide the extension to permeablemedia of earlier work on
dielectrics [18].

2. Classical theory

The original calculations byAbraham andMinkowski determined the electromagneticmomentum in
transparentmedia, as has the greatmajority of the subsequent literature referenced here.We accordingly assume
a real permittivity and permeability. These arise naturally from the dispersion relations in aHopfield–type
model inwhich the electromagnetic field is coupled to harmonic polarization andmagnetization fields
associatedwith the hostmedium [19]. Including absorption losses presents no fundamental difficulties [12–17]
but adds significantly to the technical nature of the analysis; a feature thatmight obscure the simplicity of the
underlying physics.

2.1. Linear response
The relative permittivity and permeability of a (lossless)magneto–dielectric at angular frequencyωmay be
written in the simple forms [20]
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where ne and nm are the numbers of electric andmagnetic dipole resonances in themedium, associatedwith
longitudinal and transverse frequencies indicated by the subscripts L andT. It follows that the values of the
permittivity and permeability at zero and infinite frequencies are
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in accordwith the generalized Lyddane–Sachs–Teller relation [21]. The phase refractive index is

( ) ( ) ( ) , (3)pη ω ε ω μ ω=

as usual [22].
We consider amagneto–dielectricmedium in the absence of free charges and currents, so that our electric

andmagnetic fields are governed byMaxwell’s equations in the form

t
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The electromagnetic fields described by these propagate as transverse plane–waves, with an evolution described
by the complex factor tk rexp(i · i )ω− , with k k= ∣ ∣andω related by the appropriate dispersion relation. The
four complex electric andmagnetic fields are related by [22]
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where P and M are, respectively, themedium’s polarization andmagnetization.Henceforth, for the sake of
brevity, we omit explicit reference to the frequency fromour fields, permittivities and permeabilities.

Now suppose that external stimuli p and m with the same frequency are applied parallel to E and H
respectively, so that the relations (5) become

D E p

B H m. (6)
0

0 0

ε ε
μ μ μ

= +
= +

2
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It is convenient to introduce 6–component field and stimulus variables defined to be

Z
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=

where Z0 0 0μ ε= is the usual free-space impedance andV is a suitably chosen sample volume. The energy of
interaction between the field and the stimulus components is then
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The solutions for thefield components obtained by substitution of (6) intoMaxwell’s equations can bewritten
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with the commondenominator

c kDen , (11)2 2 2εμω= −
the zeroes of which give the dispersion relation for the field. The elements of thematrix T agreewith and extend
partial results obtained previously for non-magneticmedia [23, 24].

2.2. Fieldfluctuations
The frequency andwave–vector fluctuation spectra at zero temperature are obtained from theNyquist formula
[23, 25]
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
π

=
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where the required imaginary parts occur automatically inmagneto–dielectricmodels that include damping
mechanisms or, in the limit of zero damping, by the inclusion of a vanishingly small imaginary part inω. In the
latter case, which applies to ourmodel, wefind
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The totalfluctuations are obtained by integration
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where the frequencyω and the three–dimensional (3D)wave vector k are taken as continuous and independent
variables.

Consider plane–wave propagation parallel to the z-axis in a sample of length L and cross–sectional areaA.
The frequency fluctuation spectra are then obtained from the one–dimensional (1D) version of (14) as
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The contributions of the component x– and y–polarizedwaves give
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with the use of (10) and (13). TheE andH spectra, of course, have the usual relativemagnitude for amagneto–
dielectricmaterial. The totalfluctuations are obtained by integration of the spectra overω as in (14).

2.3. Polaritonmodes
The combined excitationmodes of thematerial dipoles and the electromagnetic field are the polaritons [26].
The transverse polaritons for amaterial of cubic symmetry, as assumed here, are twofold degenerate
corresponding to the two independent polarization directions. Their dispersion relation is determined by the
poles in the linear response function, the components of which are given in (10). The vanishing denominator
(Den) gives

c k , (17)2 2 2
p
2 2εμω η ω= =

which is the desired transverse dispersion relation. For our relative permittivity and permeability, there are
n n 1e m+ + transverse polariton frequencies for eachwave vector and these are independent of the direction of
k . They jointly involve all of the resonant frequencies in the electric permittivity and themagnetic permeability.
It is convenient to enumerate the transverse polariton branches by a discrete index u, and there is no overlap in
frequency ukω between the different branches. There are also n ne m+ longitudinalmodes at frequencies Le

ω
and Lm

ω , independent of thewave vector. These contribute, for example, to Raman spectra at non-zero
scattering angles [20, 23, 27, 28] but they can be ignored here as they do not interact directly with a unidirectional
transverse electromagnetic wave.

Subsequent calculations involve the polariton group index gη , defined in terms of the phase index pη :
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for ck/pη ω= . The two refractive indices satisfy a variety of sum rules over the branches, given by [29–31]
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where all of the optical variables are evaluated at frequency ukω , so the sums run over every frequency ukω that is
a solution of the dispersion relation (17) for a givenwave vector k .

3.Quantum theory

3.1. Field quantization
The polaritons are bosonicmodes, quantized by standardmethods in terms of creation and destruction
operators with the commutation relation

4
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a a k kˆ , ˆ ( ) . (21)u u u uk k
†

,
⎡⎣ ⎤⎦ δ δ= − ′′ ′ ′

TheDirac andKronecker delta functions have their usual properties. The electromagnetic field quantization
derived previously for dispersive dielectricmedia [33] can be adapted for ourmagneto–dielectricmediumby
insertion of polariton branch labels and by conversion to SI units and continuouswave vectors. It is convenient
towrite all of thefield operators in the form
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where the second term is theHermitian conjugate of the first. The deduced formof the transverse (or Coulomb
gauge) vector potential operator is then given by
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The unit polarization vector ek is assumed to be the same for all of the polariton branches at wave vector k . The
two transverse polarizations for eachwave vector are not shown explicitly here but they are important for the
simplification ofmode summations [34] and they need to be kept inmind. For non-magneticmaterials, with
μ=1, the vector potential (23) agrees with equation (5) from [35] and alsowith equation (A12) in [36] when the
summation over polariton branches is removed.

The electric field, E, andmagnetic flux density or induction, B, field operators are readily obtained from the
vector potential as
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The remainingfield operators, the displacement field D and themagnetic field H, follow from the quantum
equivalents of (5) as

t a tD r k eˆ ( , ) i
16

d ˆ ( )e (27)
u u

u

k

k
k r

k
( )

3
0

1 2
p

g

1 2

i ·
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 ∫∑
π ε

ωεη

η
=+

and

t a tH r k k eˆ ( , ) i
16

d
1

ˆ ( )e . (28)
u u

u

k

k
k r

k
( )

3
0

1 2

p g

1 2

i ·
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 ∫∑
π ε ωμη η

= ×+

The above four operator expressions are consistent with previouswork [33]. Thefield quantization for a
magneto–dielectricmediumhas also been performed in a quantum–mechanical linear–response approach
[12, 13] that assumes arbitrary complex forms for the permittivity and permeability. The resulting expressions
for the E andB operators contain the polariton denominator (11) in their transverse parts. A theory along these
lines has been further developed by amoremicroscopic approach inwhich the explicit forms of the electric and
magnetic susceptibilities are derived [14, 15].

3.2. Field commutation relations
The validity of the field operators derived here (or at least their self–consistency) is demonstrated by the
confirmation that they satisfy the required equal–time commutation relations [34, 37]. Thus it follows from the
forms of our operators, given above, that
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with recognition that the two exponents in the first step give the same contributions and a crucial use of the first
sum rule from equation (19). The transverse delta function, r r( )ijδ − ′⊥ , in thefinal step [34, 37, 38] relies on the
implicit summation of the contributions of the two transverse polarizations. The common time t is omitted
from the field operators in the commutators here and subsequently as it does not appear in thefinal results. An
alternative canonical commutator is that for the vector potential and the electric field:
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with the use of a sum rule from equation (20). It follows from the operator formof the first relation in
equation (5) that the vector potential and the polarisztion commute:

A Pr rˆ ( ), ˆ ( ) 0. (31)i j
⎡⎣ ⎤⎦′ =

This ismost satisfactory as the two operators are associatedwith properties of different physical entities: the
electromagnetic field and themedium respectively.We note that the commutator in equation (29) has been
given previously [10] for non–magnetic dielectricmedia.

The remaining non–vanishing field commutators are
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wherewe have used the sum rules given in equations (19) and (20).Here ijhϵ is the familiar permutation symbol
[39, 40] and the repeated index h is summed over the three cartesian coordinates x, y and z. Thefirst of these
results generalizes a commutator previously derived forfields in vacuo [37].Note that together these
commutation relations require that the polarization operator commutes with themagnetic field operator and
that themagnetization also commutes with the electric field operator:
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which is a physical consequence of the fact that the two pairs of operators in each commutator are associated
with properties of different systems: themedium and the electromagnetic field.
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3.3. Parallel beams: 3D to 1D conversion
For parallel light beams, it is sometimes convenient toworkwith field operators defined for dependence on a
single spatial coordinate zwith a one–dimensional wave vector k. Thus, for a beamof cross–sectional areaA,
conversion from3D to 1D is achieved bymaking the substitutions
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where x̃ is the unit vector in the x-direction. The orthogonal degenerate polaritonmodes give a vector potential
parallel to ỹ . The four field operators retain their forms given in equations (25) to (28) except for appropriate
changes in thefirst square-root factors and vector directions. The electric and displacement fields are parallel to
the x-axis, while themagnetic field and induction are parallel to the y-axis. The commutation relation for the
creation and destruction operators retains the form given in equation (21) butwith k replaced by k. For μ=1
and a single–resonance dielectric, the vector potential (35) agrees with equation (3.25) in [31] and equation (9)
in [29].

The single-coordinate vector potential can also be expressed as an integral over frequency bymeans of the
conversions

k
c

k k
c

a
c

a

d d

( ) ( )

ˆ ˆ . (36)ku

g

g

g

1 2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∫ ∫ ω
η

δ
η

δ ω ω

η

→

− ′ → − ′

→ ω

There are no overlaps in frequency between the different twofold–degenerate polariton branches and the
summation over u is accordingly removed from the vector potential, which becomes

( )z t
A

a t z cA xˆ ( , ) d
4

ˆ ( )exp i ˜, (37)
( )

1 2
0

0

1 4

p
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

∫ ω
πω

μ μ
ε ε

ωη= ω
+

where

a t aˆ ( ) ˆ e . (38)ti=ω ω
ω−

This destruction operator and the associated creation operator satisfy the continuumcommutation relation

a aˆ , ˆ ( ). (39)†⎡⎣ ⎤⎦ δ ω ω= − ′ω ω′

Thefield operators obtained by conversion in this way of (25) to (28) are

( )

( )

( )

( )

z t
A

a t z c

z t
A

a t z c

z t
A

a t z c

z t
A

a t z c

E x

B y

D x

H y

ˆ ( , ) i d
4

ˆ ( )exp i ˜

ˆ ( , ) i d
4

( ) ( ) ˆ ( )exp i ˜

ˆ ( , ) i d
4

( ) ( ) ˆ ( )exp i ˜

ˆ ( , ) i d
4

ˆ ( )exp i ˜ . (40)

( )
1 2

0

0

1 4

p

( )
1 2

0
1 4

0
3 4

p

( )
1 2

0
3 4

0
1 4

p

( )
1 2

0

0

1 4

p

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟









∫

∫

∫

∫

ω ω
π

μ μ
ε ε

ωη

ω ω
π

ε ε μ μ ωη

ω ω
π

ε ε μ μ ωη

ω ω
π

ε ε
μ μ

ωη

=

=

=

=

ω

ω

ω

ω

+

+

+

+

There is again agreementwith previously defined expressions [29, 31] for μ=1.We can use thesefield operators
to calculate the vacuumfluctuations and find
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( )

( )

E z t E z t E z t
A

E z t

B z t B z t B z t
A

B z t

D z t D z t D z t
A

D z t

H z t H z t H z t
A

H z t

0 ˆ ( , ) 0 0 ˆ ( , ) ˆ ( , ) 0 d
4

0 ˆ ( , ) 0

0 ˆ ( , ) 0 0 ˆ ( , ) ˆ ( , ) 0 d
4

0 ˆ ( , ) 0

0 ˆ ( , ) 0 0 ˆ ( , ) ˆ ( , ) 0 d
4

0 ˆ ( , ) 0

0 ˆ ( , ) 0 0 ˆ ( , ) ˆ ( , ) 0 d
4

0 ˆ ( , ) 0 , (41)

x x x

y

y y y

x

x x x

y

y y y

x

2 ( ) ( ) 0

0

1 2

2

2 ( ) ( )
0 0

3 3 1 2

2

2 ( ) ( )
0 0

3 3 1 2

2

2 ( ) ( ) 0

0

1 2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟









∫

∫

∫

∫

ω ω
π

μ μ
ε ε

ω ω
π

ε εμ μ

ω ω
π

μ με ε

ω ω
π

ε ε
μ μ

= =

=

= =

=

= =

=

= =

=

+ −

+ −

+ −

+ −

in exact agreementwith results obtained in section 2.2.
We shallmake use of the 1Dfield operators derived here to calculate the force exerted by a photon on a

magneto–dielectricmedium, butfirst return to the full 3D description to investigate the electromagnetic
momentum.

4.Momentumoperators

4.1.Minkowski andAbraham
Themuch debated Abraham–Minkowski dilemma ismost simply stated as a question: which of two eminently
plausiblemomentumdensities, D B× and c E H2 ×− , is the true or preferred value [7, 9]?We amplify upon the
answer given in [10],making special reference to the effects of amagneto–dielectricmedium.

Two rival forms for the electromagnetic energy–momentum tensors were derived byMinkowski [1] and
Abraham [2–4]. Their original formulations considered electromagnetic fields inmoving bodies, but it suffices
for our purposes to set thematerial velocity equal to zero. These results continue to hold for themagneto–
dielectricmedia of interest to us. The two formulations differ principally in their expressions for the
electromagneticmomentum andwe consider here the respective quantized versions of these.

TheMinkowskimomentum is quite difficult tofind in the paper [1], but it can be deduced from the
expressions for other quantities. Its quantized form is represented by the operator

t t t

a t a t a t a t

a t a t a t a t

G rD r B r

k

k

ˆ ( ) d ˆ ( , ) ˆ ( , )

2
d ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) , (42)

u u u u

u u u u

u u u u

k k

k k k k

k k k k

M

,

p

g

1 2

p g

1 2

† †

† †

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎡⎣

⎤⎦



∫

∫∑
ωεη

η
μ

ωη η

= ×

= +

+ +

′ ′

′ ′

− ′ − ′

where equations (26) and (27) have been used. The diagonal part of thismomentumoperator is

( )a a a aG k kˆ 1

2
d ˆ ˆ ˆ ˆ . (43)

u u

u u u u

k

k k k kdiag
M p

g

† †
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∫∑

η

η
= +

The fact that k cpη ω= leads us to identify a single–photonmomentum

p
c

(44)

uk

(M)

p
2

g

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ω η

η
=

with the individual polaritonmode uk . This formof theMinkowski single-photonmomentumhas been derived
previously [41] for a single-resonance non-magneticmaterial. There are good reasons, however as we shall see
below, not to assign this value to theMinkowskimomentum.

The corresponding formof the Abrahammomentumoperator, proportional to the Poynting vector for
energyflow, is [2–4]
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t
c

t t

a t a t a t a t

a t a t a t a t

G rE r H r

k

k

ˆ ( )
1

d ˆ ( , ) ˆ ( , )

2
d

1
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) , (45)

u u u u

u u u u

u u u u

k k

k k k k

k k k k

A

2

, p g

1 2

p g

1 2

† †

† †

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎡⎣

⎤⎦



∫

∫∑ ωμ
η η ωμη η

= ×

= +

+ +

′ ′

′ ′

− ′ − ′

which differs from the corresponding expression for tĜ ( )
M

only in the two square–root factors that occur in the
field operators (25) and (28). The diagonal part of thismomentumoperator is

( )a a a aG k kˆ 1

2
d

1
ˆ ˆ ˆ ˆ , (46)

u u

u u u u

k

k k k kdiag
A

p g

† †
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∫∑

η η
= +

so that the associated single-photonmomentum is

p
c

1
, (47)

uk

A
g

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ω
η

=

which is the usual Abraham value.
The subscriptM appears in brackets in equation (44) because an alternative form for theMinkowski

momentum, given by

p
c

, (48)M p
ω η=

is observed in experiments sufficiently accurate to distinguish between the phase and group refractive indices,
particularly the submergedmirrormeasurements of Jones and Leslie [42]. Note that the difference between the
two candidatemomenta, pA and pM, can be very large and even, the case ofmediawith a negative refractive
index, point in opposite directions [43]. The resolution of the apparent conflict between the two forms of
Minkowskimomentum is discussed in section 4.3.

4.2. Vector potential–momentumcommutators
It is instructive to evaluate the commutators of the twomomentumoperators with the vector potential.We can
do this either by using the expressions for the fields in terms of the polariton creation and destruction operators
or,more directly, by using thefield commutation relations (29) and (30), together with the fact that the vector
potential commutes with both themagnetic field and the induction.

For theMinkowskimomentumwefind

A G A D B

B

A

A A

A

r r r r r

r r r r

r r r r

r r r r r

r

ˆ ( ), d ˆ ( ), ˆ ( ) ˆ ( )

i d ( ) ˆ ( )

i d ( ) ˆ ( )

i ˆ ( ) i d ( ) ˆ ( )

i ˆ ( ), (49)

i j jkl i k l

jkl ik l

jkl lmn ik m n

j i ik k j

j i

M⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦




 





 



∫
∫

∫
∫

ϵ

ϵ δ

ϵ ϵ δ

δ

= ′ ′ ′

= − ′ − ′ ′

= − ′ − ′ ′ ′

= − + ′ − ′ ′ ′

= −

⊥

⊥

⊥

wherewe have used the summation convention so that repeated indices are summed over the three cartesian
directions. It should also be noted that the remaining fields will have the same formof commutation relation
with theMinkowskimomentum, for example for the electric fieldwe have

E G Er rˆ ( ), ˆ i ˆ ( ). (50)i j j i
M⎡

⎣⎢
⎤
⎦⎥ = −

This follows directly from the relationships between thesefields and the vector potential together with the fact
that the vector potential commutes with the polarization and themagnetization.

For the Abrahammomentumwe can exploit our calculation for theMinkowskimomentum tofind the
commutator
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( )

A G A E H

A E B M

A M

r r r r r

r r r r r

r r r r r

ˆ ( ), ˆ d ˆ ( ), ˆ ( ) ˆ ( )

d ˆ ( ), ˆ ( ) ˆ ( ) ˆ ( )

i ˆ ( ) i d ( ) ˆ ( ). (51)

i j jkl i k l

jkl i k l l

j i jkl ik l

A
0 0

0 0

0

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
 

∫
∫

∫

ϵ ε μ

ϵ ε μ

ϵ δ μ

= ′ ′ ′

= ′ ′ ′ − ′

= − + ′ − ′ ′⊥

The second term,with its integration over themagnetization,means that the commutator depends on both a
field property, the vector potential, and amediumproperty, themagnetization [10].

4.3. Interpretation
The identification of theMinkowski andAbrahamphotonmomenta respectively with the electromagnetic
canonical and kineticmomenta has been proposed in the past [41, 44–46], but rigorously proven onlymore
recently [7, 10].We need add here only a few brief remarks.

The commutation relation (49) satisfied by theMinkowskimomentumoperator resembles the familiar
canonical commutator of the particlemomentumoperator,

F p Fr r( ), ˆ i ( ), (52)i j j i
⎡⎣ ⎤⎦ =

where F r( ) is an arbitrary vector function of position. Thus, analogously to its particle counterpart, the
Minkowskimomentumoperator for the electromagnetic field generates a spatial translation, in this case of the
vector potential and the electric andmagnetic fields. The operator therefore indeed represents the canonical
momentumof the field and it is the observedmomentum in experiments thatmeasure the displacement of a
body embedded in amaterial host, as has been seen for amirror immersed in a dielectric liquid [42], for the
transfer ofmomentum to charge carriers in the photon drag effect [47] and in the recoil of an atom in a host gas
[48]. The simple spatial derivative that occurs on the right of equation (49) shows that themeasured single–
photonmomentum should have theMinkowski form in (48) and not that given in equation (44).

The kineticmomentumof amaterial body is the simple product of itsmass and velocity. The formof the
Abraham single-photonmomentum in equation (47) is verified by thought experiments of the Einstein-box
variety [49, 50]. These use the principle of uniformmotion of the centre ofmass-energy as a single-photon pulse
passes through a transparent dielectric slab and they reliably produce the Abrahammomentum. The
calculations remain validwith no essentialmodificationswhen the slab ismade from amagneto–dielectric
material.

The totalmomentum includes contributions both from the opticalfield and themedium throughwhich it
propagates. The relationship between the kinetic and canonicalmomenta for themedium ismost readily
obtained by considering first a single atom. For an atomwith electric dipole operator d̂, the kinetic and
canonicalmomentumoperators differ by the Röntgen term associatedwith transforming the fields into the
atom’s rest–frame [34, 44, 51, 52]

d Bˆ ˆ ˆ ˆ . (53)atom
kinetic

atom
canonicalπ π= + ×

If the atomhas, in addition, amagnetic dipolemoment operator m̂ then this relationship becomes [46]

c
d B E mˆ ˆ ˆ ˆ 1 ˆ ˆ . (54)atom

kinetic
atom
canonical

2
π π= + × + ×

Onadding the contributions from all of the atoms the dipole terms lead to a polarization P̂ and amagnetization
M̂. Hencewe canwrite the total kineticmomentumofmedium in the form

c
r P B r E Mˆ ˆ d ˆ ˆ 1

d ˆ ˆ . (55)medium
kinetic

medium
canonical

2∫ ∫Π Π= + × + ×

Combining thesewith ourMinkowski andAbrahammomenta for the opticalfieldwe find that the total
momentum is unique:

G Gˆ ˆ ˆ ˆ . (56)medium
canonical M

medium
kinetic AΠ Π+ = +

It is this totalmomentum that is conserved in the interactions between electromagnetic waves andmaterial
media.

4.4. Angularmomentum
The electromagnetic field carries not only energy and linearmomentumbut also angularmomentum and it is
natural to introduce angularmomenta derived from theMinkowski andAbrahammomenta in the forms
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c

J r r D r B r

J r r E r H r

ˆ d ˆ ( ) ˆ ( )

ˆ 1
d ˆ ( ) ˆ ( ) . (57)

M

A

2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∫
∫

= × ×

= × ×

A careful analysis of a light beam carrying angularmomentum entering a dielectricmedium shows that, in
contrast with the linearmomentum, theMinkowski angularmomentum is the same inside and outside the
medium, but that the Abrahamangularmomentum is reduced in comparison to its free–space value by the
product of the phase and group indices [53]. The analogue of the Einstein–box argument suggests that light
carrying angularmomentum entering amedium exerts a torque on it, inducing a rotation on propagation
through it. An object imbedded in the host, however,may be expected to experience the influence of the same
angularmomentum as in free space and, indeed, this is what is seen in experiment [54].

The canonical orMinkowski angularmomentum should be expected to induce a rotation of the
electromagnetic fields, which requires both a rotation of the coordinate and also of the direction of the field. The
requirement to provide both of these transformations provides a stringent test of the identification of the
Minkowski and canonicalmomenta. It is convenient tofirst rewrite theMinkowski linearmomentumdensity in
a new form:

( )

D A D A

D A D A

D Bˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ , (58)

i
j i j j j i

j i j j j i

⎡⎣ ⎤⎦  

 

× = −

= −

wherewe have used the firstMaxwell equation, D̂ 0j j = .We can insert this form into our expression for Ĵ
M

and, on performing an integration by parts and discarding a physically–unimportant boundary termwe find

D AJ r r D Aˆ d ˆ ( ) ˆ ˆ ˆ , (59)j j
M ⎡⎣ ⎤⎦∫= × + ×

which, in the absence of themedium reduces to the formobtained byDarwin [55, 56].
It is tempting, even natural, to associate the two contributions in the integrandwith the orbital and spin

angularmomentum components of the total angularmomentum. This is indeed reasonable, but it should be
noted that neither part alone is a true angularmomentum [57–59]. It is instructive to consider the commutation

relationwith a single component of the angularmomentum and so consider the operator J· ˆMθ :

r J r A A

r A A

Â( ), · ˆ i · ( ) ˆ i ( ˆ )

i · ( ) ˆ ˆ . (60)

M⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
 







θθ θ

θ θ

= − × + ×

= − × − ×

⊥ ⊥

The orbital and spin parts rotate, as far as is possible given the constraints of transversality, the amplitude and
direction of the potential [57–59]. The combination of both of these gives the required transformation. The
commutator (60) gives the first order rotation of the vector potential about an axis parallel to θ through the small
angle θ, as the canonical angularmomentum should.

5.Magnetic Lorentz force

It remains to determine the radiation pressure due to a lightfield on ourmagneto–dielectricmedium. To
complete this taskwe adopt themethod used previously of evaluating the force exerted by a single-photon plane-
wave pulse normally incident on themedium [18, 60]. Before we can complete the calculation, however, we
need to determine a suitable form for the electromagnetic force density.

5.1.Heaviside–Larmor symmetry
Maxwell’s equations in the absence of free charges and currents (4) exhibit the so–calledHeaviside–Larmor
symmetry [61, 62], with the forms that are invariant under rotational duality transformations given by [22]

Z

Z

Z

Z

E E H

H H E

D D B

B B D

cos sin

cos sin

cos sin

cos sin , (61)

0

0
1

0
1

0

ξ ξ
ξ ξ
ξ ξ
ξ ξ

= ′ + ′
= ′ − ′

= ′ + ′
= ′ − ′

−

−

for any value of ξ andwhereZ0 is again the impedance of free space. It is readily verified that the fourMaxwell
equations are converted to the same set of equations in the primedfields. The various physical properties of the
electromagnetic fieldmust also be unchanged by the transformations [63].We note, in particular, that the

Minkowski andAbrahammomentumoperators, Ĝ
M
and Ĝ

A
given in equations (42) and (45) and also the usual
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expressions for the electromagnetic field energy density and Poynting vector are all invariant under the
transformation (61).

The standard formof the Lorentz force law in a non–magnetic dielectric is [64]

f P E P H( · ) ˙ , (62)L
0 μ= + ×

with terms proportional to the electric polarization and its time derivative3. For amagneto–dielectricmedium
weneed to add the force due to themagnetization and to do so in amanner that gives a force density that is
invariant under theHeaviside–Larmor transformation. It follows from the transformation (61) that the
polarization andmagnetization are similarly transformed:

c

c

P P M

M M P

cos sin

cos sin . (63)

1ξ ξ
ξ ξ

= ′ + ′
= ′ − ′

−

The required formof the force density, satisfying theHeaviside–Larmor symmetry is

f P E P H M H M E( · ) ˙ ( · ) ˙ . (64)EL
0 0 0 0 μ μ ε μ= + × + − ×

The invariance of this expression under theHeavisde–Larmor transformation is easily shown. This formof the
force density was derived by Einstein and Laub over 100 years ago [65] and there have since been several
independent re–derivations of it [66–71]. Thefinal term in equation (64) has been given special attention in
[72], where it is treated as amanifestation of the so–called ‘hiddenmomentum’ given by M E0 0ε μ × . This line
of thought has attracted a series of publications, with several listed on page 616 of [22]. Omission of thefinal
term leads to difficulties, not the least of which is the identification of amomentumdensity that does not satisfy
theHeaviside–Larmor symmetry [73, 74]4. The above derivation of the Einstein–Laub force density shows how
themagnetic terms follow from the polarization terms by simple symmetry arguments and so provides a new
perspective on the complete force density. It is interesting to note,moreover, that the force density appropriate
for a dielectricmedium (62)may be obtained by consideration of the action on the individual dipolesmaking up
themedium [64] and that themost direct way to arrive at the Einstein–Laub force density is to obtain the
magnetization part by treating a collection ofGilbertianmagnetic dipoles [81].

It is also shown in the original paper [65] that the classical formof the Abrahammomentum and the classical
force density satisfy the conservation condition

t
t tG r f r( ) d ( , ). (65)A EL∫∂

∂
= −

The integration is taken over all space and the relation is valid forfields that vanish at infinity. This equality of the
rate of change of the Abrahammomentumof the light tominus the total Einstein–Laub force on themedium, or
rate of change ofmaterialmomentum, is as expected on physical grounds and further underlines the
identification of theAbrahammomentumwith the kineticmomentumof the light [7, 10]. Equation (65) is
simply an expression of the conservation of totalmomentum.

5.2.Momentum transfer to a half-spacemagneto-dielectric
Weconsider a single-photon pulse normally incident from free space at z 0< on theflat surface of a semi-
infinitemagneto–delectric that fills the half space z 0> . The pulse is assumed to have a narrow range of
frequencies centred on 0ω . Its amplitude and reflection coefficients, the same as in classical theory, are [22]

R

T

1

1

2

1
, (66)

ε μ
ε μ

ε μ

= −
−
+

=
+

where all of the optical parameters depend on the frequency. The damping parameters in the imaginary parts of
ε and μ, as they occur inR andT, are assumed negligible but they should be sufficient for the attenuation length

3
This is usually written in terms of themagnetic induction as [64]

f P E P B( · ) ˙ .L = + ×

In amagneticmedium, however, we need to distinguish between H0μ and B. That it should be the former that appears in the force density
follows on consideration of the screening effect of surroundingmagnetic dipoles in themedium, inmuch the sameway as electric dipoles
screen the electric field in amedium.
4
It is by nomeans straightforward to obtain the Einstein–Laub force density, in particular the final hidden–momentm related term, from

themicroscopic Lorentz force law and it has been suggested, for this reason, that the latter is incorrect [75]. A relativistic treatment, however,
reveals that the required hidden–momentum contribution arises quite naturally from the Lorentz force law [76–80].

12

New J. Phys. 17 (2015) 063027 SMBarnett andR Loudon



( )
c

( )
2 Im

(67)ℓ ω
ω εμ

=

to give complete absorption of the pulse over its semi–infinite propagation distance in themedium.
Themomentum transfer to themedium as awhole is entirely determined by the free-space single-photon

momenta, before and after reflection of the pulse, as

( )R
c

T
c

1
2

, (68)2 0 2

p

0
⎛
⎝⎜

⎞
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 ω ε
μ

ε μ
η

ω
+ = +

with the small imaginary parts of the optical parameters again ignored. It is often useful to re–express the
momentum transfer in terms of a single transmitted photonwith energy 0ω at z 0= +. This quantity is
obtained by removal of the transmitted fraction of the pulse energy, given by the bracketed termon the right of
(68), as

p
c2

1

2
, (69)total

p

0
⎛
⎝⎜

⎞
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ε μ
η

ω ε
μ

μ
ε

= + = +

in agreementwith previouswork [69, 82]. The remainder of the section considers the separation of this total
transfer ofmomentum to themagneto–dielectric into its surface and bulk contributions.

Previous calculations [18, 60] of the radiation pressure on a semi–infinite dielectric weremade by evaluation
of the Lorentz force on thematerial. Thismethod is generalized here for amagneto–dielectricmedium. For a
transverse plane–wave pulse propagated parallel to the z-axis, with electric andmagnetic fields parallel to the x
and y axes respectively, the relevant component of the Einstein–Laub force from (64) has the quantized form
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= − ∂
∂
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The 1Dfield operators from section 3.3, given in (40), are appropriate here. The single–photon pulse is
represented by the state

a1 d ( ) ˆ ( ) 0 , (71)†∫ ω ξ ω ω=

where 0∣ 〉 is the vacuum state. This single-photon state is normalized if we require our function ( )ξ ω to satisfy

d ( ) 1. (72)2∫ ω ξ ω =

The states, from their construction, satisfy

â ( ) 1 ( ) 0 . (73)ω ξ ω=

A simple choice for the pulse amplitude is

L

c
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c
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2
exp
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4
(74)

2

2

1 4 2
0

2

2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ξ ω

π
ω ω

= −
−

with c L 0ω≪ . The narrowness of the spectrumof this pulsemeans thatω can often be set equal to 0ω .
The radiation pressure of themagneto–dielectric is obtained by evaluation of the expectation value of the

Einstein–Laub force (70) for the single–photon pulse. The normal-order part of the force operator, indicated by
colons, is used to eliminate unwanted vacuumcontributions. A calculation similar to that carried out in [18] for
a dielectricmediumgives

f z t
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× − − −

where the real ε, μ, and their derivatives in the group velocity are evaluated at frequency 0ω and their relatively
small imaginary parts survive only in the attenuation lengthℓ. It is readily verified by integration over t then z
that this expression regenerates the totalmomentum transfer in equation (69). The force on the entirematerial
at time t is
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with appropriate approximations neglecting small terms in the exponents for the long attenuation–length
regimewith L ℓ≪ . This expression, with error function and exponential contributions, has the same overall
structure as found in other radiation pressure problems [18, 60]. The two terms in the large bracket are
respectively the bulk and surface contributions, with time–integrated values
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This is again in agreement with equation (69) and it also reduces to equation (5.21) of [18] for a non-magnetic
material, where themomentum transfer can bewritten entirely in terms of the phase and group indices. The
simple Abrahamphotonmomentum again represents that available for transfer to the bulkmaterial, once the
transmitted part of the pulse has cleared the surface, while themore complicated surfacemomentum transfer
depends on both ε and μ, togetherwith their functional forms embodied in the phase and group refractive
indices.

We conclude this section by noting that theHeaviside–Larmor symmetry retains a presence in all of the
forces and force densities obtained here, in that their forms are unchanged if we interchange, everywhere, the
relative permittivity and permeability.

6. Conclusion

Muchof the content of the paper presents the generalizations tomagneto–dielectrics of results previously
established for non–magneticmaterials with μ=1. The classical linear response theory in section 2 allows direct
calculation of the electric andmagnetic field–fluctuation spectra. The elementary excitations for amediumwith
multiple electric andmagnetic resonances are the polaritons, whose phase and group velocities obey generalized
sum rules formagneto–dielectrics [32].

The quantum theory in section 3 introduces electromagnetic field operators based on themultiple–branch
polariton creation and destruction operators. It is shown that the vacuum fluctuations of the quantized electric
andmagnetic fields reproduce the spectra obtained fromour classical linear–response theory. The generalized
field operators are shown to satisfy the same required canonical commutation relations as their simpler
counterparts that hold in vacuum.

TheMinkowski andAbraham electromagneticmomentumoperators are introduced in section 4 and their
associated single-photonmomenta are identified. The commutators of thesemomentum and the vector-
potential operators, previously calculated, rely on the canonical commutation relations and, through these, on
the polariton sum rules. An extension to angularmomentum, both canonical and kinetic, is achieved by
introducing angularmomentumdensities that are the cross product of the position and theMinkowski and
Abrahammomentumdensities respectively.

Throughout ourworkwe are guided by theHeaviside–Larmor symmetry between electric andmagnetic
fields.We show, in section 5, that application of this symmetry leads directly to the Einstein–Laub force density
[65]. Our final result identifies the surface and bulk contributions in the force on a semi–infinitemagneto–
dielectric for the transmission of a single-photon pulse through its surface.
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